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SMALL DENOMINATORS. 1I.
Concerning the Representation of a Circle

by V. N. Arnol'd

_ It was shown in the first part of this book that

the analytical transformation of a circle, which differs
little from a turn, whose number of rotations is irrational
and which satisfies certain arithmetical requirements, can
be converted to a turn by an analytical change of variable,
Discussed in the second part is the space of circle repre-
sentations and the place occupied in that space by various
types of representations, References are made in the
appendices to the investigation of trajectories on a torus
and to Dirichlet's problem for the equation of a vibrating
string, '

Introduction

The continuous representations of a circle were studied by
Poincare (see 8, chapter XV, pp. 165~191) in connection with a qualita-
tive investigation of trajectories on a torus, Dirichlet's problem for
the equation of a vibrating string is also conducive to such representa-
tions, bu* a topological investigation in this case is found to be
insivffici-nt (see [5]). Outlined in the first part of this work is an
atrempt to provide an analytical definition of Denjoy's theorem [2] .

‘ which completes Puincare's theory.

Let us assume that F(z) represents a real periodic function
Ffz + 27) = F(2) on a real axis and an analytical function, and that
F(z) # -1 with Im z = 0, Then the representation of the complex plane
! region z » Az = z + F(z) will correspond to the orientation-retaining
geomorphism B of the circle points w(z) = elz,

]

w = w (z) —» w(Az) = Bw, \

In this sense we can state that A is the analytical representation of a
circle,

Let us assume that the number of rotations* A equals 27u, It
follows from Denjoy's theorem that when u is irrational, there exists a

*It is assumed that the reader is familiar with the results of the work
f1; (pp. 165-191 and 322-335) and [2] which are included in the text-
pooks [21 (pp. 65-76) and [4] (pp. 442-456),




continuous reversible real function ¢(z) of a real z, and it is periodic
in a sense that '

. P (z -+ 23!) =@ (z) -+ 2;" ’/(
and that /
P(Az) =@ (z) + 27y, e8]

We shall say that ¢ is a new parameter, and that in the‘q parameter the [22 f
transformation of A becomes a turn to angle 27mu. There can be only one
such function ¢ (correct to an additive constant),

It was shown in §1 that in the case of certain irrational u,
regardless even of the analyticity of F(z), the function ¢ in (1) may
not be found to be absolutely continuous. The idea of this example con-
sists in the following, Since the rotations of a circle do not affect
the length, the reduction of a transformation to a turn by an appropriate
selection of a parameter amounts to finding an invariant measure of
transformation, In the case of a rational rotation number, the invariant
measure is concentrated, as a rule, in separate points, the points of the
transformation cycles., However, if the rotation number is irrational but
approximate to the rational, the invariant measure retains its singular
nature even though it is closely distributed all around the circle.

The following hypothesis appears plausible:

There exists such a set as M C [0,1] of measure 1, whereby the
solutions of equation (1) for each €M, under any analytical transforma-
tion of A with a rotation number 27u, are analytical,

So far this has been proved only in regard to analytical trans-
formations (§4, theorem 2)* which are fairly close to a turn to angle
2nu, The proof is in the method of solving equation- (1) by way of the i
following equation: |

8(z + 2mp) — g(2) = f(z). (2)

*Notation in proofreading, The work of A, Finzi [38], [39] came to the
attention of the author during the printing of this article, It follows g
from work [38] that i1if the rotation number of a fairly smooth represen- i
tation of a circle satisfies certain arithmetical requirements, the '
rotation can be converted to a turn by a continuously differentiable
change of variables, Thus the A, Finzi method does not require the
transformation to be close to a turn; this is partially confirmed by
the above hypothesis, A, Finzi points out, however, that he sees no
possibility of using his methods in cases requiring a very smooth
change of variables, This article contains a partial answer to some of
his questions; the reader will find a partial answer to some of the
questions raised here in the mentioned articles by A, Finzi,



The solution of this equation with the aid of Fourier's series reveals a
number of small denominators complicating convergence, The calculation
of the successive corrections designed to adapt the solution of equation
(2) to equation (1) is made by a Newton-type method, and the rapid com-
vergence of this method makes it possible to realize not only all the
approximations of the perturbation theory but also the limit transitionm,

The Newton method was used for such a purpose by A.,N. Kolmogorov
[6]. Theorem 2 of this article is a kind of discrete analog of his
theorem of the preservation of conditional periodic motion with a little
change in the Hamilton function, Unlike the work [6], we have no analyti-
cal integral invariant but are looking for it, Moreover, we are proving
(in theorem 2) the analyticity of the dependence on the small parameter €
which implies the convergence of series by power € which is usual in the
theory of perturbation,

Direct proof of the convergence of these series cannot be provided,
and in this connection A. N, Kolmogorov even advanced the hypothesis of
their divergence (prior to his study of K, L, Siegel's work [7]).%*

Another hypothesis expressed in A, N, Kolmogorov's report [8]
proved to be true; the problems involving small denominators are associ-
ated with the monogenic Borel functions [9]. With reference to our case,
this was established in §7, 8 and is used in §11,

Some important problems involving small denominators were solved
by C. L. Siegel (see [7, 33, 34, 35]). The Schroeder equation has
direct reference to the representation of a circle: 1is it possible to
use the analytical change of variables ¢(z) = z + b2z2 + ,,, in order
to convert the representation of a zero neighborhood in a complex plane,
determined by the analytical function £(z) = c2mip 4 4 a222 + ... to a
turn to angle 2mu,

The result achieved by Siegel [7] is similar to our theorem 2, and
can be obtained by the same method., The problem of a center is a special
aspect of the representation of a circle whose radius in some instances
is equal to zero, Here the situation is simpler, as compared to the
general aspect, since the solution (Schroeder's series) can be formally
expressed at once, The use of the Newton method also produces Schroeder's
series; unlike theorem 2, each coefficient of the solution will be accu-
rately determined after the finite number of approximations,

The second part of the article contains a classification of the
representations of a circle and a discussion of the typical nature of
various cases, In §9, function u(T) (the rotation number) is introduced

*In his report to the Moscow mathematical society, 13 Jan, 1959,



in the space of the circle representation, This is followed by a study

of the rational (§10) and irrational (§11) level u from the point of

view of their arrangement (theorems 6 and 7) and massiveness (theorems 5

and 8), Rough representations are topologically overwhelming from the
viewpoint of A, A. Andronov and L, S, Pontryagin [10], With normal

cycles and a rational rotation number, they form an open absolutely

dense set.* Typical also from the point of view of dimension in the e -
finite-dimensional subspace is the ergodic case. A two-dimensional sub-

space of representations x — x + a + € cos x is discussed in §12.

The preceding results are applied in §§13 and 14 to a qualitative
investigation of trajectories on the torus and to Dirichlet's problem
for the equation of a vibrating string,

The author expresses his gratitude to A, N. Kolmogorov for his
valuable advice and assistance,

PART I
Concerning the Analytical Representation of a Circle

The gist of the first part of the article is contained in §§4-6
(theorem 2), To understand the proof of theorem 2 (§§5 & 6), we need
the subparagraphs 2,1, 2.3 of §2 and 3,3 of §3, The implicit function
and finite-increase lemmas may be referred to as needed. Each of the 124
§§1, 2, 7 can be read independently of all the rest, The generalization
of theorem 2 (theorem 3), used in the second part of this work, is
proved in §8,

§1, When Is a New Parameter Not an Absolutely
Continuous Function of an 0ld One?
1.1, This paragraph deals with the analytical transformation A
of circle C, circle subset G, (n = 1,2, ...) and natural number .
N, (mn = 1,2, ,,.) in such a way that:
1, mes G, * 0 withn ~ @,

N
2, A™ (c\Gy) C G,

3. The rotation number of transformation A is irrational,

*Notation in proofreading, This result was obtained also by V, A, Pliss
in an article [43] published during the printing of this work,

R



This transformation A cannot be converted to a turn by an abso-
lutely continuous change of variable, Indeed, let us assume that ¢ is a
continuous parameter in which transformation A is changed to a turn to
angle 27u (Denjoy's theorem assumes the existence of ¢). The powers of
A are also converted to turns, Let us assume that G C C, The measure of
set ¢ (G) of values ¢(x), x€G 1s congruent to measure ¢(AN G), so that
these sets combine during the turn, It therefore follows from condition
2 that:

21 — mes @ (G,) < mes @ (Gy)

and

nps¢«zo;>u.

In view of condition 1, ¢ is not an absolutely continuous function on C,’ i
1,2, The following lemmas are used in the construction,

LEMMA a, Let us assume that A is a forward* semistable analytical
representation of a circle in the neighborhood of the real axis, and let ;
points z,, 2} = = A(zy. )(0<1<<rn form a cycle--that is, A(zp-1). Then '
for any € >0 1in the mentioned neighborhood of the real axis there is a
transformation A which differs from A'by less than € and which has
exactly one cycle, namely z,, Z},...525.7"

Proof. Let us make an analytical correction A(z) in the area
under consideration which turns to zero at the points Zgseees2na]s and a
positive correction at the remaining real points,

We shall assume
A' ()= A(z) 4+ ¢'A(z);

when the €'> Ole'A(z)|<e value in the mentioned area is low, A'(z) also
represents the transformation of a circle., Obviously, the transformation
(A')™ will shift all points z forward not less than transformation AR,
thereby displacing the points zo""’zn-é by 2rm and the remaining points
by more than 2mm; lemma a has been proved,

Definitibn. Let A be a transformation of circle C, and G a set /25
on it, We shall say that transformation A possesses property 2 in rela-
tion to G and N, if AN (C\G) CG.

LEMMA S8, The transformation A with a single cycle ZgseessZnals
with any € >0, possesses property 2 in relation to the set G, of points
in the €-neighborhood of the cycle and any N exceeding a specified N,(¢).

*This means that with certain integers m, n and any real z, A"(z)2 2z + 27y,
and an equality is achieved,
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Proof, Let z;> x<:zj, where zj 2y is one of the arcs into which

the cycle divides the circle, Points Akn(x)(k==1, 2,...) lie on arc
z4 24 and form a monotonic sequence (for more details see §10), Hence,

if transformation A has a forward semistability (the case of a backward
semistability is fully analogical),

A" (@) — 3.
koo

Indeed, let A be the limit of the monotonic sequence Akn(x); then A is
an invariant in relation to A™ and belongs to the cycle that satisfies
the inequalities

5 A3
Thus,

lim A™ (z) = A’ (z)).
& -

The same is true of the other intervals into which the circle is divided
by the cycle. i

Let us examine the points xy = zy + €, According to the proof,
all the points Ain, beginning with some N,(€¢), lie in the €-neighborhood
of the cycle. Obviously, this N, is the unknown quantity,

LEMMA ¥, Let transformation A possess property 2 in relation to
G and N, and let € >0, Then there exists such & >0 that any transforma-
tion B,differing from A by less than §, possesses property 2 in relation
to N and the e-neighborhood of G.

Proof, The lemma obviously follows from the continuous depend-
ence of AN on A,

LEMMA 8, Let A be a forward semistable transformation, B(z)=
A(z) + h, h>0, Then the rotation numbgr M of transformation B is defi-
nitely larger than the rotation number ; of transformation A, :

Proof. Obviously, u> z. Here B“(z) >FA“(z) and therefore B has

m
no cycle of the n order, Hence, > o

LEMMA € (a singular case of Liuville's theorem)., If the ine-

quality |a -lﬂl < with any ¢ > 0, has an infinite set of irre-

H

ducible solutions — the number a 1s irrational,

n:

[ ——

Proof, If a= £, then withn >q
q
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as the fraction m/n is irreducible, and that means tﬁat]pn - qn|+ 0 with
q<n,

1.3 Transformation A is constructed as the limit of the trans- /26
formation sequence A, with rational rotation numbers, We shall begin

with the transformation z—A;(z); we shall assume that it possesses the

. following properties:

1; . Ay is analytical in the band Im z < R and in this band
Ap(2) < % :

2y, . The rotation number of A; is rationmal: u;= __,
31a. Ay 18 semistable (forward),
31p. Aj has exactly one cycle.

The existence of such A; 1is obvious: by a proper h> 0 selection,
A]'_= Ay + h with properties 1;, 2; and 3; can be obtained from any AY,

and Ai can then be corrected to A; according to lemma a, The following

transformations A, can be achieved from the preceding ones by the process
based on the following. —

INDUCTIVE LEMMA. Let 8,>0 and let us assume that the given
transformations Ap(k=1,2,,,,,n) and R>0, C>0 are such that ‘

1,. With|Im 2| < R, Ay are analytical and satisfy the inequalities

. C
| 4@ — 4 ()| <35 (4s(&)=0).
2n' The rotation number of Ak is rational also with k> 1

1

Py Pr~y
9 < k— 1)t (max Nl

Ix Ix~1

3,. Ak are forward semistable, each having a single cycle,

It is then possible to construct the transformation A4 in such *
a way that the sequence Ak(k==1,2,...,(n + 1) will possess the properties




/| Antr(6)— An ()| <84 npu Imz =0,

Proof, Let us examine the transformations Aj:z-A,(2) + A, A> 0,
Obviously there exists Ag >0 such that when A< Ag .

| 4@ — 40 (3)| < g7 (Imz| <R,

| Ax(2) — An(2)|<—621 (Imz=0)

and the rotation number A) is definitely larger than _?l (lemma §) and

smaller than qn
VT P 1
VRt e
. 9n a* (max g;)
v o i<n

(for continuity of rotation number, see §9). Let rotation number A’\O be u;
we shall select the rational number Pn+l ,

-~ 1
_

P P

g oy,
LI B

and from among all the A, whose rotation number A) is %ﬁ%—, we shall
select the largest, say, Kl. The transformation A); possesses the

properties lntl, 2n+l1, 4n+l and, as can readily be seen, is forward semi-

stable. We shall apply lemma a to it; then we shall get transformation
Aps] which satisfies all the requirements of the inductive lemma,

1.4, Transformation A satisfies the conditions 1y, 2y, 3; of

the inductive lemma with the same C, R, We shall describe the selection
8, by transferring the induction from A, to A..,. We shall designate
the e-neighborhood of the single cycle A, as G¥, where € >0 is such that
the measure Gk is less than 2'“'2. According to lemma S, a N, will be
found, whereby A, possesses property 2 in relation to G, and N,. Accord-
ing to lemma 7y, there exists §%>0, whereby transformation A possesses
property 2 in relation to N, and G, of the G,-neighborhood, measure .

270-1  if on the real axis. We shall select

| A(2) — 4n (2)| < 8.
N2 N
boy = min (3, )

(we formally consider 3 ,=0). Applying the inductive lemma, we get A,.;.

g



If the transformations A (n=1,2,.,,) are constructed by the
described method, then, in view of property 1,, this sequence will con-
; verge uniformly in the |Im z|<R area so that limit A is an analytical
' transformation, Obviously, '

14() — 4@ < z‘,lAk+l(z>—A.(z)|<26( <t (mi=0)

k—n kmmn

with any n, and therefore A possesses property 2 in relation to G, and
N,(n=1,2,...). We conclude from property 2, and the continuity of the
rotation number, on the basis of lemma €, that rotation number A is
irrational. Indeed, with any n

b2

1 2
Z W max WS, 2 ,‘z : <E-‘\

Thus, all three properties indicated in 1,1 are fulfilled, so that
A represents the sought for transformation.

1.5, Remark, Examining the structure of the example, it is easy
to see that the transformation A with the mentioned properties can be
found in any family of analytical transformations

z—>A,z=2+ A4 F(3)

in any neighborhood of any transformation with an irrational rotation
number, if the family only possesses the following property: there are

no turns among the transformations A}, The family z—z + A +5-cos z /28
probably possesses this property; in that case the example can be

presented by a simple analytical formula,

§2, On the Functional Equation* g(z + 27u) - g(z) = £(2)

2.1 Let £(z) be a function of period 27, and u4 a real number,

*Gilbert [12] refers to this equation as an analytical problem for which
there is a nonanalytical solution, It occurs in the researches into
the metric theory of dynamic systems (see [13, 11]) and represents a ‘
simple problem with small denominators.

Notation in proofreading. The mentioned article had already been sub-
mitted to the printer when the author learned of A, Wintner's famous
article [40] in which the equation under discussion is studied from a
contemporary point of view, apparently for the first time,
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Define from equation
/ gG+2m)—g@) =10 )
the function g(z) which has a 27 period.

Obviously, 1f equation (1) is insoluble

\f@a=0.

0

Further, if g(z) is a solution, then g(z) + C is also a solution., We
shall therefore consider only the right-hand sides which are on the
average equal to zero, and look only for solutions which are on the
average equal to zero. 1In each function ¢(z) we shall single out a con-
stant for (0, 27)

n

- 1

Q= 5,‘;8 ¢ (2)dz
1]

and a variable - _
Q@) =9()—0.

Thus the condition required for the solution of equation (1) is the
equality f =0; hereafter, the solution (1) will always imply the variable

part g(z).

If = E, i.e., it is rational, the existence of a solution
requires that :

é/(z—l—Zu%—):O,

k=1

as this sum is expressed by a solution in the form of

n n

2g@+2m%+2m%)—2g@+&u%)

[ i} | 378 -
and the items in these two sums are the same. If such a condition is
fulfilled, a solution exists but it is defined only correct to an arbi-
trary function of the.ﬁﬂfperiod, as such a function satisfies the
homogeneous equation CoT

g(rtm ) —s@=0.

ey
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But if p is irrational, there is only one solution, namely:

1) with i1 being irrational, equation (1) cannot have two dif-
ferent continuous solutions,

Proof, The difference between two continuous solutions to equa-
tion (1) satisfies the following equations:.

" g(+2n) —g(3) =0,
g(z+2m)—g(s) =0, |

that is, this continuous function has two incommensurable periods. Such

a function is a constant (see [15], pp. 55-56); it takes on the same
value at all 27k + 2mul points which form a solid set everywhere. As

Sg(z)dz =0, |

0
the mentioned constant is zero,

2) With pu being irrational, equation (1) cannot have two meas-
urable solutions which are almost always incongruent,

Proof, Let us take another look at the difference between the
two solutions of function g(z). It may be considered as a function on
the circle, as it has a period 27, According to the conditiom,

g(z+ 2np) —g(z) =0,

that is, g(z) does not change during the turn to angle 27u, Therefore

the set E, of the points on the circle, where g(z) >a, is invariant in
relation to the turn to angle 27y, If the function g(z) is (almost
everywhere) constant, such a constant (as in the case of 1), is zero,

If g(z) is not a constant, the set E; will have a measure of O<mes E; <27
at a specified value a. But it is well known that a set which is invari-
ant in relation to a turn to an angle incommensurable with 27 has a
measure of zero or a full measure (see.[3]}, for example; proof can be
adduced by the mere use of the theorem of the density point), Thus

g(z) =0 (almost everywhere),

The expansion of function f(z) in a Fourier series

f(Z) = Efﬂeimv

no
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produces the following Fourier coefficients g(z):

gacttivn -~ &n=Jn
that is, fu

Bo= i —» 8= Eoe-e‘"- @

With u being rational, some of the denominators become zero, When u is
irrational, there are numerous small denominators among the denominat:ors.
We shall point out that

|etn — 1|> |pn —m| 3)
with any integer n or a specified integer m, The smallness of the
denominators in (2) therefore depends on the approximations of u by ra-
tional numbers,

LEMMA 1 (see [16]). Let €>0, For almost every u, 0<u<1l (in
point of the Lebesgue measure) there is K >0, such that

lwn—m| > )

with any integers m and n>0,

Proof, We shall select some K> 0 and estimate the measure of set -

Ey of points u, O<u <1, which do not satisfy the inequality (4) and
which we shall rewrite as

This set contains all the points uﬁx with the neighborhood of radius
""2—6. At a fixed value n, the number of these points will be n + 1,

and the total length of the neighborhoods (of 0, 1) will be alte’
Therefore

mes Ex < 2 "xT-' =c(e) K.

The set of points u, for which the number K required in the lemma does
not exist, is included in Ey with any K> 0, and its measure therefore is
less than c(e¢)K with any K--that is, it equals zero,

/30
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2.2 We will show that in almost all u the small denominators
have an insignificant effect on the convergence of series (2).

LEMMA 2 (see [17]). The series

{-

- 1
S=2 o ma=md | )

n=} /

is convergent at any € <0 and any inﬁegers m,, if u4 is such that

K .
lpp—m|> -2 (K>0, 0L8<le) (6)
with all integers m and n>O0,

Proof. It may be assumed, without disrupting the overall rela-
tionship, that |un - mp| <1, Let us examine the series S;, of the same

type as S, in which the summation extends only to the indices n= nk 1)
for wh1ch

w<|pni"-m,.g)|<§ (=0,4,2,...; nfla>n). )

In the aggregate, the series S; contain all the S members, so that all
that needs to be shown is that

ESg<Oo. ;
=0 ‘

To estimate Sy, we shall point out that, in view of (6), the consecutive

numbers n(i), néi{ of the series S; terms are far removed: as the

following inequality follows from (7)
1
I 2 il —ml< i,

we deduce from (6):

K
2(—1 > N}+'—& M

where !

Ny= min (nﬁ_‘_l - nf’). :

0<k<oo

T —
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Hence we get:

1

N> ETRT T ®

It is obvious that n(1)>Ni, and that in general néi) >kNi, so that 1n :
view of (5), (7) and (8) we have:

S
e T —

- o+ o1 @ 2t+1 7 o
Si < = = - L(e, L (e, K) >0),
! gl (N, e Ni‘H 2 kl+¢ 2“ e +.—5 (e, ) (L ) >0)
(,__k':_'_)
. Si<2 e L2 VT _ e, 8, K) 6
Here .
1+¢ :
0=2"TF2 <4, ,
therefore |
w .
Z Si < oo,
o

~ which completes the proof.

It is a known fact that if f£f(x) is a function differentiable p+¢
times,* its Fourier coefficients are of a decreasing order.

p+:
=l
and 1if |
g \PH+e
h=0(5) .
the f(x) is differentiable p + ¢ times, In view of that, we get the .

following result from inequality (3) and lemmas 1 and 2 applied to
series (2):

If the function f(z) is differentiable p+ 1 + € + 3 times, then

*That is a function in which the p':h derivative fulfills the Goelder
condition of the € power: |f ®)(x + h) - £(P) (x)| < che€,
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equation (1) has a solution which is differentiable p + € times in almost
every case of pu, : '

~ On the other hand, it is not difficult to illustrate that when
the number p can be well approximated by rational numbers, series (2)

converges slowly, or is not convergent at all, despite the rapidly decreas- /32

ing numerators f,,, Therefore, even if £(z) is analytical, we may find

cases when g(z) is not analytical but infinitely differentiable, or dif-
ferentiable only a finite number of times, or only continuous or even
discontinuous, or that the solution is immeasurable (see [14, 17]).%*

2.3, Let us examine equation (1) in a class of analytical func-
tions, Investigating this case, we shall recall the two lemmas dealing
with the Fourier coefficients of analytical functioms.

LEMMA 3. 1If the function f£(z) of period 2u in the area |Im z|<R
is analytical, and in this area |f(z)| <C, then its Fourier coefficients

satisfy the inequalities
{

|fa| < Cem1mIR,
Proof. According to the definition,
mn

fo= 25\ 1@ emds.

o

In view of the periodicity f£(z)e iPZ,

it an4-ie .
& f(@)et"tdz = ] (2) e—in2 dz,
0 o
therefore
A setit
i'l = E’; / (Z) e—"" dz
o-tis

with any T€|-R, R|. Integrating in the case of n>0 by a straightt 7T = - R
and in n<0 by 7 =R, we get:

*A, N, Kolmogorov advanced the hypothesis that the latter case-can always

| /al .
be realized if the series }a'TgﬁﬁE:jT; is divergent,
a0

-
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ln‘
11al < 55 { CemimiRds, -
(1}
. /
which completes the proof,
LEMMA 4, Let the Fourler coefficients of function f£(z) fulfill
the inequalities |fn|$Ce"n|R. Then £(z) is analytical and fulfills
the following inequality with |Imz|<R - §, 0<§<R

1@< =

and its derivative fulfills the inequality

’ 2C
|/(z)|<7::r)7-

Proof, With|[Imz|<R - §,0<3<R, it is obvious that.
’/’ Ielm|<e|n|(8—5).
Therefore
'/"einz|<é¢—ln|8 B

and

i - - o0
[ e <2 ) cem <20
N —00 {—e¢

/ n=0

The same applies to

) ‘o \
D | fuinetnt| < 2C D) m_,.;<___§_0__‘_*_.';
n=0 i

Nu=—00 (t—e7)

In the |{Im z| <R -~ & area the convergence of the series is absolutely
uniform, The lemma has been proved,

It is now easy to examine the analytical solution of equation '(1).“

THEOREM 1. Let £(2) ='f‘(z) be an analytical function of period 2
and |Im z| < R|f(2)| SC, Let x be an irrstional number, K> 0 and

K
> (9)

-3

e
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with any integers m and n<0, Then the equation

g(z+2mp)—g () =1 (2)/

has an analytical solution g(z) =g(z), and with |Im z| <R - 2§ and any
8<1,0<8<%.

c |/ '
Ig(z)|<—,§3.f. , (10)
18 ()| < 2 - Qi) :

Proof, Using function £(z) and lemma 3 to estimate the Fourier
coefficients f,, and making use of inequalities (3) and (9), we get from

(2):
C o
Vg, | << e iniR, (12)

We note the simple inequality

p_elnlb

nP<(Ef % CQa3)
which is true with any &> 0, ?indeed, P In x<p ln-g-+ x, as the func-

tion X p In x - x has a maximum at% = 1; assuming that x =3 |n| , we get
(13).) Applying (13) to (12) (with p=2), we get:

Ce— 1M RANIE o~ |nl(R=Y)

| gnl < K&? K83 '
hence, on the basis of lemma 4, we find in the area |Imz| <R - 2§: [34
‘ 2c 20 !
IS OIS ga==p-

Since §<1 |1 - e"8| > -g— , we find from this the inequalities (10), (11),.
The theorem has been proved, '

Remark 1, Obviously, if £(2) on a real straight line is real,
then the solution is also real,

Remark 2, If the function f£(z, A) is analytically dependent on
parameter A, the solution (in term of theorem 1) is also analytical with
regard to the parameter,
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2.4, Let us examine equation (1) with complex g, In this case
the solution of the homogeneous equation

g(z+2mp) —g(z) =0

can be any double periodic function with periods 2w and 2mu, and this is
therefore not the sole solution of the problem, If g(z) is required to
be analytical in an area wider than |Im 27u|, solution (1) can be deter-
mined by a. simple number correct to a constant., Actually, such a wide
area contains a parallelogram of periods, and the solution of a homoge-
neous equation in it is.limited on the entire plane--that is, it is a
constant, The condition g=0 yields a single solution which is produced
by series (2). This series is convergent under any complex p, but we
are interested in estimates, and the neighborhoods of rational u should
therefore be excluded. We shall designate as Mﬁ the set of points in a

rectangle on a complex plane 0<Rexp <1, |Imu|<r so that with all
integers m, n the following inequality is fulfilled

k=% l>m-

Obviously, M{ includes &, 1 - u, 1 - & along with u.

Instead of inequality (3) we have:

e — 1> min (g, x|z—m|) (14)
for any complex zlwith some integer m. We shall prove 1neqfa11ty (14).
1f le2miz - 1| 2 35, then (14) is proved. If |e2™2z - 1| < 5, we shall

connect points 1 and eZWiz with the segment and examine the integral
edriz
i - dw — 1 iz oy
ST S —w——l——‘.(lne”” Inl) =z2—m,

1 T

where lnw is one of the logarithm branches and 1n 1= 27im (m is an inte-
ger). As the integration segment lies entirely within the circle

1
|w—1|<-2—,
1.
and in this circle |w| > =5, then
"ﬁ‘l
td
IS _L‘;’_|<2l¢mx__“. |

1

—p——— o
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Therefore

PRSP R AP /

.- 7

’

which completes the proof.

If u€Mf, then by applying (14) to z=un, we find that

1 K
|e""l“‘—-i‘|'>mm(—2—. -’;—, .

Thus, if u€Mi, where K< -ziﬂ, then

|etmien | 2K (15)

THEOREM 1', Let f£(z) =f(z) be an analytical function of period

27 and |Im z| < R|£(z)| £C, and let pEMﬁ, K< —21; Then the equation

| gG@+2m)—g () =1(2) (1)
will have an analytical solution g(z) = g(z), and with |Im (z - 27u)| <R - 23
and any 8§ < 1, 0< 8<E,

' 4C , 8C
e <sxe 18O 5xw - (16)
Proof, According to formula (2) and lemma 3, we have:

Ce—“"R

lg e <

e ein (2—amutamp), (17)
and with |Im(z - 2mu)| <R - 28 |

[eln tz—3m8) | £ gl n | (R—28),
so that it follows from (17):

Cainl
|g,.e‘"‘l<,—_:';-m-/

Since 1 - pu€M{, in accordance with (15),

11— etmien| 5 3K
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which means that

c,-mnv,.' “’

)
’,

| e,.e"" i<

This, in view of (13), results in the convergence of the series g(z) and
g'(z) and, consequently, also the truth of inequalities (16) (see proof
of theorem 1 and lemma 4),

Remark 1, Note 2 to theorem 1 is applicable also to theorem 1',

Remark 2, We shall fix function f and number z and examine the
dependence of the found solution on u:

Ia j
e =3 " (2)

n$0

The function g(u) is analytical in the upper and lower semiplane but the
axis Im 4 =0 18 an excision, Series (2) converges on it almost every-
where, but to a discontinuous 1limit, This will not prevent us from
differentiating the solution by ux in §7, even with Im x =0, by making
use of Borel's ideas [9]., 1In the meantime, we believe that the formula

g 2nine?™Mny
3= 2 gy

n$0

einz

makes sense only in the upper and lower semiplanes separately,

§3, The Lemmas Required To Prove Theorem 2

3.1. LEMMA 5, If function £(z) is analytical in each point of

segment z}z3 and rggl < L, then [£(22) - £f(z1)1<Lizp - z1|.
z

Proof, 1Indeed,

1) —1 ()= | L as,

hence

/ 17(8)—/(8)| < SI#‘L

lds | SLisy— 3],

-
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Remark, The example £f(z) -eiz, z1= 0, 2z =27 shows that in a
complex region the theorem of the finite increment in the form of

e =@ = LR e —m)

or

\

e —fE)] = |

-z

is incorrect,

3.2, LEMMA 6 (concerning an implicit function). Let functions
F(€), ®(e, A) be analytical, and with |e| < €g, |Aj < 4

1

|F@I<M, - |0 8)|<MAl,]

M3 Ad V

where <— and My <—1-. Then
1-M 3 6

1. The equation A + F(e) + ®(e, A) = 0 has an analytical solu-
tion of A*(¢) which, with |e| < €g, fulfills the inequality |A*(e)|$ M

2, The equation A+ F(e) + ®(e, A) Al has a root A=A(A, €)
analytically dependent on 4, and ¢, | 4] <2 0,|e|< €0> root A=A(A, €),

and

! 1A (A, &) — A" (€)] <2y

M1 M3
1-Mzisat1-M2<A°' le|] < €y in
the region where |F(e)| < M;, | ®(e,A)| <M2]|A|, and the transformation
A~-F(e) - & e, A) therefore puts it within itself:

Proof, 1. The circle |A|<

|F(e) 4D (e, A) 1< Ml+i Ma—1f‘1u.'

The fixed transformation point represents the sought for solution of
A%(e); analyticity follows from the ordinary theorem of the implicit

function, as

2 (A+F(8) + O s, &) %0,

[
the estimation of—iwith the aid of the Cauchy

which follows fr 34

g

S e + — € < €
. ,_-_1: exd h !A! < ’I I - 0
ir 5 3 s

- M2

37

SR
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M.A. 4
| x| <72 <7
2. In the representation of w—~w + ®(w,€), point A*(¢)
changes to F(¢), and points w of circle |w - A*(e)l 52|A1| to points
w4+ O(A(e), €) + [D (w, &) — D (A" (e), &)l

Since under the terms of the lemma applying to the points of this
circle '

| D (w0, &) — @ (A (e), &) | < | Ay

(lemma 5), the image of circle |w - A%(e)| < 2|A1| contains the entire

This point fulfills inequality
|A—A' < 2|A ]
and equation
A=A —F()—D(e,A).
20
Unity and analyticity follow from inequality -a-z
Remark, It is easy to see that if under the terms of lemma 6 the
functions F(€) and ®(e,A) are real, given real €, A, then A*(e) and
A(Ay, €) are real with real Ay, €.
3.3 The Newton method (see [18, 6]). Let us assume that a solu-

tion is sought for equation f(x)=0 (Fig. 1). We shall define x roughly
as xg and find intersection point x; of tangential at x; to curve

y = f(x) with axis x:

We shall further define in succession

f(x"—])
xn == zn—[ - /l (zn—l)

and estimate the velocity of the convergence process.* Let x be the

*No exéct premises or estimates are given here, They are cited in work
[18] in very general terms which do not, however, cover the discussions
appearing in the following paragraphs,
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unknown solution and |xQ - X|= €., Then the deviag~ * 7 * 1  /38
tion of the curve from the line tangential to it, at '/ ﬁ—
point xg, will have an order of €2 at point x, which s ¢

means that |x] - x| is a magnitude of the order €2,

very rapid convergence, |

: L Fig, 1 o
We shall apply a method of the Newton method T & - /

type to the solution of the linear functional equa- .
tion approximable by the equation discussed in §2, The rapid conver-
gence will paralyze the small denominators appearing on every step.
§4, Theorem 2 and Basic Lemma
4.1, Leading considerations, The transformation
z—2z+4 2np
is a turn of the circle. The transformation
z2—>z - 2np - eF(2)

is a turn, disturbed by a member eF(z), which is small together with €.
Its rotation number, even if ¥ =0, may be different from 2mu, However,
it is possible to find A=A(€) such that the transformation

z2—2+42np + A + e F(z)

will have a rotation number equal to 2mu, We shall show that in the
case of p, formally approximated by rational numbers, and fairly smalle

1) A(€) is analytically dependent on €;

2) The transformation z—oz' + 2mu+ A + €F(z) can be converted
to a turn to angle 27u by an analytical change of variable ¢(z) =z + g(z).

Here g(z) is a small correction together with €, and property 2)
means that

#2(5_&3@;{-}— A(e) + e F(2), &) = @(z, &) + 2mp,
or, which is the same (the g dependence on € is implied),

g(z+2np 4 At eF(z)) —g(z) = — A—e F(s). (1)

i,

3

RS —
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This equation differs from the one discussed in §2 only by small magni-
tudes of the second order, and it is therefore natural in the first
approximation to select A=Aj(€) such that the right side of equation
(1) 18 on the average equal zero:

A= —eF
and look for g;(z) as a solution to the equation
&1z +2mp) — g1 (2) = — e F(2).

The g; defined here has an order of €, and in the variable ¢1:=z + 8
our transformation

2oz 2mp+ Ay () + e F2)
looks like this:

Pi(z+2mp+ Ay(e) +eF (2) =2+ 2mp+ A, + e F +
+ 81(2 + 2mp + A, + eF) =z + g, (z) + 2mp +
+[81(2 + 271 + A, + eF) — g, (3 + 271p)] +

+16 (2 + 2mp) — £, (2) + eF (2)) + (A, + e F). |

Thanks to the selection of Al and gl(z), the last two terms become zero,
and we get:

P1(2) = 91(2) + 27p +Fy (2, &).

The '‘perturbance" will now look like this:

Fa(s, €)= (s + 2ms + By + eF) — g, (s + 2mp) = 258 (4, 4 oF).

dgy ‘
Here <37 , like g;, 1s a magnitude of the order € and, as it is also

related to the second cofactor, the perturbance in parameter ¢1 has an

order of 62. The transformation

Q1P+ 2 + Fy

can be treated the same way to determine the "frequency correction" A,
and the new parameter ¢2 so that the transformation

91— 1+ 27p + Ay + Fy
in the parameter ¢2 becomes the following transformation

Ps— @3 + 2np + Fy,

»
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where Fq ~ 64. In this case, however, the transformation in parameter z

Q1> @+ 2 + Ay Fy /

" will not look like the ifollowing:“

2>z 2ap+ AteF./

We must therefore begin with the transformation

22+ 2mp + Ay (e) -+ A} (8y) + eF3/

then with the appropriate selection of A} (Aj) it will be possible to get
the following transformation in parameter ¢; :

1 — ¢ + 2p 4 Aa+F;(‘Pl).

and the following in parametef ¢2

@2 — §g + 2mp + Fy,

and so on, The rapid convergence of the (Fn'\:e2n 1) method makes it
possible to realize a limit transition, and find a new parameter ¢(z, €)
and a final correction A(€) possessing the properties 1) and 2) within
that limit, The usual method employed in the theory of perturbation for
the solution of our problem would be to look for A(€) and ¢(z, €) in the
form of series by power €, and determine the coefficients of the series
successively from the fulfillment of equation (1) in the first approxi-
mation, the second and so on. The convergence of such series cannot be
proved by direct estimates but it is borne out by the basic theorem of
this work cited below,

4,2, THEOREM 2, Let a given family of amalytical transforma-
tions of a circle be analytically dependent on the two parameters €, A

z—>A(z, e, A)y=z42np+ A+ F(z, e)/ (2)
and the numbers R>0, €;>0, K>0, L>0 are such that
1) F(z + 2m, €) =F(z, €);
2) With |Im z =Im €= 0 always Im F(z, €) =0;
3) with |Im z| < R, [€] < €
| |F (2 )| <L|sl | )

ey



4) The irrational number g, with any m and n integers, fulfills
the inequality ’

i |
2y (%)

=z

Then there exist numbers €' and R', 0 <€'2¢€¢3, 0 R'SR, and
functions A(€), ¢(z, €) which are real, given real € and z, and analyti-
cal with |e|<€', |Im z|<R' such that

@ (4(z, &, Ae)), &) = @(z, &) + 2np.; 5)
This theorem is proved in §6 on the basis of the following lemma,.

BASIC LEMMA. Let a given family of analytical transformations of
a circle be analytically dependent on the two parameters €,4A

| 2= A, (2, ¢, A)E.z+2up+A+F(z, e) + @ (z, e, A) (6)
: and the number Ry>0, €43>0, XK>0, §>0, C>0, 0<Ay<1l are such that
1) }F(z + 27, €)=F(z, €), ®(z + 2m, €, A)=®(z, €, A);
2) With Im z=Im€=ImA =0 always Im F = Im ®=0;
3) With |Im z| <Ry, | €] <€ |A] < AO
|F(z,8) | <C L, | )
10z, &, 8)| <B|AL; ®)

4) The irrational number p, given any integers m and n, ful-
fills the inequality (4);

5) The number § fulfills the inequalities

d< g, o<, (9
.
0l (10)

and also

c<fg. (11)
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Then the existing analytical functions z(¢, €), A(Ag, €),
F1(®, €), ®;(®, €, A) are such that

1, The following is identical:
z[A1 (g, &, Ay), el = A, [2(9, ©), &, A(_An e)l, (12)
where
4@ e, M) =g+ 2+ A+ Fi(e )+ B8 A) (13)

2 F (¢+ 2m, €)= F1(¢’ €), ¢1(¢+ 2m, €, A]_) °1(¢: €, 1);
z(p + 27, €) —z(¢, €) + 27,

3. With In¢=ImA;=Ime =0, always Im 2=Im A=Im F =
Imq’1=0.

4. With |Aq| <C, |Im @|<Ry - 78, |e|<¢qg

/1R ol<S, ' (14)
|0, (9, &, Ar)| < 8| Al (15)
! 1A (AL B < A, aA,|<2 an - /sl

The basic lemma shows that a small perturbance (of the order of
C) of the turn z—2z + 27u can be compensated for by changing the parame-
ter z~¢, with A=A(A;,€) in such a way that the difference from the
turn in the new parameters is of the order of c2. The proof of the
lemma is given in the following paragraph,

4,3, We are making use of the following assertion in §11,
Corollary of theorem 3. Let the irrational number p fulfill ine-
quality (4) of theorem 2, and let R>0, There exists C(R, K) >0 such
that if the transformation
Az:z2— 24 2np + F(2)

has rotation number 27u and |F(z)| <C with |Imz| <R, then Az can be con-
verted to a turn to angle 27u by an analytical change of a variable,

T e |
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Proof. Let us examine function

F(2)

max | F(s)]
| Im z|<R —

Fi(z) =

and transformation fami ly
Agz:z—2z 4 2np 4 eFy (2), \

which fulfill the conditions of theorem 2, with L=1, as |Fj(2)| <1 with
|Im z| £R, According to theorem 2, there exists €'(R, K) >0 such that
with € < €' the transformation

z2—>2 + 2np + A(e) + eFy(z)

can be converted to a turn to angle 27u, We shall select C(R, K) <e€',
Then 1f |F(z)| 2 C with|Im z|< R, there exists A such that

z2—z + 2np + A + F(z)

can be converted to a turn to angle 2mu, by an analytical transformation
of a coordinate, because

F (z) = max |F(z2)|F, (z),
| Im z|<R
and
max | F(z) | < C < &',

But the rotation number Az is equal 27u, hence A= 0 (see point 2 of the
proof of theorem 4 in §10 which shows that regardless of how small A is,
the rotation number of transformation x—z + 2mu + A + F(z) 18 greater
than 2mu). The corollary has been proved,

The corollary can also be affirmed directly by the use of a con-
struction similar to that of theorem 2, In view of the lack of parame-
ters €, A, this construction will be less ponderous,

4.4, Remark on a Multidimensional Case, All the constructions
of §2-8 may be understood as multidimensional by replacing a point of
the circle with a point of the torus of k measurements, Condition 4) of
theorem 2 is replaced by the following condition of '"incommensurability"

for vector i:

K|
ne (18)

Ing + (i, 3>|>|

1
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with any integral vector n = (ng,...,n). Here (i, n) are the scalar
product

k k

2w, |nl=3ml.
{am0)

=1
With a sufficiently large magnitude w, condition (18) is fulfilled for
almost all g vectors,

Without dwelling at length on the formulations and proofs of all
the inequalities, lemmas and theorems for a multidimensional case, we
shall cite only one result,

MULTIDIMENSIONAL THEOREM 2, Let ﬁ==(u1,...,yk) be a vector with
incommensurable components, such that with any integral vector

- - K
| 7o + (1, n)|>|_,.:|_k—+"

Then there exists such €(R, C, k) >0, that for the vector field f(;) on
an analytical and fairly small torus F(z)<e with |Im Z| <R there will
be a vector a for which the representation of the torus )

z—z+a+F(2)
is changed to
¢— 9+ 2m

by an analytical change of variables,

§5. Proof of Basic Lemma

5.1, Construction z(p, €), A(Ay,€), Fi(d, €) and 0,(8, €, A,).
Function z(¢, €) is constructed as an inverse function to

9 (z,8) =21 g(z, ), (1)

and function A(A;, €) as an inverse function to Ay(A, €). We saw in
point 4,1 that these functions should be selected in such a way that the
expression

. 8(4y(2,8,A), 8) —g(2, &) + F(2,8) + A+ D (3, ¢, A)

e - ey
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be small. Without defining A(A,, €) (that is, not counting A as an
independent variable), we shall define g*(z, €, A) as the solution of
equation

g (z+2mp, e, A)—g°(z, 8, A) = — F(z, ) =D (s, ¢, A). (2)
Expressing the transformation Ao (see §4, formula 6) by parameter
‘P. (Z, g, A) =2 +6" (Z, e, A)v \

we get

9’ [4,(z, e, A), &, A) =z 4 2np + A + F (2, e)+¢(z, e, A) 4
+g" (24 2np, e, A) + g' (4, (2, &, A)) —g" (z + 2mp, ¢, A), i

or, transforming the right side by the use of (2),

¢ [4,(z, &, A), &, A] =_z‘+ g'(z, 8, A) 4+ 2ap 4+ A 4 F (e) -|-¢T)(e:A) -|;

~—— &[4z A) e Al =gzt 2mp, e A). -

Thus, according to (1), we get:
9 [4,(z, &, A), &, Al = @° (2, &, A) + 21p + A + F (e) + D (e, A) +
+ 8" 1A, (2, &, A), &, A} — g" (z + 2np, ¢, A). 3)

We shall define Ag(e) as a solution of equation
Av(e)+F (e) + D (e, Ag(e)) = 0 4)
and assume that
g‘ (zv e, A; (8)) = g(zr G).‘ (5)

The new parameter ¢(z, €) 18 now determined by equalities (5) and (1),
We shall present (3) in the form of

P [Ao (Z, €, A)t 8] = ‘P(zv 8) + 2“” + Al (E, A) + i;‘l (zn 8) + ¢l (z' e, A)p.‘ ‘ (6)

where
B o= e)—glam,e), (7)
@y (z, &, 8) = g (2mt, &) — g (21, €), (8)
Ar(e, B) = A+ F(e) + e, a), (9)
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n=z2+2m+F (2, 0) + Bz, ¢, A (e)), (10)
=2+ 2m, \ (11)
=z 42+ Fo, &) + Ar(e, B) + 8, e, A). | (12)

We shall determine z(¢, €) from (1), A(Ay, €) from (9) and indicate

Fi(g, &) =Fy(z(, 0), 2), (13)
61 (‘P' €, Al) =®l (Z (‘P, 8)., e, A (Ah e))v \ (14)
A9, 8 A) =914, (@, 8), &, AAy, ), e). (15)

5.2, We shall prove that the above constructed functions are the
ones we sought, The assertions 1, 2 and 3 of the basic lemma are
clearly fulfilled, The proof of assertion 4 is based on the following
estimates,

1°, Estimate Ag(e). Lemma 6 (§3) can be applied to equation
(4) on the basis of inequalities (10), (11) of §4., Here M;j=C, My=$
and as

c A 1
rj<%'°<7/
(see formulas 10, 11, §4), then

. C i
8o ()| <=5 - |

Bearing in mind that 8 <1/2, we find that with |e| < €q:

| As(e)] < 2C. | - ae

2°, Estimate g(z,€). Inequality (16) enables us to éktimate
the right side of equation (2), With |Im z| <R, |e|<¢€g, A=A3(e), it
follows from (16) and inequalities (7), (8), (10) of §4 that:

| F (2, &) + ® (2, &, A)| < 2C + 28 - 2C < 4C. | (17)

Applying theorem 1, §2 to equation (2), we find, on the basis of (5),
(17) and condition 4) of the basic lemma, that with |Im z| <Ry - 28,

|e|<eo and any 6§ <1, 0<§< R(z) )

8-4C 16. 40

18 (s, &) | <=gg+ |<
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hence, in view of inequality (9), §4,
!. C a , .
[l eal<g, |EE|<g. (18)

As, according to inequality (7) §4, C< 88, it follows from here that
‘ |86z [ <.
Therefore, in the representation z—¢(z, €)=z + g(z, €) the band®
| [Imz| R, — 20
will transfer to the domain containing the following band:
|Img| <R, —38.

In the latter, the inverse function is analytical, as -51> - wit:h
| Im z| <Ry - 28. Inequality (16), §4 is thereby proved.

3°. Estimate Fy(¢, €). Let |Im 2| <Ry - 35, |e|] S ¢y. As in
view of inequality (16) and conditions 3) and 5) of the basic lemma,

| F(z,6) + Bz, 8, Ag(e))| < 8,

the imaginary parts z) and z;; (see 10 and 12) do not exceed Ry - 23,
Applying lemma 5, §3 we find, on the basis of (17) and (18), that with
|Im z| <Ry - 35, |e|<¢g

LIS ¥ (19)

It should be noted that the appearance of c? in this inequality is the
most substantial element of the proof of theorem 2,

With |Im ¢| <Ry - 45 and |€| < €g we have, in view of 2°:

[Tmz (g, e)| < R,— 33, |

and estimate (14) §4, therefore, follows from (19), in view of the defi-
nition of F;(¢, €) and inequality (10) §4.

4°, Estimate |A(Aq, €) - A (¢)|. Equation
Awm Al— F(G)"’a(si A)l

defining A(A,, €), belongs to the type discussed in lemma 6, §3, We

[ ] -



have seen (see 16) that |A (e)|'< 2¢, from which it follows on the basis
of formula (11) §4 that:

OIS (20)

A;
Lemma 6 is thus applicable, and with |A;]<C < —é-g-, le] < €q

| A(Ay, &) —Ag(e)] < 2] A (21)
Comparing (20) and (21), we find that with |e|<€g, |4;|<C

|A(Ay, )] < 5.

With €] <€y, |A| < % Ag, according to the Cauchy formula, we
have:

84,

<t <t

(see inequality 8, 10, §4). Estimate (17) §4 has been proved, as it is
obvious that

aA
A,

<2

1492

_ 1
_| EY)
A

59, Estimate |¢1(¢, €, A]_)I. We shall present the difference
2311 - 21. In view of formulas (10) and (12), it amounts to

A+ B(z, e, A(Ay, 8) —D(z, &, Ag(e)).
According to lemma 5, §3, with |Im z| <Rg, |e| < €p, | 4] <—%Q-

|D(z, e, A(Ay, &) —D(z, &, Ag(e))| <|A— Aql,
X

EYN < 1. Comparing the resulting inequality with inequality (21),

as

‘we find

2 — 21| < 3| Ay]. (22)

Applying lemma 5 §3 to the right side of (8), on the basis of (22), (18)
and inequalities (7) and (10) §4, we find that

[y (2, 00 )| <5 3| Ay | < 88| Ay| (23)

J R Y
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“assuming that |e| L€, |A1|< ._g_,

|Im(z + A, + F 4 ®)| <R, —20.
The latter inequality is fulfilled if '
|Imz|< Ro—68, |A|<C, le|<eo
Actually then
|F+®j<d+20A, <38

(see formulas 7, 8 and 17, §4 and inequality 20) in both terms 2111 and
zy. With |Im ¢|<Rg - 78, |Aq] < C we get, in view of 2°;

[Imz| < Ry — 6.
Estimate (15), §4 therefore follows from (23).

The basic lemma has been proved,

§6, Proof of Theorem 2,

6.1. Construction z(¢, €) and A(e). We shall assume that in the
basic lemma ® =0, and use function F(z, €) of theorem 2 for F(z, €). We
shall select 81> 0 so that

1 hnd Ry 13-
) N5, e & =83 (n=2,3,...) v.

n=1

|
\i 2) 61<%4-, 6‘-<'31_6‘

Let 68}2< Ag<1l, R=Ry, K--the same as in the theorem, Let Le' <Cy =8}2,
0<e€'<e€y, Cy and &) be, respectively, €45, C and § of the basic lemma,
Then all its assumptions are fulfilled, and with |Im ¢;| <R - 78;,

le| <e', | 8] 2¢p, we get:

Py —> Py + 2p + Ay + Fy (@1, &) + D1 (1, &, Ay), 71,

where
[ Fy (@1, &) | << 8 =08}, (1)

|®y (@1, 8 A | <A< 8], . (2)

--\4-‘-.----7 -
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)2(e1 ) —%IS“:}JV%I <2 | S

1A (A &) < Ao, )
— T
o | <2
Generally, if we determine the functions (k=1, 2,...,n)

) Ak—i(Ako e)v Fk(‘P’h B), mk(q)kv e, Ak)u q’k—l(q’h 8) .’
| AR(‘PIH e, Ak)t

that satisfy the conclusion of the basic lemma by substituting ¢:_1 for
z, ¢k for ¢, Rk-l for Ro, Rk=Rk-1 - 78k for RO - 78, 8’1’:_1 for Ao, Ak"].
for Ay, A for Ay, &y for § and Cy = 81{2 for C with each k=1, 2,...,n,
we can introduce functions ¢n+1 and An+1 so that the conclusion of the
basic lemma may be consistent with them when k=1,...,n + 1, Actually,
the inequalities (9) and (10) of §4 will be fulfilled for §, lin vfew of‘
the definition §;, (11) follows from the inequality Cp., =011<-2' < ’6' Ck»
and all the other conditions of the lemma will be included in the con-
clusion (for the functions of the preceding number, of course). We must
therefore consider all the above-mentioned functions as having been con-
structed, The functions ¢,_;(¢,, €), 8,,_1@,, €) (n=N, N-1,...,1)
determined the functions

z(N) (PN, &) =z(9;(... (PN, e).. ,')', g), ' (6)
A™ (Ay, &) =A(Ar(... (AN, €)...), €). ™)

Let us assume that Ay=0, and let AéN)(O, €) = A (€). Then

A(e) =lim A™ (),

2(9, &) =limzM(g, ). |

To justify the convergence of AN (e) and z (N) (¢, €), we shall point out
first of all that, according to definition §,, with'w>0

lim 2N 8% = 0.
N-»00

*r,bG means z, Cp means Ag; A;_1(8;, €)=A(4, €).
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6.2, Convergence AN) (¢). The functions A(()N) (AN’ €), according
to formula (7) and inequality (17) §4, are determined with |e| < ¢,
|Ag|< 842, as

MM aa By,
oAy ~ 0A, """ TOAN

the following inequality is fulfilled in the mentioned region on the
basis of (5);

<2,

aaM
oAy

and as

[ 188 [Axnle .. (Au,®) ... 6), el | < 8F,

i

if |AM|$811&2 (M2 N) then, according to lemma 5, §3

/

| 1AY (AnArgs - - (B ©).. 2), &1 — AT (0, €)] <2V BN,

Hence, in view of (7), we conclude that:

/1AM () — A% ()| < 2V B3,

the immediate result of this is an even convergence of A(N)(e), with
|e] < €g, which also means that A(e) is analytical,

6.3, Convergence A(N) (@, €). According to the basic lemma, the
functions ¢,_;(¢;, €) have been determined with |Im ¢, | <R,, |e|< ¢,
and, in view of (3), differ from their argument ¢ by less than §,, and
therefore

L"’ | 10 Poy (@ny )| < Ruey. |

Thus, formula (6) defines z(N) (¢, €) in the band

llm(p|<R =Ro—726..

k]
1 -

According to condition 1) of selection 8;, all these bands contain

| Im @] < % , 8o that all the functions z(N) (¢, €) are defined in the

latter, |
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As

. o M
|‘P~(‘P~+1"'(‘Pul e)'”"a)—q’u|< th
' k=N

and this sum, according to definition 3, is not larger than 28y, we
find the following from (6):

(N)
|28 (9, &) —200(q, &)|< || 28w
On the basis of (3), 148
v} N
—a;r|<2 '

consequently,

|2 (9, &) — 2 (9, &)| < 2V 0y,

which proves the even convergence of Z(N)Gﬁ,e), with |Im ¢|<
|€|5€o.

o ™

6.4, We shall define ¢ (z, €) as an inverse function of z(p, €).
Since §,,~0 with n—-w, it follows from inequalities (1) and (2) that

¢ (2, &) —>@(z, ) 4 2mp,

when z—~A(z, €, A(e)). Theorem 2 has been proved.

§7. Monogenetic Functions

7.1. The concept of monogenesis. In our investigation of the
relationship between the solution of equation (1) §2 and parameter u,
we came across an analytic function in the upper and lower semiplanes
which was everywhere discontinuous on a real
axis, The same characteristics are inherent in
all the functions constructed in §6 (see §8)--

AL, 8ns Pns Fps ®,--which are considered as 0’@‘“’

functions of u, These functions are of a type
referred by Borel [9] as monogenetic,

Fig. 2 o
The Borel monogenetic functions are ‘

defined by the set E = 3 Ey, where EkSQEk+1 represent perfect compact —
k=1
subsets of a complex plane, In this case, Ej represents set Mﬁ of

e ome emartp £ e e e
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points p of a rectangle on a complex plane . IImp. | <R 0 <Re u <1, for
which

=% |>m &K=5)

that is, a set formed by the elimination from rectangle'l Imp'|< R, 0 <Re us1
of the circles crosshatched in Fig. 2 Cm K and radii -l--l3 with their
centers in the rational points? o

Definition, Function f(u) is uniformly differentiable by a perfect
compact F of a complex plane, and function g(u) is its derivative, if for
any € £0 there exists §(e) such that

T =7 () _
b= b 8 (k) | <6,

as soon as

Hi— 1| <8, [ —pa| <8, s pos MEF.

The function is monogenetic by E=kfl‘1 Ex if it is uniformly 149

differentiable by each Ey.

In particular, a function uniformly differentiable by E is mono-
genetic by E=kU 1 Ex and, conversely, a function monogenetic by

=

by Eak U1 Ey 1s uniformly differentiable by E, We shall call these

functions monogenetic by E, to distinguish them from those monogenetic by
ID
E= Ei.
ko1 Tk
1) The continuity of the derivative by Ex follows from the
1

2) If I' is a linearized curve connecting the two points a and
B in Ey, then

monogenetic nature of Egku Ek.

Sf (B)dp =1 (8) — / ().

3) A function which is analytic in the domain of each point
of a set is monogenetic on it.

4) 1f Ep contains a region, the E= kal Eyx monogenetic
function is analytical in it.

N
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An example of a nonanalytic monogenetic function is cited in §2
and proved in point 7.4 (see lemma 10; it is up to the reader to prove
that g(x) is not analytical with Im x =0).

The properties of a monogenetic function may depend largely on

®

its definition of E = U Ek and the expansion of E into Egx. If the
k=1 .

velocity of the decreasing supplementary components of Ex is high enough,

o
then, as Borel showed, the instantaneous functions E= U Ey possess

k=1
numerous characteristics of analytic functions (the Cauchy integral,
continuous differentiability, uniqueness of instantaneous continuation),
The question as to which of these properties is retained in this case
will be left aside, as only the definition of a uniform differentiability
is used hereafter (§8 and §11),

The class of monogenetic E = 8 Ex functions depends not only on

k=1
E but also on Ex. However, if E results from a different system of

sets, E = 8 Fr, FkCFk+1, such that
k=1

EaCF:CEy (a<1LP),

[ J [}
then the classes of the monogenetic functions E= U E and E = U Fy, .

k=1 k=1
coincide, The M% sets (Fig. 2) are inconvenient for the investigation
of monogenetic functions in view of the confused nature of the inter-
sections of circles Cp K Making use of the preceding remark, we shall
ot )

n
replace these sets by another system of sets, Nﬁ; so that

1. MixCNEC Mg,
3

2. The N% set results from the rectangle |Impu| <R, Re p €(0,1)

by the elimination of the nonintersecting open circles.

The construction of NR (K'<-%§ is outlined in point 7,2; it is
unwieldy and may be omitted Ey the reader.

150

e
.



7.2, The construction of NR. The trans-

formation of M% and N% consists of two operations,

The eliminated circles Cp g are first reduced to
ﬁ"’

5

Fig. 3 circles Cj . so that the system c X (m=0,1,...;
¢ -y

w? _

n=1,-2,.,,) contains no "bridges" (see Fig. 3),
that is, sets of three circles in which the smaller circle is intersected
by two larger ones while the latter two do not intersect, The C' circles
are then increased to Cp g S° that two such circles do not intersect, or
7
n
that one lies within the other, In this case, the following is to be
done

c. 2C. 2C. .,

mr= Tk -
c%.xgcl';‘.-. xgc-'%. K
Then
and the elimination of the circles q%u K from the rectangle will leave
the set NY which possesses both of the required characteristics.

K

LEMMA 7, Let’the circles Cy and C (n >q) intersect and
K<;'. Then n>2 v qZ;,
than the larger one,

that is, the smaller circle is much smaller

Proof. Actually, the sum of the radii of the circles is greater
than the distance between their centers, so that

K K P m
wrE>le—w

: P m 1
As pn - qm O, then L}""7T|;>§F' u
K (n* + ¢°) 2 ¢'n%;

e
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in view of the inequality n>q, we get: /51
K(n*+¢’) >4,

or
n®> % —q¢.

Bearing in mind that K.;_, we find that:

n’>9¢' —¢* >8¢¢,
which completes the proof,
Operation 1 -- construction of Ci’ K This construction consists .
of an infinite number of successive stages, so that the circles Cé, K
n

(0 <m<n), found to be constructed after the n-th stage, possess the
following properties:

An. No circle Cpj K (n] >n) can connect circle Cpy K with
—3

ni
circle Chyp K (n2<n) if these circles, Cp K and Chy p, do not inter-
ny?’ m? Ty’
sect each other.
B,. c cc. cc .
n mK="mo—m g
n 2 n »

We shall begin with the first stage. Let "C,'n K" Cn K" Let

1’ v
property By be fulfilled. The property A; is also fulfilled, as the
diameter of the circle le K (n1>n) is smaller than

ny’
—2’1‘—<9—2,-,— (K <)

and the distance between the circles Cj and C, is greater than

9, x 1.x

1-2K> 2.

The first stage has been completed.




! Let us assume that stage n-1 was
consistently carried out, We shall examine
any circle C=Cp K (Fig. 4). Let O be its

-ﬁ-’

| ‘ center, AB the diameter lying on a real axis,
r}' . ’; " and E and D the middle parts of AO and OB,
Circle C can be intersected only by the
circles sz (n2<n) where Cmp K intersects

ny ? ny
with C (in view of the property B,, k<n-1),
Further, all such circles Cp, K intersect

Hi’

Fig. 4.
each other (in view of the property Ak, k<n-1).

Let us arrange the circles in a decreasing order n, (increase

of circles):

Cy= Cm__,é_ K mB=nyo>n,>...>n2>1).
ne i

On the basis of lemma 7, np j > 20y 141 (0<igl -1), from which it
follows that n> 2% or 1 <logzn. Thus at the intersection with the AB
diameter, the circumferences of circles sz Kproduce no more than 2

n2’
logyn points, Therefore, the parts into which these points divide the
segments BD and AE will include parts which are not longer than K

4n3log2n
But the diameter of circle C,hl K (n1>n) intersecting with C, according
a1’ |
to lemma 7, does not exceed

K oK _
8nt 4nd logan*

We shall take ends B' and A' of the larger parts BD and AE, which are

near to O and designated as B'D' and A'E, for the ends of diameter Cp ’
'Fn

This selection does not contradict the characteristic B It is clear

that if the circumference Cy= le (n; > n) intersects with C; , it

—_ - K
nl n
lies within C, and can only intersect with C; of the circles sz
'rTi-’

(n2 <n). But as the diameter of C] is shorter than B'D' and A'E', C}

/52

NS

-
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can intersect only the Cj which intersectawith Cj Property A, 1is

m K’
n’
therefore also fulfilled, and the method of completing the n-th stage is
thereby indicated.

The completion of all the stages will produce a system of circles
C;"‘, K possessing the following properties:

A. No circle Cpy g can connect Cmo K with Cpg ¥ if
— - — g — g
n] n2 nj

“ "y >ne, Ny >N u C'ﬂ' KnC;,.. x=0-
‘ . ong' n,’

B.\C

cc, cc

=%m .
., K T.K

X
1

3]

Property B follows from Bj, and property A from Apy, if n2 > nj3,
and from An3 if n3 >n2. ‘

Operation 2 -- construction of Cp K" We shall now increase the

-
circles of the system Cy .
o |
We shall refer to the totality of C,'ni (ngy >n) which can be
ko

connected with C by a monotonic finite chain of intersecting circles

U " " of =C! .
Cmjy K (0 <k <1y) as the "tail" of C CE, K
nj 4 n
m
e ' : Ty _m
nj. = n' "5k<n5k+x' C.:_nji xncmi,‘_‘,,‘ X ’ ”JI‘ = ny .

N . - L
ik "ik+1

It is clear that if circle C; is included in the tail of circle
C2, then the tail of Cj is entirely included in the tail of C3. More-
over, if the tails of Cy and Cp intersect,* one of these tails is

% It can be readily seen that if two tails intersect as sets of points,
they have a common circle.




entirely included in the other. We shall prove this, Let us assume the
opposite: 1let it be possible to connect circles C] and C2 with a general

circle of their tails, C3, by monotonic chains. Two such chains together
connect Cy and Cy. Of the chains connecting C; and Cy we shall select

one consisting of the smallest number of circles, Intersecting within it
are only the neighboring circles (see Fig. 5; in the above system of
circles the tail of the largest one is crosshatched). If this chain is
monotonic, our assertion has been proved. If the chain is not monotonic,
it contains a circle connecting two larger ones which is in contradiction
with property A of operation 1. Thus if two tails intersect, one of

them contains the other one. '

Let a and B represent the upper and
lower boundaries of the points of a real
axis covered by the tail of circle C =Cp g’

-n‘)
‘The circle with the apB diameter will then
be circle Cj . It follows from the above
Fig. 5 o K
that the circumferences of two such circles
do not intersect.* It is obvious that Cj g D Ch K We will show that
n? n’

c ccC .
kT Tk

Indeed, on the basis of lemma 7, it is easy to estimate the
dimension of the tail C. Let circle C; be included in the tail of C,

and the monotonic chain connecting C; with C consist of N circles. As

each of the circles, according to lemma 7, is at least 8 times smaller
than the preceding one, the sum total of their diameters does not exceed

1
7 of the C diameter in any N. Hence, it follows that a and B are re-

moved from Cpy K by not more than L of the diameter of Cp K’ and by

- 7 o
n 2 n
not more than 1-7‘of the Cp y radius, hence
n o L
c cc .
kT Rak
n n
R .
The construction of NK has been completed, 154

*But they may be contiguous,
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7.3. Differentiation of a sequence, The extension into the
complex plane g was undertaken primarily in connection with the following

lemma which does not hold true if by the set N% we mean its part lying
on a real axis,

LEMMA 8. Let the sequence of functions f,(g), which are monogenetic
on set Nﬁ, converge on it in proportion to f(u), and the derivatives
converge in proportion to g(u). Then f(u) is monogenetic on Nﬁ and

£'(p) =g(p).

Proof. 1, Let €>0, We must find & >0 such that

F)—7(m)
) —T0) g ()| <,

when
[t — s | <8 [Ba—ps| <8, B1 Pa|pa €NE.

If >0 is sufficiently smalll, then all these points lie within a
single component of N%.

We will show that in this case the points p; and l‘.’i can be con-
nected within Nﬁ by a linearized curve ' in such a way as to fulfill the
following conditions:

1) for any point p€l' |p—ps|}< 20;

2) the length of ' is smaller than 2|p; —pal

Indeed, we shall connect the points uj
and py with the segment puy p, (see Fig. 6).

This segment may intersect with some circles
Ci, whose elimination from rectangle |Im p|<R,
Re u€ [0,1] resulted in the formation of set

N%. These circles do not intersect in pairs

and do not separate pj from po in NR as the
points p; and po lie in a single component,

The circles C4 form nonintersecting intervals
Ay on py and py, For each of such intervals Ai we shall substitute arc

i, the smaller of the two arcs into which g po divide the circle Cy.
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This substitution will increase the length of Ai not more than-g-times,
and the length of ' will therefore be less than 2|p1-p2]. The distance
| By =# 2|, according to the condition, does not exceed 28§, and all the

points i are therefore removed from the center of Aj by less than 3,
The latter point, like all the points of segment pj pog, lies in circle

|p-p31< 8, and for any point p € 7i, therefore

[p—ns| < 28.
Thus curve ' is the one we searched for.

2, We have already noted that if ¢(p) is monogenetic in Nﬁ

and " is a linearized curve with ends pj and p,, then

Scp’ (1) dp = @ (1a) — P (11)-
T

(This can be proved by merely comparing the integral with the integral
sum,)

Applying this equality to the above curve I' and monogenetic
functions £,(p), we get:

VAL YRR E AT

r

In view of the uniform convergence of f, and £, £} and g, it is possible
to proceed to the following limit on the right and left sides:

Vg W d = 1 () —f ().

r

3. We shall estimate

1 (ps) — 1 (1)

s — — g (ns) |-

In this connection we shall examine the integral

(e — g uan = 7 (wa) — £ () — (s — w) £ ().
r



We have:

V(e — g(us)) dp

<{le —g ) 1dp] < max|g () — g (pa) -2 1pa — s,
r P per

as the length of I' is less than 2|py-pq].

Thus

1 (pa) — £ (m2)
LB — g () S2max{g(p) —g(pa) |-

The right side of the last inequality, according to property 1) of curve
I',- is a (double) increment of g(p) on a line segment shorter than 23 and,
in view of the continuity of the continuous function g(pu) on the NR com-

pact, it tends to become zero along with 8. Lemma 8 has been proved,

‘7.4, The functions of several variables and their uses. Eventually
we will need functions which are analytic for some variables and mono-
genetic for others.

Let z be an angular variable (changing within the Im z € (ab) region¥)

and have a 27 period,** the variables € and A change in the neighbor-
hood of zero, and ;-LENK.

Definition. Function f(z, €, A, p) is analytic for z, €, A and
monogenetic for p EN% if the sequence

/(z, ¢, A»P') = 2 Jimn (l"') etz g™ A",
in which the coefficients are monogenetic functions of p € NR, converges
uniformly along with the derivative to g, with p(EN§ and z, €, A changing

in the mentioned regions.
It is obvious that such a function is continuous, and
a) with pu fixed, it is analytic for z, €, A, and

b) with z, €, A fixed, it is monogenetic for p¢€ N%. Property
b) follows from lemma 8§,

* The boundaries may depend on g.
** That is, when increased by a 27 function, z gets an increment of 0
or 27,

.
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LEMMA 9, Let functions hj(z, €, A, p) be monogenetic for p €E /56

and analytic for z, €, A, The following will then possess the same
property in the corresponding regions:

1) functions

hl(zn g, Av p') +h2(zo e, Ao P‘)v hl (zl e, Av P')h:(z’ e, Av P-).
hl (hz (Z’ e, A: P')’ e, A' P’)t hl (z, g, h:(zv e, A, l"‘)' P’);

2) solution ¢(z, €, A, u) of equation h(¢, €, A, p) =z;
3) solution y(z, €, A, p) of equation h(z, €, vy, p)=0;
4) partial derivatives h for z, €, A;

27
5) integral for parameter j(') h(z, €, A, p)dz,

and the usual rules of differentiation apply in all of these cases; for
example in case 2)

ah
% o
K

)

The proof reiterates the reasoning well known form the usual
analysis, and is then omitted.

LEMMA 10. Let function f(z, €, A, u) =f be analytic for z in the
region |Im z| <R; €, |€|<€y; |A) <Ay and monogenetic for p € NR, and let €

of the mentioned region be
of
n<e. |5 <t

Then the solution to the equation

8(24—23}1. e, A, n)—gz,e, A, n) =/(z e, A, ®)

is monogenetic for p € NE and analytic for z in the region |Im (z —27p) |
<R =23, €,l€| < €9> A, |A|<Ag,and in this region

4C ag 8C g 10C
leI<gs |o|<mw: |3|S<Kw -
g Cc+ L 10° dg C+L§2’_
WK v |G |STR
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Proof., The solution is given with p fixed by series (2) §2

Z /n ("'- e, A) e""

v eﬁninp. —_ '

whose uniform convergence at |Im (z -27p)| <R -28 is to be established,
because

/!I (P. g, A) = 2 /nkl (}1) Bk Al.

But the uniform convergence of this series was established in §2,

9
along with the unknown estimates of g a“d'3§ in the proof of theorem 1', as

1 1
2n Fe
N}.QQAIE_.

The estimates of the other derivatives are found by differentiating the /57
series according to the usual formulas, taking inequality (13) §2 into
consideration.

§8. The Functional Relation of Theorem 2 to u.

8.1. We have seen in 7.4 that there is a monogenetic relationship
between the solution of the linear equation (1) §2 and u. ,The monogenetic
relationship between p and the functions A, F,, ®,, g,, & N) constructed

in §6 will be proved in this paragraph,

It appears that the region of monogenetic relations grows narrower
(by |Im 27p| on each step) as n increases, and the author was unable to
establish any monogenetic relationship between p and the solution of
equation (1) §4.

The monogenetic relationship between A(™) and real p 1s used in

KO

§11., There we shall rely also on the (uniform for n) small valueE;—
®

with small e,

To abbreviate the cumbrous expressions in this paragraph, argument
€ is omitted from all functions, just as the dependence on p has been
ignored before, and only z, ¢, €, & considered as arguments.

The construction of ASn) (p) in §6 looks like the following,
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Such new parameters as ¢=¢, (¢,.1, p) and Ay 1= A, 1(A,, p) were
added step by step so that the transformation

Pno1—> @1+ 200+ An—y (Any 1) + Frs (Press 1) + Py (Prcts Any(An, 1) 1)
was converted to the following transformation
Qn—> Pn -+ 208 + An + Fr(Pny 1) + Qn(@n, An, 1)
with considerably smaller F and ® values, and ¢ =2, F(i)=F, ®g = 0,
Ag = A,

Further, the construction of A(n) (p) was such that the trans-
formation

22+ 2mp 4+ A™ () + F (2)

in the variable ¢n became
Prn—> Pn + 270 + Fo(@n, p) + Oa(en, 0, p),
in which case we supposed

AP () = A (AL () W) (6 =0, 1,...,n—1), D
A (w)=0.

We thus obtained the following:

A (1) = A™ ().
THEOREM 3., By the terms of theorem 2, with fairly small € >0,

0 <K< ;' values

A(p) = lim A™ (),
n-»oo

r
where the functions A(n) (u) are monogenetic for pu GNKn (r,>0), and
A(ﬂ)

op

under these conditions

< 6L | €].

The proof of this theorem rests on the following lemma which re-
peats the basic lemma (see §§4 and 5).
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LEMMA 11, Let a family of analytic representations of a circle /58
be analytically A-dependent and monogenetically pGN;-dependent

z"’Ao(z: A, !‘) =z+2ﬂF+F(zv F)+A+0(zn A, p)
and the numbers R,>0, 3 >K>0, 80, €>0, 0< A, <1, 0K r Loy 200
< R,—53 such that

1) F(z42n, p)=F (2, p), O(z+ 2, A, p) =0z, A, p);
2) with Imz=Imp=InA=0 always ImnF =Im ® =0;

3) with |Im z| SRy, w€Np, |A] <A,

IF @ Wl <C, | (2)
e < o
|D(z, u, )| <O A], (4)
RELI oA (5)

4) the number & satisfies inequality

K?
S Zu )

5) C=087, A =208

Then there exist functions z (¢,p), A(By, p), which are analytic for
@, 8y and monogenetic for p GNE such that

1. The following is identical
2(A1 (9, 1y A1), 1) = 4, (2( 1)y A(A1, 1), 1)
where
Ay (9, 1ty A) =@+ 2mp 4 A+ Fi(o, p)+ Qu(e, 1y Ay).
2, Fy(p+2n, p)=Fi(q, p), Ou(@+27 p, A)=y (9, u, A),
2(p + 2m, p) =z (9, p) + 2x.

3. With Im¢ =Im Ay =Inp = 0 always Im z =ImA =ImFy =Im ¢} =0
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4, With}A;| <828, |Img¢| <Ry ~78-]Im 27|, uGNlr(, the con-
structed functions are analytic for ¢, Al, monogenetic for pEN§.and

have the following correlations:

I Fl|< 6‘ ’ (7)
lqh|<;3;lA1L (8)
ok 9
[ | < @
|5 <Al (10)
Bz f, (11)
5| <4 (12)
|A (4, 1< A, (13)
lz2(e, W —9I< 5 (14)
| oa|<2 (15)
%:,— <2. ‘ (16)

8.2, The proof of lemma 11 is more unwieldy than the proof of the
basic lemma. The construction reiterates the reasoning in 5.1 with the
only difference that p changes from a fixed real number to an independent
complex variable. In the construction of A(d;), z(¢), g, F; and @4,

according to 5.1., use is made of the integration by z, the solution of
equation (1) 2, the construction of an inverse function and the substitu-
tion of a function in a function, According to lemmas 7.4, all these
operations do not extend beyond the class of functions which are mono-

genetic for ;1EN§ and analytic for z, A, ¢, A in the respective domains.

Therefore, only inequalities (9), (10), (11), (12), which are not
bound in the basic lemma, call for a special examination. Their proof
is based on the following estimates.

dg*
1°. Estimate ag On the basis of 5.1 and 7.4, and in view of

il
the terms of the lemma, when

|Imz| <R, p€Nk, |Al <A,

| |<2c |3°[ < 28| A, 1 < 2C.

139

——

x\



53

Thus in the right-hand side of equation (2) §5 is a derivative
of p, not exceeding 4C. Applying lemma 10, we find:

18'1< o » (17)
og* 32C
T < T (18)
a9 40C
‘a?i'<7¢?- (19)
5.10C :
|2 | <2022 . (20)
a=g 5.100C
dzop < K287 (21)
with |Im (z — 2mp) | < R— 20, p€ Nk, [A] <A,
IAG .
2°, Estimate P It follows from equation (4) §5 and 7.4 that
F.
. oF 90
MW __ Tow T
a 0
1+o%

Estimating Ay as in 1°, 5.2, we find:
|adl<2c <4,

With IAIS_-AZ—O and the Cauchy integral we find from (4):

8% _

sl< I HISHESSS

3p 1 g ,
Consequently, |1 + |>— at|A|<-?. On the basis of (3), (5) and

lemma 9, t:herefore

l A,

3A,).
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In view of (6), 82A0<C, so that

l |<4c .. (22)
at NT,
K€ N
dg
3°, Estimate 7o According to 7.4 and 5.1,
]
9 _ og' | dg° 9,
W= T (23)
] . .
g g age 94, (24)
8z28p ~ dz0p ' 9z0A ap ° '
63* azg*

We shall first estimateﬁ and EPETX Note that equation

g.(’+2“|‘v A! p)_g.(z’ Av P’) = —F (z' P’)—a)(zo A' yi

when differentiated by A produces equation
g’ og* ad
s (2, A W — 51 (@ A p) = —5F

dg*
of the same type in relation to Ega-’ and we can make use of lemma 10.

9%
To this end we shall estimate-a-z by the use of the Cauchy integral: with

. Ag
] Im z| _<_R,‘|A.|5—?

2 A° <4o’

53] <

By

According to lemma 10, with |Im (z-27p) | < Ro =28, |A|5._2_ , pENl’é

‘ |< Kb’
Fa:—azl<Tv'



55

Substituting these estimates, estimates (20), (21) and estimate Ag from 2°
in the formulas (23), (24), we find:

g | _5C 10° ci08
ia |<K’ 6°+K64C< K °

Fg | 540°C C108
Fop |< -+ 1w 40 <

with |Im (z -2mp)| < R=~238, ,;eN;.

dA(Ay, )
4°, Estimate——a#——— Analogically to 2°, we have:

F D

u_ it

on o '’
LT

and 1f |A| 5—2—9 then, as in 2°, we get: 61
| 55| <4c.

An
All that is needed to fulfill the inequality, || <—2-Q,is |A1.| _<_827,
Actually, when (as is shown in §5) (A;[ <2¢, |A- A3|52|A1|, and as

c =827, then at| Al | 5827 we have:

A A, | <ad <G =4,
So, at | &] <327, peng,

["’A(%ﬂkw. (25)

527

At the same time we have shown that with ]3| < , the

estimates of point 1° are valid,

~

F
3 1 . From 5.1 and 7.4 we find:
’

5°, Estimate
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oFy (s, p) _ [33 (2 1) 9 (2q1, u)] og(zr, 8) g (35, 1)
o ap op +[ s 0 ]2ﬂ+ (26)
g (21, 1) [ai‘ 8% | D94,
+ ;32 +3 op T A
where
21 =1z+2p + F (z, p)+ D (z, p, Ag(w)), (27)
Zn=2z-+ 21![1. (28)

The first two brackets on the right-hand side of (26) are estimated by
the use of a finite increment lemma (lemma 5, §3). We have:

, dg (zx) ag (zu)

<|ZI—-zn||aM,z

Top
823
Substituting for z1 ~zyy and EPY) their estimates, we get:
. : poz
Iag (@) % (‘n) ‘ 4.10°C*
ap' \ K87

and, analogically,

dg(z) g (zn)

40 C; 1600
— |< 4 =

lzl ZII¥< K&° K&t °

)

The last addend on the right-hand side of (26) is estimated by the use .
of inequalities (3), (5), (22), (18), and it does not exceed

32C 200 C?
R (4C+20) < T

So,

| aF,

4104 5- 10‘
<c [K’é’ + 2n g +K6‘]<K’6’
All these estimates are valid if the arguments zy and z7y do
not extend beyond the domain |Im (z —=2mp) | < Rg —23,where the estimates

of g and its derivatives are in effect. Suffice it in this connection
that |Im z | < Ry =33,

¢y e

162
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Actually, then
|7 (2, )+ (z,m Ar(w)| <26 <8,
that is,
| Im (2 — 2mu) | < Ry — 29.

. : 27
Thus with |Im z | < Ry -3, g eN;, 1Ay < 8

ar, 5408 (29)

< K!b'l

d
6°, Estimate OfT (A-Ao). We have:
®

3 . A (A,, aA (0,
W(A (A ) — A (W) = (311 B_ a(p B

according to the finite increment lemma,

%A (A .
|¢.,p(A 8| <| Tk [1a - adl.
2
AALs p)
We shall estimate —a——l—’E— by the use of the Cauchy

A
integral as a derivative of T With | 4] < 827, as it follows from
¢ Y
A

(25), ™ < 4C, Therefore, in circle |A1.| 5§2—- it is always
p

aa
A0 !< b"’ -
2

25

In particular, 6A16,u> < 8, when] A, | < 528. As
1A — Al <24
when | 4] < 628, pEN;
o5 (B (A 1) — Ag (1) | <1614, . (30)
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\
A
~

ad
7°. Estimate of -_ | D (A(Aqy, 1)) - 3 (A (p))|. This derivative

equélsd

D) aBBY) | aBaa@y) am(Ao) "Ao
o o A ap oA op

We shall estimate the first difference by the finitéw increment lemma:
A
when IAIS"?Os #ENE, | Im zI <R

ad a) D (A %) ' ’
op Em duoA

| A —A0) < 88 A,

323
(here we estimated Y by the use of the Cauchy integral:
923 a21A0| ¢ a2 o
dudd|  |Ag|-- )-
T2

The second difference may be recorded as follows:

splp P S W), o

where the first addend is estimated by the use of inequality (3) and

does not exceed 16 [A|, because < 1 (see 2°), and the second

addend by the use of the finite increment lemma, and it does not exceed

aA*
1% 112218 a0 — a5l <4 C 221,
2%
The only new feature here is the estimate of 7 To find it, we used
aA

the expression for a second derivative obtainable from the Cauchy
integral:

Ia'o o 2% 16
947 (A) &

A
with |A] <—, the only requirement for which is, as we saw in 4°, the
2

163
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fulfillment of the inequality |Ap| < 82/, Comparing all the three
estimates, we find:

o 1B (8) — B (A0)]] < 88| Ay | + 18] Ay | + 1288 A, ).
We finally get:
| 1B (A (A, 1) — B (As (| < 1001 4, (32)
with|A;] <828, |Im z] < Ry, p EN;.

9 o
8°, Estimate of 5—-—‘1’1 (z, p,A(H, p)). 1t will be easier for
©

us to begin by examining the function of z, p and A;, and not of z, g, A,
We have:

adn [86' () 98 (zp) ] + [36’ () % (’1)] 92y | 98 (2yy) ["‘m a‘x] (33)

ap g op 0z 9z Jop 9z o ap
where
n=z42mp+F(z p)+ D p, Aw), (27)
o=z 42+ A+ F 2, 1) + Bz, b, A(By, p) +s. (34)

The first two brackets in the right part of (33) we shall estimate as
in 5°:

9g (2qy)
op

c10t
lzln zl|<bi1 3|A1|v

_ % (zl) |<|6p.az
as

zu— 2= A+ Bz, p, 8)— Dz, p, A" (1)
and, in view of estimate (22) §5,

|2 — 21l <31 Ay

Analogically,
ag (zq11) g (zy) \ 9z 3t oz
I( w0 ) | <| 1o — a5 <
“we oF | 9% | oB A, AOC 16000
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n
lemma 11 and estimate (22), bearing in mind that C <1, We still have

where the multiplier is estimated by the use of condition 3)

, Jd
to estimate -tﬁ <ZIII - ZI) . We have:
zm—z1= A+ O (2, p, A (A, 1) — Dz, 1, Ag ().

In view of estimate (32), we find:

o (o — 1)) <100 Ay,

28

where |A1]< §°°, p€Ng.

Thus,

32C _10C 1A ).

0g (2qyy) (@2 8
‘ I ( hit I) <1OO]A1|7(6—4<W'

s \op o

Comparing the estimates of all three addends in the right part of
equality (33), we find:

3 4 C 108 ., 1600C C 10¢ c108
ap P12 p A4y, P))|<W3|A1|+—K§-IA1| + v | A1) < Fegi | Aal

8

All these estimates are made on the assumption that |A1| 582 , peNE

and z do not extend beyond the band |Im (z - 2mp)| < Ry - 28 where

z
I> 111
lemma 10 is in effect. All that is needed for this, for example, is

that |Im z| <Rg -49, because then

| Ay + F(z, &) + D (2, 8, A)| <8+ 2C +2C L 28,
| Im (211 — 20) [ Ry — 46 + 28 = R, — 28,

9°¢, Estimate of The function of g (z, p) is defined when

7]
| Im (z — 2np) | < Ry — 28.

That means the following function is also defined in the same
band:

o(z, p)=2+g(zp).
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As in the mentioned band |g (z, p)| < & [see (6), (17)], the
shape of that band, at z —¢, will contain the band

| m (¢ — 2s) | < R, — 38,
which, when z-¢, changes to a domain containing the band
| Im (z — 2np) | < Ry — 49.

It follows from 5.1 and 7.4 that

%
9z ap
g - o’
SEES

According to inequality (18) and conditions 4) and 5) of lemma 11,

dg | 1
-(—9—5 <-{, so that by using estimate (23), we get:
z
oz 10¢C
WS K

with |Im (z-27u) <Rg-23, p€ N; and, particularly, at

[1m (@ — 2mp) | < Ry — 30,

d a -
10°. Estimate °f7#'F1 (¢, n), 574’1 (¢, n, Al)' According

to 5.1,

Fy(e, 1) =F1 (. p), p),
. D, (¢, 1, A) =Dy (z (9, 1), 1, A(Ay, p)).

The function of z (¢, p) is defined when |Im (¢ -2mu)|< Rp-33,
p€ENE, and if
Im (z — 2mp) | < R, — 49,
then for this z there exists such ¢ that z=2z (¢, p) and

m (¢ — 2m) | < Ro— 38.
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The functions of f‘l(z), ®(z) are defined by |Im z| <Rg - 43,
and the functions of Fq(¢ n) ,.<1>1(¢, p, 81) are therefore defined by

[Ime| << Ry— | Im 2np | — 58

on the assumption that |Im 27p|<Ry-58, that is, that Zﬁrg Rp~58. In
this domain ‘

oF, _of | oF 8 o0, _ob, b0
n o op T oz op op om T oz op

where, as in 8°, z, p and Ay are considered independent variables in the

a9,
calculation of —— .
op
, oF1 od
We shall use the Cauchy integral to estimate—a— and el
2 2

Digressing by & from the edge of the band where the estimates of F, and
@, are known, we will find from the estimates in 3° and 5° §5:

o,
0z

of,
o0z

3C|A
< l.ll

4Ct
\<~.-671

at |Im z] <Ry -58; applying the estimates of 5°, 8° and 9°, we find
from (35):

oF 5.400C* , 10°C 4C*
| ST T K
BE C-105] A 3C | A, [10°C
S| <SR+ S
Thus, at
|A,[<6’°, p.EN',}, 2r < Ry— 58, |Imo | Ry — |Im 2| — 63
- we have: '
c ‘ A
IFem <g, (@ w A< H,
oF,| _Ct o®y| _C| M)
‘79;:- <’6T§'» 5;'|< 318
because

5.10¢ A
<. (6)
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In the same way, all the other estimates of 1° - 9° can be expressed
as in(7) - (16), in view of conditions 4) and 5) of lemma 11.

Lemma 11 has been proved.

8.3. Proof of theorem 3. Theorem 3 is deduced from lemma 11,
just as theorem 2 was deduced from the basic lemma in §6.

We shall select 81> 0 so that

had L
1) Z-bﬂ<%’ where 8, = 6:3_1 (n=2,3,..),

n=1

2) b< s,

R
' 16m(a+l)
Let R =Rg and K the same, which under the terms of theorem 2, ENK .
26
AO-SI R Leo<C1 where

and Cy, §; are, respectively, C and $§ of lemma 11. We then get from
inequalities (7) - (16):
354 i
IF1|<6—%<01°'“=(61’)"= 3

o
op

627
1Oy <351 A< B[ A = 814y,
1

|<e,

90 2
S <8Il

with

__R
®x(n+1’

A< O® =8P L8P, |Img | < Ry— 78, —|Im2np|=R,, p€Ny .

Thus, we find ourselves again under the terms of lemma 11 but with a radius

R
Ry reduced by 781 +g G+ D ° As

s R
Z 6n<'§'1

n=l
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we will be able to make an n-number of successive approximations, and the
last one will be effective when

R
6= (a1
Ilm¢n|<8(n+1)o P'EAK " [} lAn|<6n+l-
Omitting the usual proof (see §6) of the convergence of approxima-
o A(n)
tions at real pu, we shall estimate P .
[

It follow‘s from 8.1 that

aAM oA, 9A, AA(Y,
op OAyy, n

2
Assuming C, =8 , we find on the basis of lemma 1l:

oAl ,‘,’2
T C4Cry +2 .
If
aal™
| e < Ck*r-lo
then
aA""
< 6Cxpy < Ci.
As
am
o 0,
then
TN
at; < 6C,.

Theorem 3 has been proved,

Remark. The monogenetic aspects of functions g,, F,, ®,, ¢, could
be proved, and analogical estimates obtained, in the same way.
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PART II.
Concerning the Space Representation of a Circle

The problem of studying the rotation number-equation factor
dependence was raised by Poincare (1). The treatment of the rotation
number as a function in mapping space helps clarify the problem of
typical and exceptional cases,.

We shall disignate the angular coordinates of the points on a
circle by lower-case Greek letters; ¢ and ¢ + 27 represent the same
point of a circle., The transformations will be designated by capital
letters:

T : ¢ = T¢.

We shall discuss only continuous, mutually single-valued direct (orienta-
tion retaining) transformations, A rotation to angle 6 : ¢ = ¢ + 6 could
serve as an example., For every transformation there is a "shift," a
function on the circle showing how far each point is shifted. We shall
designate the shift by the same letter as the transformation, only with a
lower-case letter:

T:¢~T¢=¢+t@L

Here t(¢) represents the shift, If T is a rotation to zero angle, then
t(¢) = 0. Generally speaking, the shift, just like ¢, is defined only
correct to the multiple 27; however, having defined t(¢) at one point, we
can extend it unilaterally along the continuity.

If T is a smooth transformation, then t(¢) is a smooth periodic
function:

t(e + 2n) =t ().
We shall designate as
|

T =g+ ™ (¢)

the n-th degree of transformation T, By this designation it is assumed
that branch t(n) (¢) was selected to correspond to branch t(¢);

1 (@) =t () + £ (T (9)) (n=2,3,...).

Under these terms e(n) ¢ is called a displacement of n steps.
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§9., The Function of p (T) and Its Level Sets

Let us examine the spaces
COHCDOC*DH...0C"D...OC"H4

of mutually single-valued direct representations of a circle, that is,
continuous and continuously and infinitely differentiable and analytic
representations in the neighborhood of a real axis with a topology usual
in these spaces. Each successive topology is stronger than the preceding
one, and each of the spaces is absolutely dense within the preceding one.,*

Poincare (1) defined the rotation number 27y for every transforma-
tion TE C; thus the function u (T) is given for space C. The following
theorem was suggested by Poincare without proof,

THEOREM 4, Function p(T) is continuous at every point C.

Proof. We will show that pu(T) is continuous at point Tj.

2
Let €>0. We will select integer n'>-g-so that

T <p(T) <t

Then in the following transformation
To:9— ¢+ 1" (9)

each point will be shifted by more than 27 m., Actually, if some points
were displaced by less and others by more than 27m, there vﬁrould also be
a point displaced by exactly 27m, that is, stationary for To; it is

obvious, therefore, that despite the selection of n, we would have

28

p,=

If all the points were shifted by less than 27m, we would get p <.§.,

which again contradicts the selection of n.

*If T is included in one of the spaces Cl, Cz, ..., A, regardless of
which particular space, we shall T a smooth transformation.
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It can similarly be proved that each point is displaced by n
steps less than 27 (m + 1), So,

2nm < 157 (9) < 20 (m + 1),
In view of the continuity t(()n) @), 169

2nm + 0 < 1§V () < 2 (m + 1) —n

at some 7> 0, and in view of the continuous ™ ~T dependence, there will
be > 0, such that

[ £ (@) — 2 (@) | < m,

as soon as transformation T differs from Ty by less than 5:

() —t ()| <O

For such T
2nm <t () < 2 (m +1)

and, therefore,
m m+1
- <k < -

So, lu (T) - p(Tg)l < € at [t (@) -ty (@) ] < 8. The theorem has been
proved, _

Remark. Even in the best cases, function u (T) is always continuous,
Let us examine a family of transformations, for example,

Th:9p—9+ h+4+0,1sintg,

where h stands for the parameter. As has been proved, g (Th) is a con~
tinuous function of h, The function g (Th) increases with increasing h,
but is retarded by each rational value of p: corresponding to it is an
entire segment (hjhg) of h values. But with h>hy, the pu (T},) function
increases very rapidly: E. G, Bellaga showed that in the neighborhood

cvhn

of zero, for example, p (T}) increases at least as P
~log
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The sets of level pu (T) are multiple transformations with the
same rotation number 27 p. Such transformations include the rotation to
angle 27 pu, the transformations converted to a rotation to angle 2mp by
the proper substitution of a variable and, possibly, other transformations,

The structure of the sets of level pu (T) = p depends a great deal
on whether p is rational or irrational,

8§10, The Case of a Rational g

10.1, If CI)=E2, then, as Poincare showed, T" has the stationary

points ¢(n) (a) =27m, Their set is invariant in relation to T and
closed, as a set of the continuous function level e(m (a). The points

-1 4 are called a cycle. To investigate a cycle, it would

a, Tgy, «uey
be useful to examine the transformation T graph and function t(n) @)

graph (see Fig, 7; that figure shows an outline of the T (¢)=¢ +-%-cos ¢

graph, and the forms of 0 in connection with some iterative T)., This
cycle is called isolated if in the neighborhood of its points there are
no points of other cycles. An isolated cycle is stable if its point
(which also means all its points) has an indefinite number of small
neighborhoods which are transferred into themselves (Russian term:
perekhodyashchiye vnutr' sebya) during the

/ transformation T®, It is easy to see that

when n ~ + o, the points of such a neighbor-
hood gravitate towards the points of a cycle,

which explains the term, A stable transforma-

Tty /]

2x

tion cycle 71 is called the unstable cycle T.
An isolated cycle is semistable forward (back-
ward) if all the points in some neighborhood
of the cycle point (except the point itself)

7 o are shifted by transformation TR forward
(backward), that is, if in this neighborhood

VM I' ™ () —2mm >0 (< O0).

The transformation T €Cl is normal, if at the
Fig., 7 points of its cycles

dt™ (q)
—a9 F0
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Obviously, a normal transformation has a finite number of cycles,
and all its cycles are stable or unstable, It is the roots t(“) (¢)-2mnq,

de(n) ) de(n)
where —H—.<O that are points of stable cycles, and those with T¢> 0

"are points of unstable cycles, Hence,all the points of stable and un-
stable cycles of a normal transformation are intermittent,

-10.2. THEOREM 5. Normal transformations form a set which is open
in ¢l and absolutely dense in A,

Proof, 1, The points of a cycle are those where t(n) () =27 .
dt(n) _
In them——rts(?-z £0. Therefore, in the case of a small change t(n) (¢)

together with the first derivative, the function t(n) (¢) - 27 m does not
acquire any new roots, and the old ones do not disappear but are con-

tinually displaced, and the derivative in the root retains its 2i§n.
That means that transformation T with such a changed function t N (¢)

will be normal, In view of the continuous T(n) (¢) - T dependence, the
first assertion of the theorem has been proved.

2. We will show that there is an analytic transformation with a
cycle in any proximity to any transformation. Obviously, such proof will
be sufficient for an analytic transformation and analytic proximity. Let
T be an analytic transformation with an irrational rotation number, and

let €> 0. Among the points ¢n=Tn¢0 there is one removed back from ¢0 by

less than €, for example:
2nm — & < t™ (o) < 2m

(the Denjoy theorem). Let us examine a family of analytic transforma-
tions TA \ ZMO, TO =T): /71

Tr:i9—>@+t(e)+A.
It is easy to see that, with A =¢, T: shifts ¢O forward:

i (@) > 2mm.

Hence, in view of the continuity of t&n) (¢g) for A, it follows that at

T
some A0_<_ €, TXO has a cycle ¢o, A0¢0’

n

£ (¢,) = 2nm.,
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3. An analytic transformation with a cycle can be converted to
a normal one by an infinitely small change. Indeed, let T be an analytic
transformation with no stable cycles (which also means no unstable
cycles). We shall select cycle ¢y, ¢y, ..., ¢, 1 and introduce the

V analytic function of A (¢) which becomes zero at these points, having a
negative derivative in them. The transformation

To:te () =t () +0A(q)

with a small 6 proximate to T, has at least one stable cycle ¢g, ¢ ...

>
¢n-1' All we have to do, therefore, is to examine a case in which the

initial transformation T has a stable cycle. We shall construct an
analytic function of & (¢), with respect to T, which

1) is equal to zero and has a negative (positive) derivative
at the points of the stable (unstable) cycles of T;

2) is positive (negative) at the points of the T cycles which
are semistable forward (backward).

The existence of such a function is obvious, as the number of
cycles of T is finite, because the analytic function of t(n) (¢) - 2m
has an isolated root and is not therefore an identical zero,

Let us look at the transformation Tg: ¢ - ¢ + t (¢) +68(¢). With
a small @, this transformation is normal; the formal proof that the stable
cycles of T with small @ are only somewhat displaced, that the roots of

t(n) (#) - 27m become simple numbers, and that the semistable cycles
disappear is left up to the reader. When 8 is small enough, the trans-
formation Ty is the unknown quantity.

Theorem 5 has been proved.

10.3, The construction of a normal transformation can be easily

observed on the graph of function ¢(n) (¢) - 27m. 1Its roots, the points
of the transformation cycles, divide the circle into arcs. Each arc af3
is bounded on one side by point a of a stable cycle and, on the other,

by point B of an unstable cycle. With n = + «, the points of the arc are
wound onto the stable cycle, and, with n = - ©, onto the unstable cycle,
that is,

-

lim 7% (1) = « (mod 2), klim T** (y) = B (mod 2r),
k—o0 \->—00

where yY€(a, B). Such assertions are well known in the qualitative
theory of differential equation, and we will omit their proof.
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Thus a topologically normal transformation is characterized by
. m
three integers: m, n, k, where — is the rotation number and k the number
n
of stable (which means also unstable) cycles. 7Two transformations with
the same m, n, k are arranged in the same way in a sense that one of them
can be converted to the other by a continuous change of a variable on the

circle (that is,T2==¢T1¢'1, where ®¢C). The invariant of smooth change
dc (W) ¢)

of a variable is also a derivative of-———zzr—— in the points of the cycle

characterizing the speed of (winding) onto the cycle. There are probably
no other invariants in existence, but I was unable to prove that.

m
THEOREM 6. The set Ep of level B== in any of the spaces Cl, ceey
n
A is compendent and consists of

k
1) a normal transformation nucleus. U En which is dense in
= n
Em and open in CcP (A). The nucleus consists of compendent transformation
™

components Eg with k stable and k unstable cycles. Two transformations
m,
of the same Eg component can be converted to one another by a continuous

n
change of a variable;

8=

2) the boundaries of Ej and E;;. The E boundary consists of T

n n
transformations where t(n) (¢) ~ 27 m does not change the sign. Its
parts F_ (t(“) (¢) - 27m >0) and F_ (t(“) (#) - 27m<0) contain semi-
stable (forward and backward) transformations, are compendent and inter-
sect along the compendent set of Fy. The transformations from Fg are

=1

converted by a smooth change of variable to a rotation, Fp is included

in the boundary of every Eg component,
n

Proof. 1. The sets Ep, F,, F_ are compendent, To prove it, we
o
will connect, within the domain of the given set, any transformation

Te E, (Fy, F_) with rotation Ty to angle 217% by the arc T, (0<6<2,

n
Tg=T). Let o> +ees ¢n-1 be the cycle of T. By a smooth change of a

variable

/72
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?—>TYo=09+ V(9)

we will convert the points ¢g, ..., ¢, ; to 217%_]; (0<l<n-1), Let us

assume that
Yop =@ + 09 (¢)
and examine
Tog=YT¥ ' 9g=0+t(p) (0<I<Y).

This transformation is a transformation of T recorded in the variable ‘Po,
and belongs to Em (F4, FJ).
n

Let us examine the line segment connecting T, and Tj:
Tp=0+0—1)2t2+2—0)t(9) (1<I<2).

The points 271-“1_1_ (0<l<n-1) form a cycle Tp with all 1< 6 <2, and the
n
To line therefore lies entirely within Ep (F,, F_, respectively). The
n
connectivity has been proved.

2, The set Etlr(l of normal transformations with known m, n, k is

_n
compendent in any of the Cl, ..., A spaces., To prove it, we will connect
the transformations Tj, T) by an arc T, (0 <6<2) in a selected space.

We shall follow up by a smooth change of a variable

Yo =0+ ¥(9),

that will transfer the points of cycles Ty to the corresponding points of
the Ty cycles (which can easily be done as the number of these points is
the same, and they follow in the same order). The transformation

T, = ¥Tq v-1 affects the points of cycles To9 as a transformation of Tp;
it can readily be seen that it has no other cycles. Assuming that

Yo (o) = ¢+ 0 (9)
and
To= YT X3! (0<<0<<Y),

we will connect Ty with T, by a curve lying within

:slamw
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Let us look at the following transformations:

Il(‘W: Q+0(9), Ta(9) =9 +ta(9).

The functions t; (¢) and t, (¢) coincide at the cycle points, and all the
transformations therefore

- To(@=0+2—0t(@+O0—1t(p) (1<0<K2)

have the same cycles, Consequently, the line T4 (0 <6 <2), connecting
To with T,,1lies entirely within Kp.

n

of

=

3. The proof that the set E_ is open and that the set %{l E

s|
s|B =

normal transformations with an Z rotation number is absolutely dense in Ej
n m
n

is similar to the proof of theorem 5 (points 1 and 3),

4, I£ Ty, To€ E};, it is possible to make a continuous change

of variable P=¢ + ¥ (¢) such that T; will change to Ty : Tp=PT; ¥ 1.

Indeed, we shall designate the points of the stable cycles Ty as

a; (1<1l<k, 1<ign, T =a1), and the points of the

121 =2141° %ns1
unstable cycles T; as b; (we will use 1 to designate the number of the

cycle in the sequence on the circumference). In this case there are no /74
cycle points on the albl arc (and that means that the same applies to ’
11 1 1+1%
. every aib-i- and bra7 arc).

1 1
Further, let c; and d7 be similarly numbered points of stable

i
and unstable cycles T,. The substitution of variable ¥ changes the points
1 1 1 1
a7, by to cj, dj, and we still have to complete the definition of ¥ on

11 1
the a;b; and b'i'a;' arcs., We will select points x and y within the arcs

aibi and cidi. Points T;_‘x and Tgy lie on the same arcs closer to ai and

c}., respectively., We will use ¥ to map an arc (x, Tr;x) onto an arc

(y, Tny) by the homomorphic and direct methods: x -y, Tnx-oTny.
2 1 2

*With 1=k, 1 + 1 implies 1.
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Obviously, in the transformations of Tg the image of arc [x, T?x] (and

arc [y, T;y] in the transformation of Tg) will cover the entire arcs

1 :
aibi (1 <i<n) (as well as all the cidi arcs), We thus define ¥ (¢) on

arc T{x, T€+nx as TE‘PTIP. A similar construction is possible on arc a%b%
1 1+1

and bza; . The proof that the found substitution of a variable was the

unknown quantity is a simple one, and we will therefore omit it,

5. The construction of boundaries. If (M) (¢) - 27m

changes its sign, then T is an internal point of Ey, because with a slight
n
change of T t(n) (), it will continue to change the sign as before,
and T will retain the cycle. The boundary of E; is therefore included
: n
in the sum of F, (T€F,, if t(® (¢) - 27m>0) and F_. To convert the
transformation of TFGF0-=F+ NF¥_ to a rotation, we must change the points

of one cycle to ZWE%J;by a smooth change of a variable, and then redefine

1 1+1
the parameter on all the arcs [2ﬂf%=, 277“1'}l ] with the exception of

one (1=0), according to formula
ml -
¥(p)=2n—+ T7 (9).

A small change of the rotation to angle ZW;%umy change it to a

transformation from any Ei, just as was done in the proof of theorem 5

n
(point 3). It follows from the previous argument that the same holds

true for all transformations from Fy, which proves the last assertion of

theorem 6,

10.4., It follows from theorem 6 (point 4 of the proof) that
normal transformations are crude in the sense of Andronov-Pontryagin [10].
Since, according to theorem 5, the set of all normal transformations is
absolutely dense, no abnormal transformation can be approximate.

From a topological point of view, normal transformations fill an
overwhelming part of the transformation space - an absolutely dense open
set. It will be shown in the next paragraph that an ergodic case is also /75
typical from the point of view of measure.
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§11. The Case of an Irrational .

11.1, Let us examine a set E” of an irrational p level. Accord-

ing to the Denjoy theorem, every transformation of TEEF in the Cz, sevy

A spaces can be changed to a rotation to angle 27p by a continuous
change of a variable. But we are interested in a transformation changing
to a rotation by a smooth change of a variable. We will designate a set

of such transformations by Eip (and by Ef;; general designation E;l).

THEOREM 7. 1°. The set Eﬁ‘ is absolutely dense in E,, according

“’

to topology C., All sets E;z are compendent.

K .
2°, 1f is such that My with any integers m and
[ be == >—55" y g

according to topology A,

n4 0, the E‘; set is open in E#,

Proof, 1°, Let Ty denote a rotation to angle 27y, and let
T, € E;z Then there exists a smooth substitution of a variable

¥ (9)=9+ V(o)
such.that Ty = T, ‘I"l. The substitution of
Ye(@)=0+0(p) (00T

changes Tg to Tg = T ‘Pal; thus the line Tg, connecting Tg with Ty, lies

entirely in EI" The connectivity E;; has been proved.

We will construct in E‘;‘ a transformation T* in a prescribed

neighborhood TEEF. According to the Denjoy theorem, there is a con-

tinuous change of variable Y (¢), such that T = YT, ‘P'l. We will con-
struct an analytic change of ¥* (¢) by variable (¢) so that ¥ and P%,

?-1 and ¥#-1 are little different in metric C. Then T* = VT ¥#-1 yill
approximate T in metric C and belong to El:: The assertion 1° has been
fully proved.

2°, The fact that the set Eﬁ is open in E“ﬂAl follows from

theorem 2, Obviously, all that has to be shown is that some neighborhood
of rotation T( in E'[\A is included in Eﬁ The transformation TEE“r\A

may be written as



e—¢ + 21 + F(¢),

and the neighborhood U ¢ of transformation Top 1s defined by the
?

inequality | F(¢)| < C with |Im ¢| <R, But in view of theorem 2 (see point
4,3), the given R is accompanied by a C such that all transformations
TEUR’ C nE” are analytically reduced to a rotation, Theorem 7 has been

proved,

11.2. Approaching the problem of typicalness from the point of
view of measure (see [8]), we discover the lack of a sensible measure in
functional spaces, and are therefore compelled to confine ourselves to
finite-dimensional spaces.

Let us examine a two-dimensional space of analytic transformations
Aa,b:z—>z+a+F(Zr b),

where, given |Im z| <R, |b|<bg, F (2, b) is an analytic function
satisfying inequality |F (z, b)| < L|bj|.

THEOREM 8,

. meskE,

where E, is a set of plane points (ab), a€ [0, 27], b€ [0, 8], such
that transformation A, changes to a rotation by an analytic substitu-
tion of coordinate z,

Proof, 1. Let us take a look at set My, a compact set of points
0 < p<l,that satisfies inequality

I m

with all m, n>0, According to theorem 2, for any p.GMK there exists

C=C (X, R)> 0 and an analytic functionA(b, g) for b such that the
transformations A2'"#+ A(b,u), b 2t pE My, |b] < C can be changed to a

rotation by an analytic change of the parameter: (2mp+ A (b, p), b)€ E,.

A (b
We will use MK (b) to designate the set of pointspu + ——gﬁﬂ, pEM,

A (b
with a fixed b, Then the transformation Dy :p-p + Jﬁ“—) will change

M.K to set MK (b).
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We will assume that €>0, and select K>0 so that mes 'M2K> 1—%

(this is possible, according to lemma 1 §2), We will show that when the
b value is small enough, the following inequality is valid

mes M g (b)) >1 —e,
2
and its immediate result will be theorem 8, because it is obvious that

[}
2n0 > mes Ey > ZnSme_s M i (b)db.
0 z

‘ 0
2, Shown in §7 is a perfect set NK = NK’ MZK $ K MK

Obviously, all that has to be shown is that when b is sufflciently
small

mes Nk (b) >1 —e. (2)

(Inasmuch as K> 0 is fixed, we will now omit index K: NK= N.)

According to theorem 3, the representation Dy : N -« N (b) is the
limit of a uniformly converging sequence of instantaneous representations

n 1
Di:p—p+ 5= A" (b, p).

We will show that for any € > 0 there will be found a b (€) such
that, with b<b (¢) and any n

mes D} (N)>1 —e. : (3)

In view of theorem 3, there will be found b (€) such that with all n, /77
b<b (¢), u€N the following inequality will be valid

aA™
%<4,

that is, in the representation of D » N can be mapped almost without

expansion,

We will prove that this b (€) was the unknown quantity (the index
n will be omitted everywhere, as we are now dealing with a fixed n). Let
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b<b (€), By the definition of monogeneity, for every ; there will be

5 >0, such that

A(p) —A(ps) 34 () e
b= o <3

3 ?

1f |py-p3l <8, py = p3l< 8, mys o> p3 €N, Then under the same
conditions '

Adm)—AQ)|_ 2
L= <T, | ()

according to selection b (€).

3, We will divide N into nonintersecting (but measurable)
L

parts Ni, u Nio N, each with a diameter less than &, and let NL (b)
i=1

be their images in the transformation DE. Since in this transformation the

distance between two points N may be reduced, according to (4), not

€ .
more than 1- -23— times, then

mes N' b) > (1 — 238—) mes N*,

hence:

L . L

) mes N* (b)>(i - —23;4) D) mes N',

i=1 i=1
Thus,

mes N (8) > (1 — 2 YmesA,
and, as
e
mesN >1— 5

we get!

mesN(b)>(1— %e-)(i——%-)>1—e,
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and inequality (3) has been proved, Its corollary is inequality (2),
because the following is valid.

LEMMA., Let E € [0, 1] be a perfect set, £ the sequence of its
continuous representations on an_ [0, 1] uniformly converging to o
representation £ : E -~ F, and let 0 < A < 1. If mes F > 1 -A, with
all n, thenmes F > 1 -4,

Proof. Let € > 0, Let us examine set D. of the contiguous

intervals F exceeding €. There will be a finite number of them and,
with n large enough, these intervals will differ very little from the
corresponding contiguous intervals F . The total length of the latter,

with any n, is less thanA, as F; > 1 - A, The total length of D,

therefore does not exceed A, 1In view of the arbitrary nature of € < 0,

the entire addition to F will not exceed A either, which is what had
to be proved,.

n
Assuming that E= N, f = Dg, F,=Dy, (N), A = €, we will get
inequality (2) from (3). Theorem 8 has been proved,

§12, Example
Let us examine a two-dimensional space of circle representations:

9—@ta+tecosp="T,.(9). (1)

W

<

Fig. 8

With € = 0, we get T, g, a rotation to angle a. With je] <1,
]

formula (1) defines a direct one-to-one continuous representation of a
circle,
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With [€| < 1, the sets of the level of the continuous function

u (an e) = (Ta. z)

can be studied from two angles, First, it is possible to look for points
(a, €) of the plane where p is rational; the boundaries of such regions
are found in the semistability conditions of the cycle. For example,
point (a, €) is included in the set of level p = 0, if the equation

¢=g+a+tecosq

has a real solution, that is, the straight lines a = + € serve as the
boundary of region pu = 0, The same method can be used to find the

reglons u = %‘-. They approach the straight line € = 0 with tapering

prongs (Fig. 8): the two boundaries of the p = % have an (n - 1)-th

order of tahgency. The pu s—é-and B =-31— regions, for example, have these

curves as their boundaries

a=n:i:"T’+0(e‘), (2)
a=5 3 +‘ge’:ty—e’+0(e‘) (3)

Hence we get the approximate formulas which are suitable also for not

very small €: when € = 1, formula (2) produces 7 + 0.25 instead of
T+ 0,23237,.. .

The second approach to a definition of the sets of level yu (a, €)
is through the use of the Newton method of the approximate finding of
the lines of irrational level up . After two steps by the Newton method
we get an approximate equation of the level lines

a=2mp+ —-"41 ctgmp — ctg’ np + ctg 2np (1 + ctg?ap), (4)

which 1is quite effective when the cotangents are not large, Fig, 9
provides an idea of the nature of the approximation convergence and the
correspondence between this result and the preceding one (this figure
shows a graph of function p (a) = p (a, 1); the zero approximation of
the Newton method is indicated by 0, the first approximation by I, and
the second by II; the horizontal sections of p = O, 5 ?are defined

independently, according to formulas (2), (3)). With number a, indicated
in formula (4), the change of variable



81

ot 8in(p—mp) | e sin (29 —mp)
Y@ =0—5—5 e + T np sin 2np

changes transformation (1) into transformation

‘P_"P+2"P+Fa(‘p: e, P'),

4 L e et e e < aveine |

where F2 ~ET,

Sol~
by

Remark, The '"capturing" phenom-
enon, corresponding to zones with rational
rotation numbers, is well known in the
theory of oscillation,

The transformation (1) and diagram
in Fig, 8 describe the operating condi- f 7 7
tions of a generator of relaxation.oscil-_. .} , s
lations synchronized with sinusoidal ' B
impulses (see [36]). Another problem of Fig. 9
a similar type, also connected with the
representation of a circle, is reviewed in the book [37] (pp. 221-231).

§13. Concerning Trajectories on a Torus¥

13.1. Let the following differential equation
% — F@,y) (F(z+2nk, y+2nl)=F(z,y)>0)

be given on the torus x, y € (0, 27), and let the usual theorem terms of
existence and uniqueness of solutions be fulfilled. The following
trajectory runs through each point Yo of meridian x =0

vy, ¥, Y0, yp) = ¥,

Following Poincare, we will compare each point yg with point y; =y (27, yo) -

We will then get a direct one-to-one representation of circle x = 0 which
is continuous and, with a fairly smooth (or analytic) right-hand part,

is smooth (or analytic); but if the function F (x, y) differs little
from a constant, this representation will be close to a rotation. All
the characteristics of transformation yj (yo) reflect corresponding

characteristics of the solution of equation (1), and we must only formu- /80
late the results of the preceding paragraphs in new terms.

*See [1]-[4], [14], [19] and [20].
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If the representation y; (yg), made by the substitution of ¢ (y)

for variable y, changes to a rotation to angle 27pu, it would be natural
to extend such a substitution to the entire torus, indicating at point

(x, vy (%, yg))

9 (2, y) = ¢ (y,) + pz.

Obviously, if ¢ (y) is a smooth (and correspondingly analytic) substitu-
tion, the change of ¢ (x, y) on the entire torus will be the same. The
trajectories will be indicated in coordinates x, ¢ as '

9=+ npz

which is why they speak of such a substitution as rectifying the tra-
jectories, A. N. Kolmogorov [14] achieved an analytic rectification in
the case of an analytic integral invariant, We can affirm, on the basis
of theorem 2, that if function F (x, y) is analytically close to a
constant, and if rotation number p fulfills the usual arithmetical terms,
the trajectories can be rectified analytically. Hence the presence of
an analytic integral invariant in the dynamic system

dy dr
W_F(z!y)’ 'm'—l

(the invariant measure is the area in coordinates x, ¢).

On the other hand, it is possible, as in the example of §1, to
construct such an analytic function F (x, y) that the invariant measure
of the system is not absolutely continuous in relation to area dx dy,
even though the rotation number p is irrational and the system ergodic.¥*

13.2. Let us assume the following system of differential
equations ‘

% _ Ay L-BEy (A@y>0 B y>0 (1)

on the torus with an analytic right-hand part. Let us take a look at
equation

dy _ B(zy)
dx Az, y)

*Footnote to proofreading, The contrary assertion that appeared in
abstract [41] during the printing of this work is erroneous. (p. 80)
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which has the same integral curves as the system, If they can be
rectified, according to point 13,1, the system will look like this in
the new coordinates

d ,  d ,
'ﬁ' = A'(z, (P)' 'aﬂ:' = !"'A (I, (P)’

where A' (x, ) = A (x, y(x, ¢)). This system has an analytic integral

invariant T (1 k and publication [14] shows how to change it to the
X, .
following system (with the usual assumptions of p)
- ;'a'u__1 dv
T @k

by an analytic change of variables,

A contrary possibility in conmection with both an equation and a
system is offered by the availability of limit cycles [20], The division
of the space of the right-hand parts of system (1) into sets of the
rotation number level, the segregation of rough systems and the discus-
sion of typicalness are similar to those reviewed in §§9-11, It appears
that:

1. The predominant topological case is that of normal cycles
f;(which is also acrude case).®* The appropriate set of right-hand parts is
. open and absolutely dense; but this case cannot occur in systems with an

integral invariant,

2., The ergodic case (of an irrational p) is also typical, if
the evaluation of typicalness is based on measures in finite-~dimensional
subspaces. For systems with an analytic integral invariant this case
is predominant,

13,3, In a multidimensional case lacking an integral invariant
the rotation number is not defined. It is nevertheless possible to make
the following assertion on the basis of the remark in 4.4,

LEMMA 9. Let ¥ = (uy, ..., pp) be a vector with incommensurable

components, such that with any integral vector k

| (5, B> C|"‘

I

%It is asserted in abstract [19], judging from [21], that the necessary
and adequate condition for a crude case is the presence of one stable
cycle, That is incorrect, (p. 81)

/81
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'Then there exists such e(R, C, n) >0 that for any énalytic vector field
F (x) on the torus (that is, such that F (§ + ZNQ) =F (Qb), and a suf-

ficiently small | F (;)l < € with |Im ;<| <R, there will be found a vector
a for which the differential equation system

d+ - - -
T =F@+a
is changed to
du -
o = 2

by an analytic change of variables. g

§14, The Dirichlet Problem for the Equation of a
. Vibrating String

14,1, Let D be a region on a plane which is convex in coordinate
directions, that is, its boundary I’ intersects each of the straight lines
X = ¢, ¥ = ¢ at not more than two points,

2
The Dirichlet problem for the equationa—i-g-; =0 on D is to find

on it the function u (x, y) = ¢(x) + ¥(y) which is converted to[" in a
given function £ (a) (ae¢l) : u|p = £,

In this connection, £, ¢, ¥, ' may be expected to meet various
requirements in regard to smoothness, analyticity, etec.

When D is a rectangle 0°'< x+ y < 0<y=-x<t, it is con-
venient to change to the coordinates & = x +y, 7=y - x, Then our
equation is found to be the equation of a string, and the problem can be
interpreted as finding the motion of a string by two instantaneous
photographs and the end-point motion., From physical considerations
(standing waves) it is clear that when 1 and t are commensurable, the
problem is not always solvable, and if it is, it cannot be solved by a
unique method, This problem is dealt with in a number of abstracts (see
[22], [23], [51, [24], [17], [28]); difficulties of a similar order

are encountered also in the solution of certain other problems (see
(25]-[27]).

1,
X

14,2, Uniqueness theorems (see [5]). We shall compare the
boundary [" with some of its representations (see Fig, 10). Let P be a
transformation changing point a¢[" to point Pa€&l’ with the same coordi-
nate x; let Q be a transformation changing point a € [" to point Qa€l" with
the same coordinate y. These transformations are continuous, one-to-one
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ty 7 :
’a 0Pala 70 (8]
£ y 7 »

Fig. 10 Fig., 11

and change the orientation of the [ contour line. We will designate
QP = T, Obviously,

P'=Q'=E, PQ=T7,
T is a direct homomorphic representation,

THEOREM 10 (see [5]). If the contour line of ' is such that for
some point aOEI“ the set Tna0 (n=0,1, 2, ...) is absolutely compact

on ', then the Dirichlet problem for I' cannot have more than one con-
tinuous solution,

Proof. The solution u (%, y) = ¢ (x) + ¥ (y) defines the func-
tions ¢ (x), ¥ (y) correct to a constant. We will show that, by the
terms of the theorem, a knowledge of ¢ (xX) at one point a€l’ makes it
possible to define ¢ (T"a), ¥ (T"a) in all points T"a (n= 0,1, ...)
(we write ¢ (a) and ¥ (a) to designate ¢ (x) and ¥Y(y) where x, y are
the coordinates of point a€l'),

Knowing ¢ (a), it is easy to find
¥ (Pa) = f (Pa) — ¢ (a),

as the abscissas at points a and Pa are the same, It is then possible
to define

¢(Ta) = f(Ta)— % (Pa),

by using the coincidence of the ordinates of points Pa and Ta., Later we
shall use the same method to get ¢, ¥ in all points TPPa, TPa. They
form an absolutely compact set on [, and the continuous functions coin-
ciding at these points therefore also coincide everywhere on I'. The
theorem has been proved.
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When D is a rectangle 0 < x+y <1, 0 <y - x <t, transformation /83
T is in effect a rotation, Namely, if the following parameter is intro-
duced in the contour line of I')

2an
0=—=22
V2(@+0

where a is the length read off from point 0 to a along the contour line
(Fig. 11), then our transformation

2nt

E—E—T. If D is an ellipse, it 1s easy to
introduce a parameter in I" so that the transformation is recorded in it

as a rotation, Namely, we will take an affined mapping of an ellipse on
a circle, The straight lines running in coordinate directions will be-
come two families of parallel lines, with two straight lines of different
families forming an angle 7p which is not necessarily a right angle,
Obviously, when the ellipse is subjected to transformation T, the circle
will rotate to angle 2mwu (Fig, 10).

is a rotation (turn) to angle 27

If ' is a curve with a limited curvature, then T is a twice dif-
ferentiable transformation; it follows, according to the Denjoy theorem,
that when the rotation number p of transformation T is irrational, the

set TMa is absolutely compact on I', Hence

THEOREM 11 (see [5], [24]). If [ has a limited curvature and p is
irrational, the Dirichlet problem can have only one continuous solution,

Remark, Using the theorem of the density point, it is easy to
show that, by the terms of our theorem, there can be only one measurable
solution. On the other hand, with p being irrational, the method of
proving theorem 10 enables us to construct any number of solutions, but
mostly immeasurable ones,

14,3, A Thorough Investigation of a Rectangle.

THEOREM 12 (see [33], [17]). Let a given function £ (8),
differentiable p + € times along the boundary, be on boundary [ of

t
rectangle 0 < x +y < 1, 0 <y -x <t. Then for all y = t_+]_€Mk’
satisfying inequality ‘# -2t f%3 with any m and n and some K> 0,

n n

the Dirichlet problem with the mentioned boundary function has a p - 1
times differentiable solution, and is correct in relation to f (#). If
f is analytic, the solution with the same p is analytic.
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In the case of some irrational p, regardless even of the
analyticity of £ (#), the solution may be found to be

1) only continuously differentiable,

2) differentiable k times but not k + 1 times,
3) only continuous,

4) discontinuous,

5) immeasurable,

Proof, If

F®) =2 anet®,  @(8) = bue®, () =) cae®,

LET n+o nto
then, inasmuch as ¢ (@) depends only on x, and ¥ (¥) only on y, we have:

() =@ (—2mp—4), by=>b_,eintm,

\p (0) = ‘p(— 0)’ Cp = C_q.
As £ (8) is real, and therefore a = ;—n’ we find from inequality
£f(®) = ¢@) + Y(9): .

—i

23 -
bn 4 cn = an, bpe " cq = ap,
or

a, —a,
e 2ripn__ 1

bp = y Cn=an— by. A (1)

Now that a formal solution has been found, the proof can be
completed by a verbatim repeat of the reasoning of §2.%

Remark, Formula (1) shows that by breaking the series it is
possible, in all cases of g, to construct an "approximate solution"
whose degree of approximation is the higher, the less commensurable 1 and
t are, With a rational p, the approximation is not higher than the side
defined by p, and when 1 and t are highly immeasurable, we have theorem

*Footnote to proofreading, In an article published by P, P, Mosolov
[42], when this article was at the printer's, an assertion similar to
theorem 12 is proved with reference to any linear differential equation
with constant coefficients where the orders of all derivatives are
even-numbered,
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11, N, N, Vakhania refers to the correctness with respect to the region
in this sense [28],

We can state that the dependence of the solution on p is monogenic
(see §7).

14.4, A general case, If boundary D is such that transformation T
can be represented as a rotation in a parameter which is a smooth function
of a boundary point, it is obvious that all the reasoning of 14,3, is ap-
plicable to such a contour line, and in the case of a "sufficiently
irrational” p, the Dirichlet problem has a smooth solution,

The ellipse for which a parameter was constructed in 14,2, can
serve as an example, Generally, however, given an irrational yx, and
regardless of the smoothness of ', it is impossible to guarantee that
the parameter (existing according to the Denjoy theorem), in which
transformation T becomes a rotation, will be smooth. F, John [5] showed

that by a continuous change of variables x, y of the x - u (x) and
0 %w

ox dy

region, for which T has an irrational p, onto a rectangle or ellipse with
the same pu. But this change, generally speaking, is only continuous,

and it can change a smooth boundary condition on a curve to an uneven con-
dition on an ellipse,

y - v (y) type ("conserving equation = 0"), it is possible to map a

We should point out that if " is an analytic curve, then P and Q,
as well as T and TP are analytic representations. But if [' is also a
curve analytically close to an ellipse, the transformation in the suitable
parameter will be analytically close to a rotation, It therefore follows
from theorem 2 that all the curves for which p €M are similar to an

ellipse, in relation to the solvability of the Dirichlet problem, are at
any rate fairly close to an ellipse, -

The other theorems dealing with the representation of a circle
can be formulated in these terms in exactly the same way. In particular, /85
if transformation T has a cycle, the Dirichlet problem with a zero
boundary condition has a nonzero solution (at least a piecewise constant
solution; for more details see [24]). The Dirichlet problem for the
equation of a vibrating string is a problem of eigen-values for S. L.
Sobolev's two-dimensional equation

?Au 3
s 9

(see [24], [27]1, [29], [30]). The spectrum includes the A -values for
which the representation TA’ built on curve I',, has a cycle (here the

curve I', subjected to a A-dependent extension, is designated by rk)'
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