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SMALL DENCMINATORS. I. 

Concerning the Representation of a Circle 

by V. N. Arnol'd 

It was shown in the first part of this book that 
the analytical transformation of a circle, which differs 
little from a turn, whose number of rotations is irrational 
and which satisfies certain arithmetical requirements, can 
be converted to a turn by an analytical change of variable, 
Discussed in the second part is the space of circle repre- 
sentations and the place occupied in that space by various 
types of representations. References are made in the 
appendices to the investigation of trajectories on a torus 
and to Dirichlet's problem for the equation of a vibrating 
string. 

Introduction 

The continuous representations of a circle were studied by 
Poincare (see 8, chapter XV, pp. 165-191) in connection with a qualita- 
tive investigation of trajectories on a torus, Dirichlet's problem for 
the equation of a vibrating string is also conducive to such representa- 
tions, bu+ a topological investigation in this case is found to be 
ins! ffici.nt (see [ 5 ] ) .  Outlined in the first part of this work is an 
at+empt to provide an analytical definition of Denjoy's theorem [2] 
which completes Poincare's theory. 

Let us assume that F(z) represents a real periodic function 
FJz + 277) = F(z) on a real axis and an analytical function, and that 
F(z )  f -1 with Im z = 0 .  
region z + Az - z + F(z) will correspond to the orientation-retaining 
geomorphism R of the circle points w(z) = eiz: 

Then the representation of the complex plane 

In t h i s  sense we can state that A is the analytical representation of a 
c i :-c le. 

Let us assume that the number of rotations* A equals 2np. It 
follows from Denjoy's theorem that when j~ is irrational, there exists a 

_L. 

*It is assumed that the reader i s  familiar with the results of the work 
r1; (pp. 165-191 and 322-335) and [ 2 ]  which are included In the text- 
oooks [31 (pp. 65-76) and [ 4 ]  (pp. 442-456). 
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continuous reversible real function #(z) of a real z ,  and it is periodic 
in a sense that 

cp(z+2n)=cp(z)+2n, ' 
and that I 

cp (4 =; cp (2 )  f 2np. (1) 

We shall say that # is a new parameter, and that in the q parameter the 
transformation of A becomes a turn to angle 2np. There can be only one 
such function 4 (correct to an additive constant), 
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It was shown in $1 that in the case of certain irrationalp, 
regardless even of the analyticity of F(z), the function 4 in (1) may 
not be found to be absolutely continuous. 
sists in the following, 
the length, the reduction of a transformation to a turn by an appropriate 
selection of a parameter amounts to finding an invariant measure of 
transformation. In the case of a rational rotation number, the invariant 
measure is concentrated, as a rule, in separate points, the points of the 
transformation cycles. However, if the rotation number is irrational but 
approximate to the rational, the invariant measure retains its singular 
nature even though it is closely distributed all around the circle. 

The idea of this example con- 
Since the rotations of a circle do not affect 

The following hypothesis appears plausible: 

There exists such a set as M _C[O,l] of measure 1, whereby the 
solutions of equation (1) for eachpCM, under any analytical transforma- 
tion of A with a rotation number 2np, are analytical. 

So far this has been proved only in regard to analytical trans- 

The proof is in the method of solving equation (1) by way of the 
formations (94, theorem 2)* which are fairly close to a turn to angle 
2 7 ~ ~ .  
following equation: 

*Notation in proofreading, The work of A .  Finzi [ 381, [ 391 came to the 
attention of the author during the printing of this article. 
from work [38] that if the rotation number of a fairly smooth represen- 
tation of a circle satisfies certain arithmetical requirements, the 
rotation can be converted to a turn by a continuously differentiable 
change of variables. Thus the A .  Finzi method does not require the 
transformation to be close to a turn; this is partially confirmed by 
the above hypothesis. A .  Finzi points out, however, that he sees no 
possibility of using his methods in cases requiring a very smooth 
change of Variables. This article contains a partial answer to some of 
his questions; the reader will find a partial answer to some of the 
questions raised here in the mentioned articles by A .  Finzi. 

It follows 
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The so lu t ion  of t h i s  equation w i t h  the  a id  of Four ie r ' s  series reveals  a 
number of small denominators complicating convergence. The ca lcu la t ion  
of t he  successive cor rec t ions  designed t o  adapt the  so lu t ion  of equation 
(2) t o  equation (1) is made by a Newton-type method, and the rapid con- 
vergence of t h i s  method makes i t  possible t o  r e a l i z e  not only a l l  the  
approximations of the perturbation theory but a l s o  the  l i m i t  t r ans i t i on .  

The Newton method was used  f o r  such a purpose by A.N. Kolmogorov 
[6 ] .  
theorem of the  preservation of conditional periodic motion with a l i t t l e  
change i n  the Hamilton function, 
c a l  i n t eg ra l  invar ian t  but a r e  looking f o r  it. Moreover, we a r e  proving 
( i n  theorem 2)  the  ana ly t i c i ty  of the  dependence on the  small parametere 
which implies the  convergence of s e r i e s  by power E which is usual i n  the  
theory of per turbat ion,  

Theorem 2 of t h i s  a r t i c l e  is a kind of d i sc re t e  analog of h i s  

Unlike the work [ 6 ] ,  w e  have no ana ly t i -  

Direct proof of the convergence of these series cannot be provided, 
and i n  t h i s  connection A. N. Kolmogorov even advanced the hypothesis of 
t h e i r  divergence (pr ior  t o  h i s  study of K. L. S iege l ' s  work [7] ) .*  

Another hypothesis expressed i n  A.  N. Kolmogorov's report  [8] 
proved t o  be t r u e ;  the  problems involving small denominators a r e  associ-  
a ted  with the  monogenic Bore1 functions [9 ] .  
t h i s  was establ ished i n  § 7 ,  8 and is used i n  911.  

With reference t o  our case,  

Some important problems involving small denominators were solved 
by C. L. S i e g e l  ( see  [ 7 ,  33, 34, 351). The Schroeder equation has 
d i r e c t  reference t o  the  representation of a c i r c l e :  
use the ana ly t i ca l  change of var iables  $ ( z )  = z + b222 + ... i n  order 
t o  convert the representat ion of a zero neighborhood i n  a complex plane, 
determined by the ana ly t i ca l  function f ( z )  = c2nip z + a2z2 + ... t o  a 
t u rn  t o  angle 2vp. 

is it possible  t o  

The r e s u l t  achieved by Siegel [ 7 ]  is s imi la r  t o  our theorem 2, and 
The problem of a center  is a spec ia l  can be obtained by the same method. 

aspec t  of the  representat ion of a c i r c l e  whose radius  i n  some instances 
is equal t o  zero. Here the s i t ua t ion  is simpler, a s  compared t o  the 
general  aspect,  s ince the  solution (Schroeder's series) can be formally 
expressed a t  once. 
series; unlike theorem 2, each coef f ic ien t  of the so lu t ion  w i l l  be accu- 
r a t e l y  determined a f t e r  the  f i n i t e  number of approximations, 

The use  of t h e  Newton method a l s o  produces Schroeder'e 

The second par t  of the a r t i c l e  contains a c l a s s i f i c a t i o n  of the  
representat ions of a c i r c l e  and a discussion of the typ ica l  nature  of 
var ious  cases.  In  §9,function p(T) ( the ro t a t ion  number) is introduced 

*In h i s  reDort t o  the  Moscow mathematical society.  13 Jan. 1959. 
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in the space of the circle representation. This is followec by a study 
of the rational ($10) and irrational (511) level p from the point of 
view of their arrangement (theorems 6 and 7) and massiveness (theorems 5 
and 8). 
viewpoint of A. A. Andronov and L. S. Pontryagin [lo]. With normal 
cycles and a rational rotation number, they form an open absolutely 
dense set.* 
finite-dimensional subspace is the ergodic case. A two-dimensional sub- 
space of representations x -. x + a + E cos x is discussed in 812. 

Rough representations are topologically overwhelming from the 

Typical also from the point of view of dimension in the 
! 
I - ._ 

The preceding results are applied in 8013 and 14 to a qualitative 
investigation of trajectories on the torus and to Dirichlet's problem 
for the equation of a vibrating string. 

The author expresses his gratitude to A. N. Kolmogorov for his 
valuable advice and assistance. 

PART I 

Concerning the Analytical Representation of a Circle 

The gist of the first part of the article is contained in $54-6 
To understand the proof of theorem 2 (585 & 6), we need 

The implicit function 
Each of the 

(theorem 2). 
the subparagraphs 2.1, 2.3 of 52 and 3.3 of 33. 
and finite-increase lemmas may be referred to as needed, 
§§l, 2, 7 can be read independently of all the rest. The generalization 
of theorem 2 (theorem 3), used in the second part of this work, is 
proved in 08. 

'81. When Is a New Parameter Not an Absolutely 
Continuous Function of an Old One? 

1.1. This paragraph deals with the analytical transformation A 
of circle C, circle subset Gn (n = 1,2, ...) and natural number 
Nn (n = 1,2, ,,.) in such a way that: 

1. me8 Gn + 0 with n +a. 

2. 

3. The rotation number of transformation A is irrational. 

*Notation in proofreading, This result was obtained also by V. A. Pliss 
in an article [43] published during the printing of this work. 

7--  -. 
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This transformation A cannot be converted to a turn by an abso- I 

I 
i lutely continuous change of variable. 

continuous parameter in which transformation A is changed to a turn to 
angle 2np(Denjoy's theorem assumes the existence of 9 ) .  
A are also converted to turns. Let us assume that G CC. The measure of 
set $ (G) of values $(x), xCG is congruent to measure $(AN G), so that 
these sets combine during the turn. 
2 that: 

Indeed, let us assume that 4 ie a 
1 The powers of 

It therefore follows from condition 

I I 
i I 5 

and 

. In view of condition 1, c$ is not an absolutely continuous function on C,' I 

1.2. The following leumas are used in the construction. 

LEMMA a. Let us assume that A is a forward* semiatable analytical 
representation of a circle in the neighborhood of the real axis, and let 
points zo, Zk - A(zk-l)(O < k <  n) form a cycle--that is, A(zn-1). Then 
for any E > O  in the mentioned neighborhood of the real axis there i s  a 
transformation A which differs from A'by less than E and which has 
exactly one cycle, namely zo, z1, ..., zn-l. 

Let us make an analytical correction A(z) in the area 
under consideration which turns to zero at the points zo,...,zn-1, and a 
positive correction at the remaining real points. 

- 

Proof. 

We shall assume 

A' (2) = A (2) + d A  (2); 

when the E' > 01 E'A(z)I<E value in the mentioned area is low, A'(z) aleo  
represents the transformation of a circle. Obviously, the transformation 
(A')" will shift all points z forward not less than transformation An, 
thereby displacing the points z0,...,zn- by 27rm and the remaining points 
by more than 2nm; l e m a  a has been prove a . 

Definition. Let A be a transformation of circle C, and G a set f 2 ,  
on it. 
tion to G and N, if AN(C\G) CG. 

We shall say that transformation A possesses property 2 in rela- 

LEMMA p.  The transformation A with a single cycle zO,...,zn-l, 
with any E >0, possesses property 2 in relation to the set G, of points 
in the €-neighborhood of the cycle and any N exceeding a specified NO(€). 

*This means that with certain integers m, n and any real 2, An(z)lz + 2wp, 

I 

i 

and an equality is achieved. 
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Proof. Let zi> x <  z where zi zj is one of the arcs into which 3' 
the cycle divides the circle. 
zi z j  and form a monotonic sequence (for more details see §lo). Hence, 
if transformation A has a forward semistability (the case of a backward 
semistability is fully analogical), 

Points Ak"(x) (k = 1, 2,. . .) lie on arc 

A""\ 0) - zj. 
k - 4 -  

Indeed, let A be the limit of the monotonic sequence Ah(x); then A is 
an invariant in relation to An and belongs to the cycle that satisfies 
the inequalities 

i 
1 1  

I 

Thus, 
lim Ahti (2) = A'(Zj). , 
k - 0  

The same is true of the other intervals into which the circle is divided 
by the cycle. * 

Let us examine the points xi = zi + E, According to the proof, 
all the points ANxi, beginning with some NO(€), lie in the €-neighborhood 
of the cycle. Obviously, this No is the unknown quantity. 

Let transformation A possess property 2 in relation to 
G and N, and let E > O .  Then there exists such 6 > 0  that any transforma- 
tion €?,,differing from A by less than 6,possesses property 2 in relation 
to N and the €-neighborhood of G. 

LEMMA y .  

Proof. The lemma obviously follows from the continuous depend- 
ence of AN on A .  

LEMMA 6 ,  Let A be a forward semistable transformation, B(z)= 
A(z) + h, h > O .  
nitely larger than the rotation number ii of transformation A. 

m 
Obviously, p 2 ;;. 
Then the rotation numbgr 1.1 of transformation B is defi- 

Here Bn(z) > An(z) and therefore B has 
- -_ 

Proof. 
m no cycle of the n order, Hence, p >  -. n 

I 
I 

I LEMMA E (a singular case of Liuville's theorem). 
I < $, with any c > 0, has an infinite set of irre- 

If the ine- 
quality la - 
ducible solutions E, the number a is irrational. 

I 

i 

Proof, If a 2, then with n > q 
9 

i 



as the fraction m/n is irreducible, and that means tLt! pn - qml+ 0 with 
qcn. 

1.3 Transformation A is constructed a8 the limit of the trans- 
formation sequence An with rational rotation numbers. 
with the transformation z-eA1(z); we shall assume that it possesses the 
following properties: 

We shall begin 

l1 . A1 is analytical in the band Im z < R and in this band 
C A1(Z) c 2. 

p1 
Q1 

21 , The rotation number of A1 is rational: p 1 =  -. 
31a. A1 is semistable (forward), 

311, A1 has exactly one cycle. 

The existence of such Al is obvious: by a proper h > O  selection, 
Ai=A1 + h with properties 11, 21 and 31 can be obtained from any A!, 
and Ai can then be corrected to AI according to lema a. 
transformations An can be achieved from the preceding ones by the procese 

The following 

based on the following. -- 
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INDUCTIVE LEMMA. Let S n > O  and let us assume that the given 
transformations Ak(k=1,2,...,n) and R > O ,  C > O  are such that 

~~ 

WithIIm zI < R, Ak are analytical and satisfy the inequalities In 

2,. The rotation number of Ak is rational also with k > l  

3n Ak are forward semistable, each having a single cycle. 

It is then possible to construct the transformation AN1 in such e 

a way that the sequence Ak(k=1,2,.,.,(n + 1) will possers the propertiar 
1,1, 2,,+1, 3,1 and 4n+l. 

- 
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I :. 

. 
jl~l+l(i)- A, (2) I < dm npu ~m z = 0. 1 

Proof. Let us examine the transformations AA:z+A,,(z) + A ,  h> 0.  
Obviously there exists A 0  > O  such that whenh< A 0  

(IlmzI<R), ’ C I - An ( z )  I < 2”+2 
1 A,, (2 )  - An(z) I <+ (1mz = 0) 

- 

and the rotation number Ah is definitely larger than 
smaller than qn 

5 (lemma 8) and 

(for continuity of rotation nbmber,_see.§g). Let rotation number Ah 
we shall select the rational number pn+l 

- qn+1 

be p; 0 

pn+l we shall /27 qn+l’ and from among all the h ,  whose rotation number Ah is 
select the largest, say, hl. 
properties ln+1, 2n+1, 4n+1 and, as can readily be seen, is forward semi- 
stable. We shall apply lemma a to it; then we shall get transformation 
An+1 which satisfies all the requirements of the inductive le-. 

the inductive lema with the same C, R. We shall describe the selection 
6, by transferring the induction from An to AMl. 
the €-neighborhood of the single cycle An as G,*, where E > O  is such that 
the measure GE is less than 2-n-2. According to lemma 4 ,  a Nn will be 
found, whereby An possesses property 2 in relation to Gn and Nn. 
ing to lema y, there exists 6,*>0,  whereby transformation A possesses 
property 2 in relation to Nn and Gn, of the Gn-neighborhood, measure 
2-n-1, if on the real axis. 

The transformation Ah1 possesses the 

1.4. Transformation A satisfies the conditions 11, 21, 31 of 

We shall designate 

Accord- 

We shall select 

i 
(we formally consider S O = O ) .  Applying the inductive leanne, we get AMI. 
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If the transformations An(n=1,2, ...) are constructed by the 
described method, then, in view of property ln, this sequence will con- 
verge uniformly in the IIm z ) < R  area so that limit A is an analytical 
transforma tion. Obviously, 

with any n, and therefore A possesses property 2 in relation to Gn and 
Nn(n=1,2,.,.). 
rotation number, on the basis of lemma E ,  that rotation number A is 
irrational. Indeed, with any n 

We conclude from property 2, and the continuity of the 

Thus, all three properties indicated in 1.1 are fulfilled, so that 
A represents the sought for transformation. 

1.5. Remark. Examining the structure of the example, it is easy 
to see that the transformation A with the mentioned properties can be 
found in any family of analytical transformations 

2 3  A A z =  z + A + F ( z )  

in any neighborhood of any transformation with an irrational rotation 
number, if the family only possesses the following property: 
no turns among the transformations AB. The family z-z + A +TCOS z 
probably possesses this property; in that case the example can be 
presented by a simple analytical formula, 

there are 
1 

92. On the Functional Equation* g(z + 2774 - g(z) = f(z) 

2.1 Let f(z) be a function of period 2n, and p a real number. 

*Gilbert [12] refers to this equation as an analytical problem for which 
there is a nonanalytical solution. It occurs in the researches into 
the metric theory of dynamic systems (see [13, 111) and represents a 
simple problem with small denominators. 

' 

! 
I mi 

Notation in proofreading. 
mitted to the printer when the author learned of A. Wintner'e famous 
article [40] in which the equation under discussion is studied from a 
contemporary point of view, apparently for the first time, 

The mentioned article had already been eub- 

I 
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Define from equation 

the  function g(z) which has a 2n period. 

Obviously, i f  equation (1) is insoluble  

111 

51 (z)dz = 0. 
0 

. '  

v 

Further,  i f  g(z) is a solut ion,  then g(z) + C i s  a l s o  a solut ion.  We 
s h a l l  therefore  consider only the  right-hand s i d e s  which a r e  on the  
average equal t o  zero, and look only f o r  solut ions which a r e  on the  
average equal t o  zero,  
s t a n t  f o r  (0, 277) 

In each function +(z) we s h a l l  s ing le  out a con- 

I11 
- i  
c p = - \  2s f#(Z)dZ 

0 

and a va r i ab le  - 
G(Z> =cp(z ) -~ *  

Thus the  condition required f o r  the so lu t ion  of ' equa t ion  (1) i s  the  
equal i ty  i = 0 ;  hereaf te r ,  the  solut ion (1) w i l l  always imply the va r i ab le  
Par t  g ( z ) .  

If p =  
requi res  t h a t  

i.e., i t  is  r a t iona l ,  the  existence of a so lu t ion  n' 

a s  t h i s  sum i s  expressed by a solut ion i n  the form of 

and the items i n  these two sums a r e  the same. I f  such a condition ie 
f u l f i l l e d ,  a so lu t ion  e x i s t s  but i t  i s  defined only cor rec t  t o  an a rb i -  

homogeneous equation 
t r a r y  function of t h e E p e r i o d ,  n as such a f u n c t i o n s a t i s f i e s  - -____ t he  /29 

, 

F 
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But if p is irrational, there is only one solution, namely: 

1) With p being irrational, equation (1) cannot have two dif- 
ferent continuous solutions. 

Proof. The difference between two continuous solutions to equa- 
tion (1) satisfies the following equations: 

/ g b + W  -g (z )=O, ,  
g(Z+2n)o-gb)=O*! 

that is, this continuous function has two inconrmensurable periods, Such 
a function is a constant (see [15], pp. 55--56); it takes on the same 
value at all 2nk + 2np1 - points which form a solid set everywhere. As 

the mentioned constant is zero, 

2) With p being irrational, equation (1) cannot have two meas- 
urable solutions which are almost always incongruent. 

Proof. Let us take another look at the difference between the, 
It may be considered as a function on two solutions of function g(z). 

the circle, as it has a period 277. According to the condition, 

that is, g(z) does not change during the turn to angle 2np. Therefore 
the set Ea of the points on the circle, where g(z)>a, is invariant in 
relation to the turn to angle 2np. If the function g(z) is (almost 
everywhere) constant, such a constant (as in the case of l), is zero. 
If g(z) is not a constant, the set Ea will have a measure of Ocmes Ea<27r 
at a specified value a. 
ant in relation to a turn to an angle incommensurable with 2nhas a 
measure of zero or a full measure (see.[3], for example; proof can be 
adduced by the mere use of the theorem of the density point). Thus 
g(z) = 0 (almost everywhere), 

But it is well known that a set which is invari- 

The expansion of function f(z) in a Fourier series 



produces the  following Fourier 

t h a t  is, 
gn 

With p being r a t iona l ,  some of 
i r r a t i o n a l ,  there  a r e  numerous 
We s h a l l  point  out t h a t  

coef f ic ien ts  g ( z ) :  

. .  
the  denominators become 

(2 1 

zero,  When 1 is 
small denominators among the  denominators. 

with any in teger  n o r  a specif ied in teger  m. 
denominators i n  (2) therefore  depends on the  approximations of p by ra- 
t i o n a l  numbers. 

The smallness of the  

LEMMA 1 (see .[16]). L e t  E >  0. For almost every p, OSpS1 ( i n  
poin t  of the  Lebesgue measure) there  is K > O ,  such t h a t  

with any in tegers  m and n > O ,  

Proof. We s h a l l  s e l e c t  some K > O  and estimate the  measure of set  
Ek of poin ts  p ,  O < p < l ,  which do not  s a t i s f y  the  inequal i ty  (4) and 
which w e  s h a l l  rewrite a s  

This set contains a l l  t he  points  f with the  neighborhood of radius  

and the  t o t a l  length of the  neighborhoods (of 0, 1) w i l l  
Therefore 

K 
a f ixed  value n, the  number of these points  w i l l  be n + 1, 

K At 

The set of po in ts  p, f o r  which t h e  number K required i n  t h e  l e m a  does 
n o t  e x i s t ,  is included i n  Ek w i t h  any K > O ,  and i t s  measure therefore  is 
less than c ( a ) K  with any K--that is, it  equals zero, 

/30 
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2.2 We will show that in almost all p the small denominators 
have an insignificant effect on the convergence of series (2). 

13 
I 

LEMMA 2 (see [17]). The series 

is convergent at any E C O  and any integers %, if p is such that 

with all integers m and n > O .  

Proof. 
tionship, that lpn - 
type as S, in which the summation extends only to the indices n =  4i) 
for which - 

It may be assumed, without disrupting the overall rela- 
< 1. Let us examine the series Si, of the same 

(7 1 I I - z{+' \< I PP - mnp I < 3 (i = 0,192, * * ; n%> 4'). 
~- 

In the aggregate, the series Si contain all the S members, so that all 
that needs to be shown is that 

To estimate Si, we shall point out that, in view of (a), the consecutive 
numbers nisi), n(i) of the series Si terms are far removed: 
following inequality follows from (7) 

as the k+l 

we deduce from (6): 

, 

131 

I i  

I 
t 

i 
i 

where 
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Hence we get: 

&. I Ni > (2'"K) 

It is obvious that n(i)> Ni, and that in general +i) > kNir 80 that in 
view of ( 5 ) ,  (7) and (8) we have: 

1 

_-- -_ 

I 

Here 

therefore 

which completes the proof. 

It is a known fact that i f  f(x) is a function differentiable P + E  
times,* its Fourier coefficients 

and if 

the f (x) ie differentiable p + E 
following result from inequality 
series (2): 

are of a decreasing order. 

r.=O(+)*l I 

times. In view of that, we get the 
(3) and lemmas 1 and 2 applied to 

If the function f(z) is differentiable p + 1 + E + 8 times, then 

*That is a function in which the pth derivative fulfills the Goelder 
condition of the E power: If(p)(x + h) - f(p)(x)l < Ch', 
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, 
equation (1) has a solution which is differentiable p + c times in almost 
every case of p .  

On the other hand, it is not difficult to illustrate that when 
the number p can be well approximated by rational numbers, series (2) 
converges slowly, or is not convergent at all, despite the rapidly decreas- /32 
ing numerators fn. 
cases when g(z) is not analytical but infinitely differentiable, or dif- 
ferentiable only a finite number of times, or only continuous or even 
discontinuous, or that the solution is inrmeasurable (see 114, 17]).* 

- 
Therefore, even if f(z) is analytical, we may find 

2 . 3 .  Let us examine equation (1) in a class of analytical func- 
tions, Investigating this case, we shall recall the two lemmas dealing 
with the Fourier coefficients of analytical functions. 

LEMMA 3 .  If the function f ( z )  of period 2 p  in the area IIm z l <  R 
is analytical, and in this area 1 f ( z )  I < - C, then its Fourier Coefficients 
satisfy the inequalities 

I 

Ij,,l\< C e - l n l R .  

Proof. According to the definition, 

f n  = ' S  f ( z )  e-". dz.  
0 

In view of the periodicity f (z)e'inz, 

therefore 

fn  = 2- "f" j (z) e-inz dz 
2% 

H i 7  

with any TEI-R, RI. Integrating in the case of n > O  by a straight$ T I - R i 
and in n < O  by 7 = R, we get: l 

c 

*A. N. Kolmogorov advanced the hypothesis that the latter case-can elwayo 

! 
MI 

is divergent. ' I' be realized if the series 2 I p i p n ,  

I *o 

- -  .- - 

i .  



, 

f 
which completes the proof, 

LENMA 4. Let the Fourier coefficients of function f(e) fulfill 
the inequalities I fnl S Ce-1 I 
the following inequality with IImzl < R - 8 ,  Oc S c R 

Then f (z) is analytical and fulfills 

i 
. ,  

and its derivative fulfills the inequality 

2c I I ' (z) l< ( i - e 4 ) r  

Proof, WithIImzlSR - 8,0<8cR, it is obvious that 

1 I e lnz  I \< el I (R-6). 

Therefore 

and 

The same applies to 

In the IImzl c R  - S area the convergence of the series is absolutely 
uniform. The l e m a  has been proved, 

It is now easy to examine the analytical solution of equation (1). 

THEOREM 1. Let f(z) = ? ( z )  be an analytical function of period 2n 

p. 

and IIm a1 < R ) f ( c )  IS C. Let p be an irrational number, K >  0 and 

i 
\ I 

I 



I . 
# .  

I ,  

with any in t ege r s  m and n<O.  Then the equation 

g (2 + 2n)o - (4 = f (4 / 
has an ana ly t i ca l  so lu t ion  g(z) = z ( z ) ,  and with llin zl I R  - 28 and any 

R S <  1, o<s<y. 

(10) 
4c / I m K W '  , 

Proof. Using function f(z) and lennna 3 t o  estimate the  Fourier 
coe f f i c i en t s  fn, and making use of i nequa l i t i e s  (3) and (9), w e  ge t  from 
(2): 

We note the simple inequal i ty  

- 

which is t r u e  with any S > 0 .  

(13).) Applying (13) t o  (12) (with p = 2 ) ,  w e  get:  
ce- I n 1W-W 

K V  

(Indeed, p In x < p l n p  + x, as t h e  func- 
t i o n  x p In  x - x has a maximum a t y  P 1; assuming t h a t  x - 8 ( n  I , we ge t  

- __ _ ~ _  - 

cC- I n I Rei n I 5  - I gnl \< K&'A - 9 

hence, on the bas i s  of l e m a  4, we f ind i n  the  area )Imzl&R - 28: /34 
.. -- 

Since 8 < 1 11 - 
The theorem has 

e-'I > 3 ,  we find from t h i s  the inequa l i t i e s  (lo), (11). 
been proved. 

Remark 1. Obviously, i f  f ( z )  on a r e a l  s t r a i g h t  l i n e  is r e a l ,  
then the  so lu t ion  i s  a l s o  r e a l ,  

I 

Remark 2. 
parameter A, the  so lu t ion  ( in  term of theorem 1) is a l s o  ana ly t i ca l  with 
regard to the parameter. 

I f  the function f ( z ,  A )  is ana ly t i ca l ly  dependent on 



* 
- . .  _ -  r -  
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I I  

2 .4 .  L e t  u s  examine equation (1) with complex p. In t h i s  case 
the  so lu t ion  of the  homogeneous equation 

g (2 + 2 q 4  - g(z) = 0 

can be any double periodic function with periods 277 and 27rp,.and t h i s  is 
therefore  not the  so l e  solut ion of the  problem. 
be ana ly t i ca l  i n  an area wider  than I Im 27r,,(, so lu t ion  (1) can be deter-  
mined by a simple number cor rec t  to  a constant,  
area contains a parallelogram of periods, and the so lu t ion  of a homoge- 
neous equation i n  i t  i s  ,limited on the e n t i r e  plane--that is ,  i t  is a 
cons tan t ,  
by series (2). This s e r i e s  is convergent under any complexp, but w e  
a r e  in te res ted  i n  estimates,  and the neighborhoods of r a t iona l  p should 
therefore  be excluded. We s h a l l  designate a s  Mi the  set  of points  i n  a 
rectangle  on a complex plane 0 5  R e p I l ,  [Imp1 I r  so t ha t  with a l l  
in tegers  m, n the following inequal i ty  is f u l f i l l e d  

I f  g(z) is required to 

Actually, such a w i d e  

, 
The condition z = O  yie lds  a s ing le  so lu t ion  which is  produced 

Obviously, ME includes pa 1 - p,  1 - ji along with p .  

Instead of inequal i ty  (3) w e  have: 

f o r  any complex z with some integer m. 
I f  1 
connect points  1 and e 2*iz with the segment and examine the  in t eg ra l  

We s h a l l  prove i n e q p l i t y  ( 1 4 ) .  
I f  I e2rriz - 11 < h, w e  shall 

1 - 11 2 T, then (14) is  proved. 

$nix 
i dw I 

2ni = ,= (In t ~ z  - ln I )  = z - rn, 
_- 1 _- 

where lnw is  one of the logarithm branches and In 1= 277im (m i s  an in te -  
ger) .  As t he  in tegra t ion  segment l ies  en t i r e ly  within the  c i r c l e  

1 and i n  t h i s  c i r c l e  I wI  > T ,  then 

i 



f - - -  - 

~’ 
e 

Theref ore  

! 1 
Js 

12 - m I Q - l e ’ s  - i 1 ,  
. 4  

which complete8 the proof. 

I f  pEMf, then by applying (14) t o  z = pn, we f ind t h a t  

19 

THEOREM 1’. Let f ( z )  = T ( z )  be an ana ly t i ca l  function of period 
1 
27T 

277 and IIm 21 I Rlf(z)l  I C ,  and l e t  pEME, K c  -. Then the equation 

# (2 + 2 J v )  - g (4 = I (4 (1) 
CII 

w i l l  have an ana ly t i ca l  so lu t ion  g(z) = g ( z ) ,  and with I I m  (z - 2np)( < R - 2 8  

and any 6 < 1, 0 < 6 < -, R 
2 

8c 
(16) 

4C 
I g ( z ) l 6 =  8 l g ’ ( 4 i ~ ~  - 

Proof, According t o  formula (2) and l e m a  3, we have: 

and with IIm(z - 2vp) I < R - 26 

Since 1 - pEME, i n  accordance with (15), 



r - - 
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' .  
which means t h a t  

This, i n  view of (13), results i n  the convergence of the  series g ( z )  and 
g ' (z)  and, consequently, a l s o  t h e  t r u t h  of inequal i t ies  (16) (see proof 
of theorem 1 and lemma 4). 

Remark 1. Note 2 t o  theorem 1 is appl icable  a l s o  t o  theorem 1'. 

Remark 2. We s h a l l  f i x  function f and number z and examine the  
dependence of the  found solut ion on p: 

The function g(p) is analy t ica l  i n  the  upper and lower semiplane but the 
a x i s  Im p=O is an excision. Series (2) converges on i t  almost every- 
where, but t o  a discontinuous l i m i t .  This w i l l  not  prevent u s  from 
d i f f e r e n t i a t i n g  the so lu t ion  by p i n  5 7 ,  even with I m  p=O,  by making 
use of Borel's ideas  [9]. I n  the meantime, we bel ieve t h a t  the  formula 

makes sense only i n  the upper and lower semiplanes separately.  

0 

9 3 .  The Lemas Required To Prove Theorem 2 

3.1. LEMMA 5 .  If function f ( z )  is a n a l y t i c a l  i n  each point  of 
- _ _  

dt 6 L, then If(z2) - f(z1) I S L1z2 - 2 1  I . Id segment 2122 and 

Proof. Indeed, 

hence 

, 

I 

/36 
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! 
I 

I 

I 

I 
I 

Remark. The example f (z )  I eiz, ~ 1 ' 0 ,  22 ,2n shows that i n  a 

complex region t h e  theorem of the  f i n i t e  increment i n  t h e  form of I 
I 
I 

_ i  , 

I ____- 

i s  incorrect .  

3.2. LEMMA 6 (concerning an impl ic i t  function). L e t  funct ions 
F(E) ,  @(E,  A) be ana ly t i ca l ,  and with I E I  I E O ,  1A1 S A 0  

M 1  A0 1 
where - <- and M2 < -. Then 

1 - M 2  3 6 

1. The equation A + F(e) + @(e,  A) = 0 has an analytical solu= 
t i o n  of A*(€) which, with I E I  c E O ,  f u l f i l l s  t he  inequal i ty  I A * ( E ) ~ S  -. M 1  

1 - M2 

2. The equation A +  F(E) + @ ( E ,  A ) = A l  has a root  A=A(A, E )  

a n a l y t i c a l l y  dependent onA1 and E, I A l (  ~ b o , l c l < ~ ~ ,  root  A = A ( 4 ,  €1, 
and 

6 
- 

/ I A ( A I ,  e) - A' (e) I < 2 I A1 I 

Proof. 1. The c i r c l e  lAl < i s  a t  < A ~ .  l i I <  e o  i n  /37 1 - M2 1 - M2 
t h e  region where IF(E)I < M I ,  I @ ( r , A ) (  cM21A1 , and t h e  transformation 
A--F(e) - @(E, A )  therefore  puts i t  within i t s e l f :  

The f ixed  transformation point represents  the  sought f o r  so lu t ion  of 
A*(€); a n a l y t i c i t y  follows from the  ordinary theorem of t he  imp l i c i t  
func t ion ,  as 

34 
which follows from the  estimation o f z w i t h  the  a i d  of t h e  Cauchy 

integral : v i th  IA ! -, ! E !  < E O  a0 
- 3  

i 
I 
I 

1 
I 
I 

i- . 
I 
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2. In  the  representation of w-r w + ~ ( w , E ) ,  point A*(€) 
changes t o  E'(€), and points  w of c i r c l e  Iw - A*(e)l 121A11 t o  points  

w + @ (g (e), e) + [@ (w, e) - @ (A* (8)s e)l. 

Since under the  terms of the l e m a  applying t o  the  points  of t h i s  
c i r c l e  

I@(w, + @ ( w 9 8  e ) I < I A r l  

(lemma 5 ) ,  the  image of c i r c l e  Iw - A * ( E ) ~  I 2 ( A l l  contains the e n t i r e  
c i r c l e  I w  + F (E) 1 1  Ai-and has point A(A1,E) which changes t o  A 1  - E'(€):-- 
This point f u l f i l l s  inequal i ty  

and equation 

A = Al-F(8)-@(e, A). 
Unity and a n a l y t i c i t y  follow from inequal i ty  - 
Remark, 

4@ 
It is easy t o  see t h a t  i f  under the terms of 1- 6 the  

funct ions F(E) and @(€,A) a re  r e a l ,  given r e a l  e ,  A, then A*(€) and 
A(A1,e) a r e  r e a l  with r e a l  AI ,  E. 

t i o n  is sought f o r  equation f ( x ) = O  (Fig. 1). We s h a l l  def ine x roughly 
a s  xo and f ind in t e r sec t ion  point x1 of tangent ia l  a t  xo t o  curve 
y = f (x) with a x i s  x: 

3.3 The Newton method (see [18, 61) .  L e t  us assume that a solu- 

We s h a l l  fu r the r  def ine in succession 

and estimate the  ve loc i ty  of the convergence process.* L e t  x be the 

" 

*No exact premises o r  estimates a r e  given here. They are c i t e d  in work 
[18] i n  very general  terms which do not ,  however, cover the discussione 
appearing i n  the  following paragraphs, 

I 
i 



- 
unknown so lu t ion  and 1x0 - X I  I e. 
t i on  of the  curve from the  l i n e  tangent ia l  t o  i t ,  at 
point w, w i l l  have an order of e 2  a t  point x, which 
means tha t  I x i  - x I is a magnitude of the  order E 2 .  

Thus, a f t e r  the  n-th s t e p  the error w i l l  be e2n--a 

Then the  devia- 

very rapid convergence. I 

23 

L . Fig. 1 
We s h a l l  apply a method of the Newton method _. 

type t o  the so lu t ion  of the  l i nea r  functional equa- 
t i on  approximable by the  equation discussed i n  82. 
gence w i l l  paralyze the  small denominators appearing on every s tep.  

The rapid conver- 

&! v; . -- 

§4, Theorem 2 and Basic Lennna 

4.1. Leading considerations,  The transformation 

z 4 z  + 2np 

is  a turn  of the  c i r c l e .  The transformation 

z ---t z 4- 2np + eF(z) 

is a turn,  disturbed by a member EF(z), which i s  small together with e. 
Its ro t a t ion  number, even i f  F=O, may be d i f f e ren t  from 2np. However, 
i t  is possible  t o  f ind A = A ( E )  such t h a t  the transformation 

z + z  + 2np + A + e F(z)  

w i l l  have a ro t a t ion  number equal t o  27rp. 
case  of p ,  formally approximated by r a t iona l  numbers, and f a i r l y  smalla  

We s h a l l  show t h a t  i n  the 

1) A ( € )  is analy t ica l ly  dependent on E ;  

2) The transformation z - r z  + 2np+ A + EF(z) can be converted 
t o  a tu rn  t o  angle 2npby an ana ly t ica l  change of var iab le  $ ( z ) = z + g ( z ) .  

Here g ( z )  is a small correct ion together with E ,  and property 2) 
means t h a t  

- cp ____ (z + 2 J v  ~ + ll (e) + e Q z ) ,  8 )  = cp (2, e) + 2% 

or, which is the  same ( the g dependence on E is implied), 

! 

i 

g (1 -+ 2np + A + e F(z))  - g ( 2 )  = - A - e P(G).  

I 



. 
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This equation d i f f e r s  from the  one discussed i n ' 0 2  only by small magni- 
t u d e s  of the  second order ,  and it is therefore  na tu ra l  i n  the  f i r s t  
approximation t o  s e l e c t  A=AI(E) such t h a t  the  r i g h t  s i d e  of equation 

. (1) is on the  average equal zero: 

and look 

A1 - eF 

f o r  gl(z) as a so lu t ion  t o  the  equation 

The g1 d-fined here  has an order of E ,  and i n  t h e  va r i ab le  d l = z  + g l  
our transformation 

looks l i k e  th i s :  

Thanks t o  the  se l ec t ion  of A1and g l (z ) ,  the  l a s t  two terms become zero, 
and w e  get:  

91 (4 4 91 (2) + 2np +Fa (2, 8). 

The "perturbance" w i l l  now look l i k e  t h i s :  

Here $ , l i k e  gl, is a magnitude of the  order  E and, a s  it is a l s o  
r e l a t e d t o  the  second cofactor ,  the  perturbance i n  parameter cP1 has an  
o rde r  of e2 .  The transformation 

can be t r ea t ed  the  same way t o  determine the  "frequency correct ion" A2  
and the  new parameter d2 so tha t  the  transformation 

(~1+(~1+2np+As+Fa 

i n  the  parameter42 becomes the following transformation 

cp,-*Cp, + 2np + Fa, 



r- - 

, 

! 
where F j - k .  In this case, however, the transformation in parameter e 

~ 1 4 9 1  -t- 2 n ~ (  + Aa + Fa / 
will not look like the following: 

z+z + 2np+ A + eF. 

We must therefore begin with the transformation 

~ 4 ~ + 2 ~ - 1 - ~ 1 ( e ) - t  A ? ( A ~ ) + ~ F ; /  

then with the appropriate selection of A i  (A2) it will be possible to get 
the following transformation in parameter dl 

( p 1 4  h + 2np + A* + F; (cpl), 

and the following in 

%+(pa + 2np + F;, 
2"- 1 

and so on, 
possible to realize a limit transition, and find a new parameter 4 ( z ,  a) 
and a final correction A ( € )  possessing the properties 1) and 2) within 
that limit. The usual method employed in the theory of perturbation for 
the solution of our problem would be to look for A(€) and $ ( z ,  E )  in the 
form of series by power E ,  and determine the coefficients of the series 
successively from the fulfillment of equation (1) in the first approxi- 
mation, the second and so on, The convergence of such series cannot be 
proved by direct estimates but it is borne out by the basic theorem of 
this work cited below. 

%e rapid convergence of the (Fn-a ) method makes it 

4.2. THEOREM 2. Let a given family of analytical transforma- 
tions of a circle be analytically dependent on the two parameters €,A 

z + A ( z ,  e, A)=z+2np+A+F(z ,  e)/ (2 1 

and the numbers R > O ,  el> 0, K > O ,  L > O  are such that 

1) F ( Z  + 2 ~ ,  E )  = P ( Z ,  E); 

2) With \Im z P Im E =  0 always Im F(z, E) = 0 ;  - 

I 

I 

i 
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. . ___ .~ . . .- . - 

4) h e  irrational number p ,  with any,m and n integers, fulfills 
the inequality 

Then there exist numbers E' and R ' ,  0 c E ' ~ E ~ ,  0 R ' I  R, and 
functions A(€), $ ( z ,  E )  which are real, given real E and z ,  and analyti- 
cal with I E ~ < E ' ,  IIm z I < R' such that 

cp ( A  (2, e, A (e)), e) = cp (2, e) + 2 w  (5 1 

This theorem is proved in 9 6  on the basis of the following lemma. 

BASIC LEMMA. Let a given family of analytical transformations of 
a circle be analytically dependent on the two parameters E , A  

z 3 A ,  (2 ,  e, A) z + 2np + A + F (z, e) + 0 (z, e, A) (6) 

and the number R o > O ,  E o > O ,  K > O ,  S > O ,  C > O ,  O < A O C 1  are such that 

1) P(z + 2n, € ) = F ( z ,  E), @ ( z  + 2n, E ,  A)=@(z ,  E ,  A ) ;  

2) With Im z = Im 6 = Im A = 0 always Im F = Im 8 = 0 ;  

4) The irrational number p ,  given any integers m and n, ful- 
fills the inequality (4); 

5) The number 8 fulfills the inequalities 

and also 

C<+. 
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Then the  ex i s t ing  ana ly t i ca l  functions z ( 4 ,  E ) ,  A(Al, E ) ,  

Fl(4,  E )  , @1(4, E , AI) a r e  such tha t  

1. The following is ident ical :  

z [Al (9, e, A d ,  el = A ,  [z (9, e), e, A (AI, e)], (12) 

where 

The basic  l e m a  shows tha t  a small perturbance (of t he  order of 
C) of the  turn  z - r z  + 2npcan  be compensated f o r  by changing the  parame- 
ter  2-4, with A = A ( A l , E )  i n  such a way t h a t  the d i f fe rence  from the  
tu rn  in the  new parameters is of the order of C2. The proof of the  
lemma is given i n  the following paragraph. 

4.3. We a r e  making use  of the  following a s se r t ion  i n  :§11. 

Corollary of theorem 3.  L e t  the i r r a t i o n a l  number p f u l f i l l  ine- 
q u a l i t y  (4) of theorem 2, and l e t  R > O .  
t h a t  if the  transformation 

There e x i s t s  C(R,  K) > 0 such 

A2 : 2 --+z + 2np + F ( z )  

her  ro t a t ion  number 2np and IP(z) I 5 C with IIm Z I  S R, then Ae can be con- 
verted t o  a tu rn  t o  angle 2npby an ana ly t i ca l  change of a variable .  



I 
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Proof. Let us examine function 

and transformation family 

which fulfill the conditions of theorem 2 ,  with L =1, as )F1(z)) L 1 with 
IIm z l l R .  
with e < E '  the transformation 

According to theorem 2, there exists d(R, K) > O  such that 

can be converted to a turn to angle 2np. 
Then if IF(z)I 2 C withlIm z ( I  R, there exists A such that 

We shall select C(R, K ) < E ' .  

2-2 + 2JIp + A + F(2) 

can be converted to a turn to angle 2np, by an analytical transformation 
of a coordinate, because 

and 

max I F ( 2 )  

But the rotation number Az is equal 2744, 

\< c <e'. 

hence A = 0 (see point 2 of the 
proof of theorem 4 in 910 which-shows that regardless of how small A is, 
the rotation number of transformation x + z  + 2np + A + P(z) is greater 
than 2 7 ~ p ) .  The corollary has been proved. 

The corollary can also be affirmed directly by the use of a con- 
struction similar to that of theorem 2 .  In view of the lack of parame- 
ters E, A, this construction will be less ponderous. 

4.4. Remark on a Multidimensional Case. All the constructions 
of ' S 2 - 8  may be understood as multidimensional by replacing a point of 
the circle with a point of the torus of k measurements. Condition 4) of 
theorem 2 is replaced by the following condition of "incommensurability" 
for vector F :  

I 

I 



with any integral vector ii = (no,, . . ,nk), 
product 

Here @, ii) are the scalar 

k k 

With a sufficiently large magnitude o, condition (18) is fulfilled for 
almost all ii vectors, 

Without dwelling at length on the formulations and proofs of all 
the inequalities, lemnas and theorems for a multidimensional case, we 
shall cite only one result. 

MULTIDIMENSIONAL THEOREM 2, Let = @I,, . . ,pk) be a vector with 
incommensurable components, such that with any integral vector T'n 

i' 

+ - a  
Then there exists such E ( R ,  C, k)>O, that for the vector field P(z) on 
an analytical and fairly small torus F(z) < E with IIm 21 < R there will 
be a vector for which the representation of the torus 

+ + -+ * - b  

2 3 Z + 0 + F (2) 

is changed to 

by an analytical change of variables, 

:§5. Proof of Basic L e m a  

5.1. Construction z ( 4 ,  E), A(A~,E), F1(4# E )  and @I@, 6 ,  AI). 
Function z ( 4 ,  E )  is constructed as an inverse function to 

and function A(Al, E )  as an inverse function to A1(A, E ) ,  

point 4.1 that these functions should be selected in such a way that the 
expression 

We saw in 

g(A,(z,e,A), e ) - g ( z , e ) + F ( z , e ) + A + Q , ( z , 6 ,  - A) 

i 

I 
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be small. 
independent va r i ab le ) ,  we  s h a l l  define g*(z,  E ,  A) a s  the  so lu t ion  of 
equation 

Without def ining A(A1, E )  ( tha t  is, not  counting A a s  an 

- 
g'(2 + h p ,  E, A)-g*(z,  E, A) = - F ( z ,  E) - 6 ( ~ ,  E, A). (2 1 

Expressing the  transformation A. (see 6 4 ,  formula 6) by parameter 

cp' (2, e ,  A) = 2 + g' ( 2 ,  e, A), 

o r ,  transforming the  r i g h t  s i d e  by the  use of (2), 
-~ - _---- - -  

cp' [ A ,  (z, e, A), e, A]  = z + g'(z, e, A) + 2np + A + (e) + a (e, A) + 

We s h a l l  def ineA8(e)  a s  a solut ion of equation 

A i ( e ) + F ( e ) + 6 ( e , A ; ( e ) ) = O  (4 1 
and assume t h a t  

I 
The new parameter d(z, E )  i s  now determined by e q u a l i t i e s  ( 5 )  and (1). 
We s h a l l  present  (3) i n  the  form of 

! 
I 

CP [ A ,  (2, e, A), e] = 9 (2, e )  + 2np + hl (e, A) + PI (2, e) + ( 2 , ~ ~  A), (6) 

where 

I 
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211 = z + 2nCL,\ 

5.2. We s h a l l  prove tha t  the above constructed functions a r e  the 
ones w e  sought. The asser t ions  1, 2 and 3 of the  basic  lemma a r e  
c l e a r l y  f u l f i l l e d ,  
es t imates .  

The proof of asser t ion  4 is based on the  following 

lo. EstimateAg(E). Lemma 6 (03) can be applied t o  equation 
(4) on the  bas i s  of i nequa l i t i e s  (lo), (11) of Q4. Here M 1 = C ,  M 2 = S  
and a s  

(see formulas 10, 11, :§4), then 

Bearing i n  mind t h a t  8 < 1/2, w e  find t h a t  with I C ]  < eo: 

I A i  (e) I < 2C7 (16) 

2O. Estimate g(z ,e ) .  Inequality (16) enables us t o  estimate 
S € 0 ,  A = A Z ( e ) ,  i t  t h e  r i g h t  s i d e  of equation (2). 

follows from (16) and inequal i t ies  (7), ( 8 ) ,  (10) of $4 +that: 
With IIm zl  < R, 

1 (2, e) + 6 (z, e, A) I S; 2C + 28 2C < 4C. (17) 

Applying theorem 1, '92 t o  equation (L),, w e  f ind,  on the  bas i s  of (5), 
(17) and condition 4) of the  basic lemma, t ha t  with IIm zl L RO - 28, 
I E I S E O  and any S < 1 ,  O < S <  3, 

2 
8.4C 16 * 4C 

18(% a ) I < w ,  1$1<2- t 

& i  
j 

f 
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i 

hence, ili view of inequal i ty  (9). :§4, 

As, according t o  inequal i ty  (7) $4, C <  g8, it follows from here t h a t  

I lg(z1 e)I<b.  

Therefore, i n  the representat ion z - . $ ( z ,  a ) = z  + g ( z ,  E )  the  band' 

w i l l  t r a n s f e r  t o  the  domain containing the following band: 

IImcp(<Ro-3b. 

1 In  the  l a t t e r ,  the  inverse function is ana ly t i ca l ,  a s  9, p with  
I I m  z I < %  - 28. Inequal i ty  (16), 44 is thereby proved. 

3'. Estimate Fl(4,  E ) .  L e t  IIm zI < IZO - 38, la1 S eo. As i n  
view of inequal i ty  (16) and conditions 3) and 5) of t h e  bas ic  l e m a ,  

I &, e) + w, e, & (8 ) )  I < 8, 

the  imaginary pa r t s  z1 and zll (see 10 and 12) do not exceed % - 28, 
Applying lemna 5 ,  53 w e  f ind ,  on the bas i s  of (17) and (18), t h a t  with 
I I m  z ( < %  - 38, I E ) I E O  

It should be noted t h a t  the appearance of C2 i n  t h i s  inequal i ty  i s  the  
most subs t an t i a l  element of the proof of theorem 2. 

With IIm + I  < Q - 48 and S w e  have, i n  view of 2O: 

I ~ ~ ( C P ,  e ) 1 < ~ ~ - 3 6 ,  \ 
and est imate  (14)$4 ,  therefore ,  follows from (19), i n  view of t he  def i -  
n i t i o n  of Fl(4,  a) and inequal i ty  (10) 84. 

4'. Estimate (A(A1,  E )  - A 8  (E) I. Equation 

A AI- F(6)-@(81 A)t 

definingA(A1, E ) ,  belongs t o  the  type discussed i n  lemma 6, 03, We 



have seen (see 16) t h a t  l A t ( ~ ) l i <  2C, from which it  follows on the  bas i s  
of formula (11) 94 tha t :  

I &(e) I < +- (20) 

A 0  Lemma 6 i s  thus applicable,  and with 1611 I C < -, 161 I eo 6 

I A (A18 8) - & (e) I < 2 I A1 I *'\! (21) 

Comparing (20) and (21), w e  f ind tha t  with I E I  I eo,  IA1( I C 
n 

I A (4, e) I < +o. - 
2 With < e o ,  1A1 < Ao, according t o  the  Cauchy formula, w e  

have : 

(see inequal i ty  8, 10, 94). 
obvious t h a t  

Estimate (17) 94 has been proved, a s  it is 

5 O .  Estimate la1(+, E ,  A I ) )  . We s h a l l  present the  d i f fe rence  
In  view of formulas (10) and (12), i t  amounts t o  Zlll - zl* 

A1 + @ (2, e, A (Ai ,  e)) - 6 ( 2 ,  e, & (e)). 

A 
According t o  lemma 5 ,  $3, with IIm zl I%, le1 I eo, I All <-$- 

Applying lemma 5 53 t o  the r igh t  s i d e  of (8), on the  bas i s  of (22), (18) 
and inequalities (7) and (10) 0 4 ,  w e  find t h a t  

/45 

I 

j 

I 

i '  I 

i 



34 
i 

! .  
i A0 

-assuming t h a t  L. €0, IhJ< .T, 

I Im(z + Al + p +@I <Ro-  26. 

The l a t t e r  inequal i ty  is  f u l f i l l e d  i f  

Actually then 

IF + 6i < & + 2&Ao < 36 
' 

(see formulas 7 ,  8 and 1 7 ,  184 and inequal i ty  20) i n  both terms zlll and 

=1* With IIm + I S b  - 78, IA11 < C w e  get ,  i n  view of 2O: 

1 Im z I < R, - 6&, 
Estimate (15), 94 therefore  follows from (23). 

The basic  lemma has been proved. 

§ 6 .  Proof of Theorem 2. 

6.1. Construction z ( 4 ,  E )  and A ( € ) .  We s h a l l  a s s m e  t h a t  In the  
We basic  lexna 4 = 0 ,  and use function F(z,  E )  of theorem 2 f o r  P(z, e ) .  

s h a l l  s e l e c t  S l >  0 80 t h a t  
- 

1 RO 1- 00 

1 1) <s, rne B = bn21 (n = 2,3,. . .I; ~ 

I K I 
n=i I 

2) 61<=, d l . < S .  

L e t  6 6 I 2 < A 0  < 1, R = Q ,  K--the 8ame a s  i n  the  theorem, 
0 < E ' <  e o ,  C1 and Sl be, respect ively,  E O ,  C and 8 of the  basia  lenma. 
Then a l l  i t s  assumptions a r e  f u l f i l l e d ,  and with IIm +11 5 R - 781, 

I E I  L E ' ,  lA1l  I C 1 ,  we get:  

L e t  Le' < C 1  = Si2 ,  

~ 1 4  ~ 1 +  2 % ~  + Ai + Pi (91, e) + 01 (91, 8 ,  Ai), 

where 

i 
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Generally, if we determine the functions (k=1, 2,...,n) 

.- 
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* that satisfy the conclusion of the basic lemma by substitutingd'k-1 for 

for A ~ ,  A~ for A ~ ,  6k for s and ck= $2 for c with each k = 1, 2,. . . ,n, 
we can introduce functions $n+l andAW1 so that the conclusion of the 
basic lemma may be consistent with them when k=l,...,n + 1. Actually, 
the inequalities (9) and (10) of 9 4  will be fulfilled for 6, in view of 

the definition S1, (11) follows from the inequality ck+l=ck2 < a Ck, 
and all the other conditions of the lemma will be included in the con- 
clusion (for the functions of the preceding number, of course). We must 
therefore consider all the above-mentioned functions as having been con- 
structed, 
determined the functions 

2, 4k for 4, Rk-1 for RkZRk-1 - 76k for - 78, &*,-I forho, Ak-1 

1' 1 

The functions $n-l($n, E ) ,  An-l(An, E )  (n=N, N - 1 ,..., 1) 

((PN, e) = (91 ( - * (TN, 8) - - 1, e), ' (6) 

(7 1 AO ( N, e) = A (AI (. . . (AN, e).  . 1, e). (N) A 

Let us assume that A N =  0, and let AP)(O, E )  = Then 

A (e) = lim A(N) (e), 
N e  

To justify the convergence of 
first of all that, according to definition Sn, with*o>O 

and z(~)($, E ) ,  we shall point out 

1imPd;  - 0. 
N e  
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6.2 .  Convergence A(N) (a ) .  The functions A i N )  (s, e) , according 
t o  formula (7) and inequal i ty  (17) 94, a r e  determined with I C I S E ~ ,  
l ~ ~ l ~ $ j 2 .  AS 

the  following inequal i ty  is f u l f i l l e d  i n  the mentioned 
bas i s  of (5); 

region on the  
.I 

and a s  

Hence, in view of (7), we conclude tha t :  

I A"'(e) - A'M'(e) I < 2 N &N, 11 

the  immediate r e s u l t  of t h i s  is an even convergence of with 
eo, which a l s o  means tha t  A ( € )  is ana ly t i ca l .  

6 . 3 .  Convergence A(N) (4, E ) ,  According t o  the  bas ic  lemna, t he  
funct ions r#n-l(4n, E )  have been determined with I I m  4nl I Q, 16 I I eo 
and, i n  view of (3) ,  d i f f e r  from t h e i r  argument r# by less than sn, and 
therefore  

- -  
I - - 

I Imqm-1 (qn, e) I < Rn-1. - '\ 
-. _ -  i 

Thus, formula (6) def ines  z ( ~ )  (4, E )  in the  band 
n 

I Imcpl <R,, = Ro- 7 x i 3 k .  
k 9 1  

L L 

According t o  condition 1) of select ion Sl ,  a l l  these bands contain 

I Im $ 1  I g , so t h a t  a l l  the  functions ~ ( ~ ) ( r # ,  E )  a r e  defined in the  
latter. ! 

R 

- !  
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and this sun, according to definition Sn, is not larger than 2SN, we 
find the following from (6): 
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I 

i 

I 
On the basis of (3) ,  / 4 8 i  

I 

consequently, 

R 
8 

which proves the even convergence of Z(N)(d, E), with IIm 41s - , 
1 e: I L ". 

6.4. We shall define 4 (z, E )  as an inverse function of z(4, e ) .  
Since 8,-0 with n-a, it follows from inequalities (1) and (2) that 

'F (2 ,  e) --* cp ( 2 ,  e) + 2np, 

when z+A(z,  E, A(€)). Theorem 2 has been proved. 

$7. Monogenetic Functions 

7.1. The concept of monogenesis. In our investigation of the 
relationship between the solution of equation (1) 92 and parameter F,  
we came across an analytic function in the upper and lower semiplanes 
which was everywhere discontinuous on a real 
axis. The same characteristics are inherent in 
all the functions constructed in 06 (see §8)-- 
A,, gn, 4n, Fn, @,--which are considered as 
functions ofp. These functions are of a type 
referred by Borel [9] as monogenetic. 

! 
I 

I 

! Fig, 2 I 

I 

I 
i 

I 
I The Borel monogenetic functions are 

k= 1 
I W 

defined by the set E = u Ek, where EkLEk+l represent perfect compact __ I 

I 

I i subsets of a complex plane, In this case, Ek represents set ME of 

. '  
I 



points p of a rectangle 0-n a complex plane 'lImp.lAR, 0 <,Re ~ sl, for 
which 

, 

I 

i 

that is, a set formed by the elimination from rectangle I I m p  I I  R, 0 IRe p Sl 
of the circles crosshatched in Fig. 2>Cm 
centers in the rational points-, 

' ' 

K and radii -3 with their 
m - n SK .I"I 
n 

Definition. Function f(p) is uniformly differentiable by a perfect 
compact F of a complex plane, and function g(p)  is its derivative, if for 
any € I O  there exists & ( E )  such that 

as soon as 
- _  

, l P 1 - k l < ~ ,  lPcr-P*l<~,  P:, Pcr, P * U .  

The function is monogenetic by E =  3' Ek if it is uniformly /49 k = l  
differentiable by each Ek. 

In part cular, a function uniformly differentiable by E is mono- \ genetic by E= U 

by E= U Ek is uniformly differentiable by E. We shall call these 

functions monogenetic by E,to distinguish them from those monogenetic by 

Ek and, conversely, a function monogenetic by 
k = l  

k -1 

1) The continuity of the derivative by Ek follows from the 
monogenetic nature of E= Ek. k -1 

2) If r is a linearized curve connecting the two points Q and 
p in Eks then 

5 f ' ( P ) +  = f(P) - fW.  
r 

3) 

4)  If Ek contains a region, the E 8 Ek monogenetic 

A function which is analytic in the domain of each point 
of a set is monogenetic on it. 

k 01 
function is analytical in it. 

I 
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An example of a nonanalytic monogenetic function is cited in '$2 
and proved in point 7.4 (see lennna 10; it is up to the reader to prove 
that g(p) is not analytical with Im p - 0 ) .  

The properties of a monogenetic function may depend largely on 
m 

its definition of E = 

velocity of the decreasing supplementary components of Ek is high enough, 

then, as Bore1 showed, the instantaneous functions E =  

numerous characteristics of analytic functions (the Cauchy integral, 
continuous differentiability, uniqueness of instantaneous continuation). 
The question as to which of these properties is retained in this case 
will be left aside, as only the definition of a uniform differentiability 
is used hereafter (48 and 411). 

U Ek and the expansion of E into Ek. 
k -1 

If the 

m 
U Ek possess 
k=1 

m The class of monogenetic E u Ek functions depends not only on 
k-1 

E but also on Ek. However, if E results from a different system of 
m 

sets, E ii: U Fk, Fk(Fk+l, such that 
k=l 

m OD 

then the classes of the monogenetic functions E U Ek and E I U Fk, 
k =1 k-1 

coincide, 
of monogenetic functions in view of the confused nature of the inter- 
sections of circles C, 

n 
replace these sets by another system of sets, $, so that 

The 4 sets (Fig. 2) are inconvenient for the investigation 
Making use of the preceding remark, we shall /50 -, K' 

2. The N: set results from the rectangle IImpI 5 R, ReHE(0,l) 
by the elimination of the nonintersecting open circles. 

1 The construction of 8 (K < T) is outlined in point 7.2; it is 
unwieldy and may be omitted F y the reader. 



7.2. The construct ion of N;. The trane- 

formation of % and NK cons i s t s  of two operations.  

The eliminated c i r c l e s  C, 

R R 

are f i r s t  reduced t o  
. -,K n 

Fig.  3 circles CA so t h a t  t he  system ( m =  O , l , . . . ;  K ii, ii' -_ _ _  
n = 1, '2,. , ,) contains  no "bridges" ( see  F ig .  3) , 

t h a t  is, sets of t h ree  c i r c l e s  i n  which the  smaller c i r c l e  i s  in t e r sec t ed  
by two l a rge r  ones while the  la t ter  two do not i n t e r sec t .  The C '  circles 
a r e  then increased t o  C& so t h a t  two such c i r c l e s  do not i n t e r s e c t ,  o r  

t h a t  one l i e s  within the  o ther ,  I n  t h i s  case,  the  following i s  t o  be 
done 

7 

Then 

and the  el iminat ion of t h e  c i r c l e s  from the  rectangle  w i l l  leave - K  n 3  
R t he  s e t  NK which possesses both of t he  required cha rac t e r i s t i c s .  

LEMMA 7 .  L e t  t h e  c i r c l e s  C, and C ( n > q )  i n t e r s e c t  and 
9 =, K g, K - 

LL Y 
K <  Then n > 2 t h a t  i s ,  the  smaller circle. is  much smaller 

than the  l a rge r  one. 
9' 

Proof. Actually,  t h e  sum of the  r a d i i  of the  c i r c l e s  is g rea t e r  
than the  d is tance  between t h e i r  centers ,  so t h a t  

*. 

As pn - qm + 0 ,  ' t hen  

I 

I 

i-- 



. 
41 

i n  view of the  inequal i ty  n > q ,  - we ge t :  

K + $1 > Q't 

o r  

nS> - -@. K 

Bearing i n  mind t h a t  K w e  f i n d  tha t ;  -F 

which completes t h e  proof. 

Operation 1 0 -  construction of C& This construct ion cons i s t s  . - K' n '  
of a n  i n f i n i t e  number of succ.essive s tages ,  so t h a t  t he  c i r c l e s  C& 

(0  <m<n) , found t o  be constructed a f t e r  t he  n-th s tage ,  possess t h e  
following propert ies :  

z a  K 

An. No c i r c l e  ("I>") can connect c i r c l e  with - K  n '  - a  K ni  

sect each other.  

Bn ccm cc, . 
'rn K -  - K- y , K  75- I' 

We s h a l l  begin with the  f i r s t  s tage.  L e t  'x !Es K' Let - K =  
l S  

property B 1  be f u l f i l l e d .  
diameter of the  c i r c l e  hl 

- a  K 
"1 

The property A 1  i s  a l s o - f u l f i l l e d ,  as t h e  
( n l > n )  is  smaller than 

"<& (K<+)' 4 
is  g rea t e r  than 1 K  and t h e  d is tance  between t h e  c i r c l e s  C and C 

ia i' 
2 1-2K>- 3 '  

The f i r s t  s tage  has been completed. 

i 
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' I  

Fig .  4. 

L e t  us assme t h a t  s t age  n-1 was 
cons is ten t ly  c a r r i e d  out .  We s h a l l  examine 
any c i r c l e  C - C ,  (Fig. 4). Let 0 be i ts  

center, AB t h e  diameter lying on a real axis, 
and E and D t he  middle p a r t s  of A0 and OB. 
C i r c l e  C can be in t e r sec t ed  only,by the  
c i r c l e s  G2 

-s K 
"2 

with C ( i n  view of the  property Bk, k 5 n - 1). 

n '  

("2 < n) where Cm2 ,K i n t e r s e c t s  
n2 
- 

Further ,  a l l  such c i r c l e s  G2 -, K "2 
i n t e r sec t  

each other  ( i n  view of t h e  property Ak, k S n  - 1). 

Let us arrange t h e  c i r c l e s  in  a decreasing order n2 ( increase 

i of c i r c l e s ) :  

On t h e  bas i s  of lennna 7 ,  "2 i. 2 2x12 i+1 ( 0  S i  S &  -11, from which it 
follows t h a t  n >  2 1  o r  1 < 1 o i p .  This, a t  t he  in t e r sec t ion  wi th  the  AB 

- 

diameter, t he  circumferences of c i r c l e s  & produce no more than 2 2, K 
n2 

log2n points .  Therefore, t h e  par t s  i n t o  which these  poin ts  divide t h e  
segments BD and AE w i l l  include par t s  which are not longer than 

But t he  diameter of c i r c l e  Cml 

t o  lennna 7 ,  does not exceed 

K a  
4n3 1og2.n 

( n l > n )  in t e r sec t ing  with C ,  according 
iii sK I 

I 

We s h a l l  t ake  ends B' and A' of the la rger  p a r t s  BD and AE, which are 
near  t o  0 and designated as B I D '  and A'E, 

I 
f o r  t he  ends of diameter r 

-. g' n '  
It is c l e a r  

, it  
This  s e l ec t ion  does not contradict  the  c h a r a c t e r i s t i c  Bn. 

that if the  circumference C 1 =  C, ( n l >  n) i n t e r s e c t s  with C k  
K 1 -,K 

"1 
I 

m2 K 
"2 

lies within C, and can only i n t e r sec t  with Ci of the  circles C 
-I 

(n , sn ) .  But as the  diameter of C 1  i s  shor te r  than B'D '  and A ' E ' ,  C 1  

'b t 



I 

I 

I .  

can i n t e r s e c t  only t h e  Ciwhich in t e r sec t awi th  

therefore  a l s o  f u l f i l l e d ,  and the  method of completing the  n-th s t age  is 
thereby indicated.  

Property An is -, K' n 

The completion of a l l  the  stages w i l l  produce a sys tem of circles 
ossessing the  following propert ies :  5, K 

n 

A. No c i r c l e  can connect G 2  with C&J i f  
-s K 
"3 

- ¶  K 
n2 

- a  K 
"1 

Property B follows from Bn, and property A from An2, i f  n2 - 7 n3, 
and from An3 i f  n3 2112. 

Operation 2 -- construction of . We shall now increase the  
-3 K n 

circles of t h e  system . 
5, K 

We s h a l l  r e f e r  t o  the  t o t a l i t y  of C& ( n i  > n) which can be  
- K  
"i ' - 

connected with C by a monotonic f i n i t e  chain of i n t e r sec t ing  c i r c l e s  

I 

It i s  clear t h a t  i f  c i r c l e  C 1  i s  included i n  the  t a i l  of circle 
More- C2, then t h e  t a i l  of C 1  is  en t i r e ly  included i n  the  t a i l  of C2. 

over ,  i f  t he  tai ls  of C 1  and C2 in te rsec t ,*  one of these  t a i l s  is 

* It can be r ead i ly  seen t h a t  i f  two tails  i n t e r s e c t  as sets of points ,  
they have a common c i r c l e .  

I 
\ 

1 
i 

! 

i 
I 

i 
I 
I 

i I 
I I 
I 
! 

! 

i ! 

! 
I 

j 
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e n t i r e l y  included i n  the  o ther .  
opposite:  
c i r c l e  of t h e i r  tai ls ,  C 3 ,  by monotonic chains.  
connect C 1  and C2. 
one cons i s t ing  of t he  smallest number of c i r c l e s .  
a r e  only the  neighboring c i r c l e s  (see F ig .  5; i n  the  above system of 
c i r c l e s  the  t a i l  of the  l a rges t  one is  crosshatched). 
monotonic, our a s se r t ion  has been proved. I f  t he  chain is  not monotonic, 
i t  contains  a c i r c l e  connecting two l a rge r  ones which i s  i n  cont rad ic t ion  
with property A of operat ion 1. 
them contains  the  o ther  one. 

We s h a l l  prove t h i s .  Let us  assume t h e  
l e t  i t  be poss ib le  t o  connect circles C 1  and C2 with a general  

Two such chains  together  

In t e r sec t ing  wi th in  i t  
Of the  chains connecting C 1  and C2 we s h a l l  select 

I f  t h i s  chain is  

Thus i f  two t a i l s  i n t e r s e c t ,  one of 

L e t  p and p r e p r e s e n t  t he  upper and 
lower boundaries of the  poin ts  of a r e a l  
axis covered by the  t a i l  of c i r c l e  C = C '  

The c i r c l e  with the  updiameter  w i l l  then 

. 
+a K 

be c i r c l e  It follows from the  above 

t h a t  t he  circumferences of two such c i r c l e s  

-, K' Fig .  5 n 

We w i l l  show t h a t  K' do not  in te rsec t .*  It i s  obvious t h a t  CG 3 CA 
ii' -, K - n 

csm EC, . 
- x  -aK n ' n e  

Indeed, on the  bas i s  of lemma 7 ,  it i s  easy t o  estimate the  
dimension of t he  t a i l  C. 
and t h e  monotonic chain connecting C 1  with C cons i s t  of N c i r c l e s .  As 
each of t h e  circles,  according t o  lemma 7 ,  is a t  least 8 times smaller 
than the  preceding one, the  sum t o t a l  of t h e i r  diameters does not exceed-' 
1 - of the  C diameter i n  any N. 7 1 

L e t  c i r c l e  C 1  be included i n  the  t a i l  of C ,  

Hence, it follows t h a t  a and p a r e  re- 
I 

moved from by not more than 7 of the  diameter of C, KS and by 
-a n -, 

" 2  
not  more than 1-- of the  C, 

ii' 
radius ,  hence 7 

cm scm ' .  - n' K p K  

R The construct ion of NK has been completed, 

*But they may be contiguous. 

r- 

/54 
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7.3.  Differentiation of a sequence, The extension into the i 
complex plane p was undertaken primarily in connection with the following 
lemma which does not hold true if by the set 6 we mean its part lying 
on a real axis. 

LEMMA 8. Let the sequence of functions fn(p), which are monogenetic 
on set NE, converge on it irk proportion to f(p) , and the derivatives 
converge in proportion to g(p). R Then f(p) is monogenetic on NK and 

f'(P) -g(p). 

when 

Proof. 1. Let r > O .  We must find 8->0 such that 

I pi -pa I <a, I C L . ~  - pa I < a, pi, ~ * * \pa  6 N:. . -  

If 8 > 0  is sufficiently small, then all these points lie within a 
R single component of NK. 

We will show that in this case the points pl and p i  can be con- 
R nected within NK by a linearized curve 

following conditions: 
in such a way as t o  fulfill the 

1) for any point p e r  Ip-pSI]<26; 

2) the length of r is smaller than 2(pl-psI. I 

____-- 
.._ ~ _ _  - - 

Indeed, we shall connect the points pi 
and p 2  with the segment p1 ~2 (see Fig. 6 ) .  
This segment may intersect with some circles 
Ci, whose elimination from rectangle IIm p l  SR, 
Re pC [0,1] resulted in the formation of set 
R NK. These circles do not intersect in pairs 
and do not separate pi from p2 in NK as the R 

. . -  
points p1 and p 2  lie in a single component. 
The circles Ci form nonintersecting intervals 
Ai on p i  and p 2 .  
yi, the smaller of the two arcs into which p1 p p  divide the circle Ci. 

Fig. 6 

For each of euch intervals Ai we shall eubetitute arc 
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This substitution will increase the length 
and the length of will therefore be less 
I p1 - p  2 I , according to the condition, does 

of  Ai not more than 5 times, 
than 2 Ipl - p 2  :I. 
not exceed 2 S C  and all the 

The distance 

points yi are therefore removed from the center of Ai by less than 8 .  
The latter point, like all the points of segment p1 p 2 ,  lies in circle 
I p  - p 3  I < 6 ,  and for any point p 6 yi, therefore 

Thus curve r is the one we searched for. 
R 2; We have already noted that ifc$(pj is monogenetic in NK 

and r is a linearized curve with ends p 1  and p 2 ,  then 

r 
(This can be proved by merely comparing the integral with the integral 
SUI%) 

functions fn(p),  we get: 
Applying this equality to the above curve r and monogenetic /55 

In view of the uniform convergence of fn and f, f: and g, it is possible 
to proceed to the following limit on the right and left sides: 

In this connection we shall examine the integral 
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as t h e  length of r is less than 21 p2 -p1'1. 

Thus 

The r i g h t  s i d e  of 
r,- i s  a (double) 

the  las t  inequal i ty ,  according t o  property 1) of curve 
increment of g(p) on a l i n e  segment sho r t e r  than 28 and, 

i n  view of the cont inui ty  of the  continuous funct ion g(p) on the  NR com- 
K 

pact, it tends t o  become zero along with 8. Le- 8 has been proved. 

'7.4. The funct ions of several  var iab les  and t h e i r  uses. Eventually 
we w i l l  need funct ions which are ana ly t ic  f o r  some var iab les  and mono- 
gene t ic  f o r  o thers .  

Let z be an angular var iab le  (changing within the  Im zf j (ab)  region*) 
and have a 277 period,* the  var iables  E and A change i n  the  neighbor- 
hood of zero,  and p c N K .  R 

Defini t ion.  Function f ( z ,  E, A ,  p )  i s  ana ly t i c  f o r  z ,  E ,  A and 
R monogenetic f o r  p E N K  i f  the  sequence 

f (2, e, A, p) = 2 Itrnn (p) eikz ern A", 

i n  which the  coe f f i c i en t s  are monogenetic funct ions of p f j  NR 

uniformly along with the  der ivat ive t o  p ,  with pfj  N E  and z ,  E ,  A changing 

i n  the  mentioned regions.  

converges K '  

It i s  obvious t h a t  such a function is  continuous, and 

a )  with p f ixed ,  it i s  ana ly t ic  f o r  z ,  E, A ,  and 

b) with 2 ,  E ,  A f ixed ,  i t  i s  monogenetic f o r  p NR Property K '  
b) follows from lemma 8. 

* That i s ,  when increased by a 277 funct ion,  z g e t s  an  increment of 0 
* The boundaries may depend on p .  

or  2n. 
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n 

LEMMA 9 .  Let functions hi(z, E ,  A ,  p )  be monogenetic for p E E  - 15 6 
and analytic for z ,  E ,  A. 
property in the corresponding regions: 

The following will then possess the same 

1) functions 

2) solution+(z, E ,  A, p )  of equation h(q5, E ,  A,p) =z; 

3) solutionY(z, E ,  A ,  p )  of equation h(z, E ,  Y, p ) - A ;  

4)  partial derivatives h for z, E ,  A ;  

2 n  

0 
5) integral for parameter J h(z, E ,  A, p)dz, 

and the usual rules of differentiation apply in all of these cases; for 
example in case 2) 

ah 

The proof reiterates the reasoning well known form the usual 
analysis, and is then omitted. 

LEMMA 10. Let function f(z, E ,  A, p )  =f'be analytic for z in the 
region I Im z I LR; E ,  I E I<e0;  lA4 <A0 and monogenetic for p 

of the mentioned region be 

NR and let E K' 

Then the solution to the equation 

g(z + 2~ e, A, PI - g ( 2 ,  e, A, PI = f (2 ,  e, A, P) 

is monogenetic for p 

<,R -26, E ,  1.1 
Ni and analytic for z in the region I Im (z - 2 W )  I 

e o ,  A, ] A I  <Ao,and in this region 



. 
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Proof. The solution is given with p fixed by series (2) $ 2  

whose uniform convergence at .IIm (2  -2np)l < R  -28  is to be established, 
because 

But the uniforn,convergence of this series was established in 3 2 ,  

along with the unknown estimates of g and- in the proof of theorem l', as 2, 

The estimates of the other derivatives are found by differentiating the 
series according to the usual formulas, taking inequality (13) $2 into 
consideration. 

/57 

§8. The Functional Relation of Theorem 2 to p . 
8.1. We have seen in 7.4 that there is a monogenetic relationship 

between the solution of the linear equation (1) 9 2  and p .  
relationship between p and the functions An, Fn, an, gn, A(n) constructed 
in '96 will be proved in this paragraph. 

The monogenetic 

It appears that the region of monogenetic relations grows narrower 
(by .I Im 2np I 
establish any monogenetic relationship between p and the solution of 
equation (1) ' 4 4 .  

on each step) as n increases, and the author was unable to 

The monogenetic relationship between A(n) and real p is used in 
aA(") 

511. 

with small E .  

There we shall rely also on the (uniform for n) small value- a, 

To abbreviate the cumbrous expressions in this paragraph, argument 
E is omitted from all functions, just as the dependence on p has been 
ignored before, and only 2 ,  4, E ,  A considered as arguments. 

The construction of A(n) ( p )  in 9 6  looks like the following. 
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under these conditions < 6L I E ~ .  

. 

Such new parameters as $=4n (4n-lS p )  and b-l(Anr p )  were 
added step by step so that the transformation 

was converted to the following transformation 

Vn 3 Tn + 2fip + An + Fn (qn, p) + @n (qn, An, 
i with considerably smaller F and @ values, and c$o = z ,  Fo =F, 0 ,  

Ao=A, 

Further, the construction of A(n) ( p )  was such that the trans- 
f onnat ion 

2 4 2 + 2 n p +  A'")(p)+F(Z) 

in the variable +n became 

in which case we supposed 

We thus obtained the following: 

Ab"' (p) = A@) (p). 

THlEOREM 3 .  By the terms of theorem 2, with fairly small E > 0, 
o < K <  9' values 

A (p) = lim A'") (p), 
n e  

rn 
where the functions A(n) ( p )  are monogenetic for p ENK (rn > 0) , and 

The proof of this theorem rests on the following lemma which re- 
peats the basic lemma (see '3'64 and 5). 

. 
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LEMMA 11. Let a family of analytic representations of a circle - 15 8 
be analytically A-dependent and monogenetically p 6 Nk-dependent 

4) the number 6 satisfies inequality 

( 6 )  R 
d < w ;  

5 )  C = P', A, = ha@. 

Then there exist functions z ( + , p ) ,  

4, A1 and monogenetic for p CNK such that 
A(A1, p ) ,  which are analytic for 

r 

where 

3 .  With Im+=ImA1=Imp= 0 always Im z=ImA =ImFl=Im91=0 
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4 .  WithtAl) <828, IIrnc#1I<Rg-78-IIm 2np1, p c N i ,  the con- 

structed functions are analytic for +, Al, monogenetic for pCNr and 
have the following correlations: 

K 

8.2. The proof of lemma 11 is more unwieldy than the proof of the 
basic lemma. The construction reiterates the reasoning in 5.1 with the 
only difference that p changes from a fixed real number to an independent 
complex variable. 
according to 5.1., use is made of the integration by z ,  the solution of 
equation (1) 2, the construction of an inverse function and the substitu- 
tion of a function in a function. 
operations do not extend beyond the class of functions which are mono- 
genetic for pENr and analytic for z ,  A, +, A1 in the respective domains. 

/59 

In the construction of A(A1) , z (# )  , g, F1 and 'PI, 

According to lemmas 7 . 4 ,  all these 

K 
Therefore, only inequalities (9), (lo), (ll), (12), which are not 

bound' in the basic lemma, call for a special examination. 
is based on the following estimates. 

Their proof 

d g* 
d P  

lo. Estimate-. On the basis of 5.1 and 7 . 4 ,  and in view of 

the terms of the lemma, when 

IImzI<&, PE%, !AI <Ao 

, 



_-- 
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Thus i n  the  right-hand s i d e  of equation (2) 95 is a der iva t ive  
Applying lemma 10, w e  f ind :  of p ,  not exceeding 4C. 

with IIm(Z--flp)L)Ifl---~, pE Nk, p I < A o -  

a A$ 
2". Estimate-. It follows f r o m  equation (4) '$5 and 7.4 t h a t  

a P  - 

EstimatingAO as i n  lo,  5.2, w e  f ind:  

I & I  < 2c < + 
A0 With lAl<--  and the  Cauchy i n t e g r a l  w e  f i n d  from (4): 
2 

- 
2 

I 

a6 1 ' A. 
Consequently, 11 +- I > -  atL)AIl-. On the  bas i s  of (3) , \j) and 

d A  2 2 
lennna 9 ,  therefore  
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2 I n  view of ( 6 ) ,  6 % < C a  so t h a t  

a t  p C  Nr.  
N 

dg 
ar 

3O. Estimate-. According t o  7.4 and 5.1, 

a2g* 
aZ a& Note t h a t  equation 

a g* 
We s h a l l  f i r s t  es t imate= and- 

when d i f f e ren t i a t ed  by A produces equation 

43* 
ab  

of t h e  same type i n  r e l a t i o n  to-, and w e  can make use of lemma 10. 

a5 
ah  

To t h i s  end we s h a l l  estimate- by the  use of t he  Cauchy in tegra l :  with 

A0 According t o  lemma 10, wi th  I Im ( 2  - 277~) I 5 Ro - 2 6 ,  1A\1~-  2 a p CN; 
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Substituting these estimates, estimates (20), ( 2 1 )  and estimate A* from 2" 

in the formulas (23), (24), we find: 
0 

with I Im (z - 2np) I <, R - 2 6 ,  p EN:. 

. Analogically to 2", we have: J A U . , ,  P I  
4". Estimate . + 

aF a 5  -+- ad acr acr 
acc f i '  
- -? - 

-- - ' + K  

4) and if 1A1 5- then, as in 2", we get: 2 

A0 ' 27 <--,is I All L 8  . 2 All that is needed to fulfill the inequality, 

Actually, when (as is shown in §5) / A o  I <2C, ( 8 - A o  (L21A11, and as 

C 

* * 
then at I A1 I <_627 we have: 

6M 1A (Ab p) I <4b2' < = 4 . 

At the same time we have shown that with 1 A l l  <827, the 
estimates of point 1" are valid. 

JF1 
a/J 

5". Estimate-. From 5.1 and 7.4 we find: 



. 
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where 

The f i r s t  two brackets on the  right-hand s ide  of (26) are estimated by 
the use of a f i n i t e  increment lemma (lemma 5 ,  '03) .  We have: 

3% 
apaz Subs t i tu t ing  for ZI -211 and- t h e i r  estimates,  we ge t :  

and, analogical ly ,  

The l a s t  addend on the  right-hand s ide  of (26) is  estimated by the use 
of i nequa l i t i e s  ( 3 ) ,  ( 5 ) ,  (22), (18), and i t  does not exceed ' 

A l l  these estimates a r e  va l id  i f  the arguments zI and zII do 

Suff ice  i t  i n  t h i s  connection 
not extend beyond the  domain I Im ( z  -2np) I L Ro -26,where the  estimates 
of g and i ts  der ivat ives  a r e  i n  e f f ec t .  
t h a t  :I I m  z 1 5 Ro -3 6. 

- 162 
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a 2 A  
In part icular ,  - 

dA& 
4 < 8, when1 A1 I 5 828. As,  

,- 

according to  the f i n i t e  increment lennna, 

2 
by the use of the Cauchy a A ( A ~ ,  

a A l a  P 
We s h a l l  estimate 

b A  
d P  

integral  a s  a derivative of -. With I Al I < S27, a s  i t  follows from - 
827 

< 4C. Therefore, i n  c i r c l e  l A l l  I- it i s  always 
2 

"- 

e$, 



i 

i 
d 

7'. Estimate of - I Z(A(A1 ,  p ) )  $ ( A i  ( p ) )  I. This der iva t ive  
, dcc 

e q u a l s  

We s h a l l  estimate the  f i r s t  difference by the f i n i t e  increment lenuua: 
when 1 A 1 ~ 7 ,  A 0  pCNE, IIm Z I  < R 

(here  we by the  use  of the Cauchy i n t e g r a l :  

The second dlfference may be recorded as follows: - /63 

,- 

where the  f i r s t  addend is estimated by the  use of inequal i ty  (3) and 
cI1 

does not exceed 16 I A l l ,  because I $ 1  < 1 (see  2 O ) ,  and the second 

addend by the  use of the  f i n i t e  increment lenuna, and it  does not exceed 

a G  
dA2 

The only new fea tu re  here  is the  estimate of-. To f ind  i t ,  w e  used 

t h e  expression f o r  a second der ivat ive obtainable from the  Cauchy 
i n t e g r a l  : 

A 0  
wi th  IAl I-, t h e  only requirement f o r  which is ,  as we s a w  i n  4", the  

2 
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fulfillment of the inequality 11111 < 827,  
estimates, we find: 

Comparing all the three 

We finally get: 

d 
aLc 

8" .  Estimate of -61 ( 2 ,  p,A(A1, p ) ) .  It will be easier for 

us to begin by examining the function of z, p andAl, and not of z, p ,  A. 
We have : 

where 

The first two brackets in the right part of (33) we shall estimate as 
in 5": 

as 

ZIU - 21 = Ai + %(z, p, A) - 8 ( 2 ,  p, A* (p)) 

and, in view of estimate (22) '95,  

Analogically, 
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where the  mul t ip l i e r  - i s  estimated by the  use of condition 3) la,”: I 
1- 11 and estimate (22 ) ,  bearing i n  mind t h a t  C <1. 

d 
t o  estimate - (zIII - zI). 

ac( 

We s t i l l  have 

We have: 

2111 - ZI = A1 + 5 (2, P, A (Al ,  PI) - 65 (2, CC, G (P)). 
I n  view of estimate ( 3 2 ) ,  we f ind:  

28 r where 1A11 S , p E NK. 

Thus , 

Comparing the  estimates of a l l  three addends i n  the  r i g h t  p a r t  of 
equal i ty  (33)’  w e  f ind :  

28 A l l  these  estimates a r e  made on the assumption t h a t  I All IS , p EN: 
and z z do not extend beyond the  band I I m  ( z  - 2 7 4  I 5 Ro - 28 where I’ I11 
lennna 10 i s  i n  e f f e c t .  A l l  t h a t  is needed f o r  t h i s ,  f o r  example, i s  
t h a t  I I m  z I s R 0  -4 8, because then 

d z  
9 ’ .  Estimate of-. The function of g ( z ,  p )  is  defined when 

dcc 

I Im (z - 2np) I <Ro - 28. 

That means t h e  following function i s  a l s o  defined i n  the  same 
band : 
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A s  i n  the  mentioned band Ig ( z ,  p )  I 5. 6 [see (6) , (17)] , t h e  
shape of t ha t  band, a t  z - @ , w i l l  contain the  band 

which, when z + $ ,  changes t o  a domain containing the  band 

It follows from 5.1 and 7.4 t h a t  

According to  inequal i ty  (18) and conditions 4) and 5) of le- 11, 

so t h a t  by using estimate (23), we get :  

wi th  I Im ( z  - 277p) s R 0  - 2 6, p 6 Ng and, pa r t i cu la r ly ,  a t  

I Im (cp - 2np) I <Ro - 36. 

t o  5.1, 

The function of z (4, p )  is defined when IIm (4 - 27rp)ls Ro - 3 6 ,  

PEN;, and i f  

Im(z - 2np) I \<I?,, - 48, 

then f o r  t h i s  z there  e x i s t s  such q5 t ha t  z n z  (4, p )  and 

I Im (cp - 2np) I < Ro - 36. 
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. 

on the  assumption t h a t  I I m  2 n p  I-< Rg - 5 6, t h a t  i s ,  t h a t  2 n r ~  Rg - 5 6 .  
t h i s  domain 

I n  

where, as i n  8 " ,  z, p and A1 a r e  considered independent var iab les  i n  the  

ca l cu la t ion  of - . abl 
aCc 

d f1 a8 
We s h a l l  use the  Cauchy i n t e g r a l  t o  estimate- and -. 

d z  d z  
Digressing by 8 from the  edge of the band where the  estimates of F1 and 

are known, we w i l l  f i n d  from the est imates  i n  3" and 5" '95: 

a t  : I Im z : l < b - 5 8 ;  applying the estimates of 5", 8' and 9 " ,  w e  f i n d  
from ( 3 5 ) :  

Thus, a t  

' we have: 

because 

5.iCr8<1. K' 
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I n  the  same way, a l l  the other estimates o f l o  - 9" can be expressed 
as i n  (7)  - (16) ,  i n  view of conditions 4) and 5) of leuma 11. 

Lemma 11 has been proved. 

8.3. Proof of theorem 3. Theorem 3 is deduced from.leuuna 11, 
j u s t  as theorem 2 was deduced from the  basic  lemma i n  '$6. 

We s h a l l  s e l e c t  S I >  0 so that  

R 
16n(a+l) 

Let R I R O  and K the  same, which under t h e  terms of theorem 2 ,  pCNK 

A. = S l  

3 

. 26 , Leo < C1 where 

c1= by, (35) 

and C1, S1 a r e ,  respec t ive ly ,  C and 8 of lemma 11. 
inequa l i t i e s  (7) - (16): 

We then ge t  from 

wi th  

Thus,we f i n d  ourselves again under the  terms of lemma 11 but with a radius  
R 

R1 reduced by 7S1 + 8 (n  + 1) . As 

n-1 
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we w i l l  be able to make an n-number of successive approximations, and the 
last one will be effective when 

R 

Omitting the usual proof (see 56)  of the convergence of approxima- 

tions at real p ,  we shall estimate 

If 

then 

It followg from 8.1 that 

aAP' ab, aL\k ab$, +-- -- -- 
air alr %+I alr 

27 
Assuming ck"6k , we find on the basis of lemma 11: 

As 

then I C 9 A p  FI<Bc,. 
Theorem 3 has been proved. 

Remark. The monogenetic aspects of functions gn, Fn, 4n,#n could 
be proved, and analogical estimates obtained, in the same way. 
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PART 11. 

Concerning the Space Representation of a Circle 

The problem of studying the rotation number-equation factor 
dependence was raised by Poincare (1). 
number as a function in mapping space helps clarify the problem of 
typical and exceptional cases. 

The treatment of the rotation 

We shall disignate the angular coordinates of the points on a 
circle by lower-case Greek letters; 4 and 4 + 2n represent the same 
point of a circle. 
letters : 

The transformations will be designated by capital 

We shall discuss only continuous, mutually single-valued direct (orienta- 
tion retaining) transformations. A rotation to angle 8 : 4 -. 4 + 8 could 
serve as an example. 
function on the circle showing how far each point is shifted. We shall 
designate the shift by the same letter as the transformation, only with a 
lower-case letter: 

For every transformation there is a "shift," a 

T : Q + T +  = 4  + t(4). 
Here t(4) represents the shift. 
t(4) = 0. 
correct to the multiple 277; however, having defined t(4) at one point, we 
can extend it unilaterally along the continuity. 

If T is a rotation to zero angle, then 
Generally speaking, the shift, just like 4, is defined only 

If T is a smooth transformation, then t(4) is a smooth periodic /68 
function : 

t (cp + 2 4  = t (cp) .  

We shall designate as 
I 

Tnq = cp + t@) (cp)  

the n-th degree of transformation T. 
that branch t(n) (4) was selected to correspond to branch t(4); 

By this designation it is assumed 

6") (9) = t("--') ( c p )  + t (T-' (9)) (n = 2,3 , . . .). 
Under these terms t(n) 4 is called a displacement of n steps. 
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I 

'99.. The Function of p (T) and Its Level Se ts  

L e t  us examine t h e  spaces 

C ~ c 1 3 d 3  . . . 3 C " 3 . . . 3 C O O I 3 A  

of mutually single-valued d i r e c t  representat ions of a c i r c l e ,  t h a t  is, 
continuous and continuously and i n f i n i t e l y  d i f f e r e n t i a b l e  and a n a l y t i c  
representat ions i n  the  neighborhood of a r e a l  axis with a topology usual 
i n  these  spaces. 
one, and each of the  spaces i s  absolutely dense within the preceding one.* 

Each successive topology is  s t ronger  than the  preceding 

Poincare (1) defined the  ro ta t ion  number 2 n ~ (  for every transforma- 
t i o n  T C C ;  thus the  function p ( T )  is given f o r  space C.  The following 
theorem was suggested by Poincare without proof. 

THEOREM 4. Function c((T) is  continuous a t  every point  C.  

Proof. We w i l l  show t h a t  p ( T )  is continuous a t  point  TO. 

2 
L e t  E > O .  We w i l l  s e l e c t  integer  n3-so t h a t  

E 

Then i n  t h e  following transformation 

each point  w i l l  be s h i f t e d  by more than 2nm. 
were displaced by l e s s  and others  by more than 2 n m ,  t he re  zould a l s o  be 
a poin t  displaced by exact ly  2nm, t h a t  i s ,  s t a t iona ry  f o r  T 

obvious, therefore ,  t h a t  desp i te  the se l ec t ion  of n ,  w e  would have 

Actually,  i f  some poin ts  

i t  i s  
0' 

m 
n p = - .  

m 
n I f  a l l  the poin ts  were s h i f t e d  by less than 2nm, w e  would ge t  p < -  

which again cont rad ic t s  the  se lec t ion  of n. 

*If T is included i n  one of the spaces C1, C2,  . . . , A ,  regardless  of 
which p a r t i c u l a r  space,  w e  s h a l l  T a smooth transformation. 
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It can s imi l a r ly  be proved t h a t  each point  is displaced by n 
s t eps  less than 277 (m + 1). So, 

2nm < t p  (cp )  < 211 (m + 1 ) .  

I n  view of t he  cont inui ty  t (n)  (@), 
0 

2nm + rl < tC'(cp) < 2s (m + 1 )  - rl 
a t  some q 3 0,  and i n  view of the  continuous Tn - T  dependence, t he re  w i l l  
be  8, 0,  such t h a t  

as soon as transformation T d i f f e r s  from To by l e s s  than 8 :  

For  such T 

and, therefore ,  

So, 
proved. 

(T) - p (To):I < E a t  I t (4) - to (4) I < 8 .  The theorem has been 

Remark. Even i n  the  bes t  cases ,  function p(T)  is always continuous. 
L e t  us examine a family of transformations,  f o r  example, 

Th:cp- ,v+h+O,l  sintp, 

where h stands f o r  t he  parameter. 
t inuous funct ion of h. 
but  is re ta rded  by each r a t i o n a l  value of p :  
e n t i r e  segment (hlh2) of h values. 
increases  very rapidly:  

of zero ,  f o r  example, p (Th) increases  a t  l e a s t  as 

As has been proved, p (Th) is a con- 
The function p (Th) increases with increasing h, 

* 

corresponding t o  it is an 
But with h > h 2 ,  the  p (Th) funct ion 

E. G. Bellaga showed t h a t  i n  the  neighborhood 

C G  
-log h 
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- . . . .-... . 

The sets of level p (T) are multiple transformations with the 
same rotation number 2 n p .  Such transformations include the rotation to 
angle 2 n p ,  the transformations converted to a rotation to angle 2 n p  by 
the proper substitution of a variable and, possibly, other transformations. 

The structure of the sets of level p (T) = p  depends a great deal 
on whether p is rational or irrational. 

810. 
m If p (T)=- n' 
Their set is invariant in relation to T and 

The Case of a Rational p 

then, as Poincare showed, Tn has the stationary 10.1. 
points t(n) (a) = 2 n m .  
closed, as a set of the continuous function level t(n) (a). 
a, Ta, * * * ,  Tn-' a are called a cycle. 
be useful to examine the transformation Tn graph and function t(n) (4 )  
graph (see Fig. 7;  that figure shows an outline of the T (@)a$ +-cos 4 

The points 
To investigate a cycle, it would 

1 
2 

This graph, and the forms of 0 in connection w i t h  some iterative T), /70 
cycle is called isolated if in the neighborhood of its points there are 
no points of other cycles. 
(which also means all its points) has an indefinite number of small 
neighborhoods which are transferred into themselves (Russian term: 

An isolated cycle is stable if its point 

1A are shifted by transformation Tn forward 

perekhodyashchiye vnutr' sebya) during the 

when n * +a,, the points of such a neighbor- 
hood gravitate towards the points of a cycle, 
which explains the term. A stable transfok- 
tion cycle T-' is called the unstable cycle T. 
An isolated cycle is semistable forward (back- 
ward) if all the points in some neighborhood 
of the cycle point (except the point itself) 

/ transformation T". It is easy to see that 

(backward), that is, if in this neighborhood 

P) (9) - 2rrm > 0 (< 0). 

The transformation T CC1 is normal, if at the - 

Fig. 7 points of its cycles 

I 
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Obviously, a normal transformation has a finite number of cycles, 
and all its cycles are stable or unstable. It is the roots t(n) (4) - 2nm, 

dt (n) dt(n) < O  that are points of stable cycles, and those with - where 'T d 4  'O 
are points of unstable cycles. 
stable cycles of a normal transformation are intermittent. 

Hence,all the points of stable and un- 

10.2. THEOREM 5. Normal transformations form a set which is open 
in C 1 and absolutely dense i n  A .  

Proof. 1. The points of a cycle are those where t(n) (4) - 2 n m .  

40. Therefore, in the case of a small change t(n) (4) dt(") (4) 
d 4  In them 

together with the first derivative, the function t(n) (4) - 2n m does not 
acquire any new roots, and the old ones do not disappear but are con- 
tinually displaced, and the derivative in the root retains its 
That means that transformation T with such a changed function t 
will be normal. 
first assertion of the theorem has been proved. 

ttf";,, 
In view of the continuous T(") (4) -T dependence, the 

2 .  We will show that there is an analytic transformation with a 
Obviously, such proof will 

Let 

Among the points q5n = Tnqho there is one removed back from 4o by 

cycle in any proximity to any transformation. 
be sufficient for an analytic transformation and analytic proximity. 
T be an analytic transformation with an irrational rotation number, and 
let E > 0. 
less than E ,  for example: 

(the Denjoy theorem). 
tions TA ( A ? , O ,  To =T): 

Let us examine a family of analytic transforma- 

T , . : q - , c p + t ( c p ) + A .  

It is easy to see that, with A E ,  Tn shifts 4o forward: 
A 

rP ( 9 0 )  >, 2nm. 

Hence, in view of the continuity of t(n) ( c $ ~ )  for A ,  it follows that at 
some A < E ,  TA 

A.  
has a cycle +,, T A ~ ~ ~ ,  . . . : 

0- 0 

tC' (To) = 2nm. 
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3. An ana ly t i c  transformation with a cyc le  can be converted t o  
a normal one by an i n f i n i t e l y  small change. 
transformation with no s t a b l e  cycles (which a l s o  means no unstable  
cycles) .  
ana ly t i c  function of A ( + )  which becomes zero a t  these  poin ts ,  having a 
negative der iva t ive  i n  them. The transformation 

Indeed, l e t  T be an a n a l y t i c  

We s h a l l  s e l e c t  cycle  40, 41, . , . , 4n-l and introduce t h e  

with a small e proximate t o  T,  has a t  l e a s t  one s t a b l e  c y c l e 4 0 ,  41 ..., 
+n- 1 
i n i t i a l  transformation T has a s t ab le  cycle.  
a n a l y t i c  function of S(4), with respect t o  T ,  which 

A l l  w e  have t o  do, therefore ,  i s  t o  examine a case i n  which the  
We s h a l l  construct  an 

1) i s  equal t o  zero and has a negative (pos i t ive)  der iva t ive  
a t  t h e  poin ts  of t he  s t a b l e  (unstable) cycles of T; 

2) is pos i t i ve  (negative) a t  the  points  of t he  T cycles  which 
a r e  semistable forward (backward). 

The exis tence of such a function is obvious, as the  number of 
cyc les  of T i s  f i n i t e ,  because the ana ly t i c  function of t(n) (4) - 27lm 
has an i s o l a t e d  root  and i s  not therefore  a n  i d e n t i c a l  zero,  

Let us look a t  the  transformation To: 4 -, q5 + t (4) + O S ( + ) .  
a small 8, t h i s  transformation i s  normal; t he  formal proof t h a t  the  s t a b l e  
cyc les  of T with s m a l l  8 are only somewhat displaced, t h a t  t he  roots  of 
t(n) (4) - 2nm become simple numbers, and t h a t  the semistable cycles 
disappear is l e f t  up t o  the reader. When 8 is small enough, the t rans-  
formation To i s  the  unknown quant i ty .  

With 

Theorem 5 has been proved, 

10.3. The construct ion of a normal transformation can be e a s i l y  

Each arc up 
observed on the  graph of function t(n) (4) - 2nm. 
of t h e  transformation cycles ,  divide the  c i r c l e  i n t o  arcs. 
is  bounded on one s i d e  by p o i n t a  of a s t a b l e  cycle  and, on the  o ther ,  
by poin t  p of an unstable  cycle .  With n -. +a, the  points  of t he  a r c  are 
wound onto the  s t a b l e  cyc le ,  and, with n - - a, onto the  unstable  cycle ,  
t h a t  is, 

I ts  r o o t s ,  t he  points  

lim Tk" (7) = a (mod 2n), lim Tk" (7) = p (mod 2n), 
k-un k-b-co 

where y c ( u ,  p ) .  
theory of d i f f e r e n t i a l  equation, and we w i l l  o m i t  t h e i r  proof. 

Such asser t ions  are wel l  known i n  the q u a l i t a t i v e  
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Thus a topologically normal transformation is characterized by - 17 2 
m 
n three integers: m, n, k, where-is the rotation number and k the number 

of stable (which means also unstable) cycles, Two transformations with 
the same m, n, k are arranged in the same way in a sense that one of them 
can be converted to the other by a continuous change of a variable on the 
circle (that is,T2=cPTlC1, where CI~C). The invariant of smooth change 

in the points of the cycle 
dt (n) (4) 

d 4  
of a variable is also a derivative of 

characterizing the speed of (winding) onto the cycle. 
no other invariants in existence, but I was unable to prove that. 

The set Em of level P E -  in any of the spaces C , ..., 

There are probably 

m 1 THEOREM 6 .  - n n 
A is compendent and consists of 

k 
k d  ii 

The nucleus consists of compendent transformation 

1) a normal transformation nucleus, 8 which I s  dense in 

and open in Cp ( A ) .  

k 
n 

- n 
components E, with k stable and k unstable cycles. 

of the same Em component can be converted to one another by a continuous 

change of a variable; 

2) the boundaries of E, and Em. 

Two transformations - 
k 

n - 

k The Em boundary consists of T - - - 
n n n 

transformations where t(n) (4) - 2 n m  does not change the sign. 
parts F+ (t(n) (4)  - 2 nmlO) and F- (t(n) (4) - 2 nm50) contain semi- 
stable (forward and backward) transformations, are compendent and inter- 
sect along the compendent set of Fo. 
converted by a smooth change of variable to a rotation. 
in the boundary of every E, component. 

Its 

The transformations fromF0 are 
Fo is included 

k 

n - 

Proof, 1. The sets Em,  F+, F- are compendent. To prove it, we - n 
will connect, within the domain of the given set, any transformation 

m 
n T e # (F+, F-) with rotation T2 to angle 2 n- by the arc T, (0 5 8 1 2 ,  - n 

TO=T). 
variable 

..., 4n-l be the cycle of T. By a smooth change of a 
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to 2n-& m (O<l<n-1). Let us --- n we will convert the points $0, . . . , +n-l 
assume that 

This transformation is a transformation of T recorded in the variable Ye, 
and belongs t o  (F+, F-). - n 

Let us examine the line segment connecting TI and T2: /73 

The points 2 n m L  (O<&<n-l) form a cycle TO with all 16852, and the 

To line therefore lies entirely within E, (F+, F-, respectively). 

connectivity has been proved. 

n 
The - n 

k 
n 

2. The set E, of normal transformations with known m, n, k is - 
compendent in any of the C1, . . . , A spaces. 
the transformations To, T2 by an arc To (0 < 9  12) in a selected space. 
We shall follow up by a smooth change of a variable 

To prove it, we will connect 

that will transfer the points of cycles TO to the corresponding points of 
the T2 cycles (which can easily be done as the number of these points is 
the same, and they follow in the same order). 
T1 E TTO V-' affects the points of cycles T2 as a transformation of T2; 
it can readily be seen that it has no other cycles. 

The transformation 

Assuming that 

and 

TO = YeT,K'  (0 Q 8 < I), 
k 

n 
we will connect To with T1 by a curve lying within Em. - 

. 
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Let us look at the following transformations: 
___  

7, (cp) = 0 + t l  (cp), T a m  = 9 .t 29 (9)- 

The functions tl (4) and t2 (4) coincide at the cycle points, and all the 
transformations therefore 

- To (9) = cp + (2 - 0) t l  (cp)  + (0 - 1) 29 (d (1 \<e< 2) 
___ 

have the same cycles. 
k To with T2,1ies entirely within &. 
n 

Consequently, the line To (0 5 0  <2), connecting 

- 

3 .  The proof that the set E: is open and that the set U E: of 
1, - 

n 
m 

normal transformations with an - rotation number is absolutely dense in E, 
n n - 

i a  similar t o  the proof of theorem 5 (points 1 and 3 ) .  

k 

n 
4. If T1, T2c %, it is possible to make a continuous change - 

-1 of variable Y =  4 + "P (4) such that T1 will change to T2 : T ~ U Y T ~  Y 
I:deed, we shall designate the points of the stable cycles T1 as 

. 
. 

I 
a =al), and the points of the i+l' n+l a: (lSL<k, l<i<n, Tlai=a 

1 

unstable cycles T1 as bt (we will use 1 to designate the number of the 
cycle in the sequence on the circumference). 
cycle points on the sib: arc (and that means that the same applies to 

1 
In this case there are no /74 

1 1  every a y k  and +?* arc). 
1 1  

1 1 
1 i Further, let CT and Cr be similarly numbered points of stable 

and unstable cycles T2. The substitution of variable "changes the points 
1 1  1 1  aT, by to cy, q, and we still have to complete the definition of Yon 
the a 3 7  and bYa7 arcs. 

1 1  1 1  
We will select points x and y within the arcs 

1 1  
1 1  1 1  1 
1 1  1 2 a b and cldl. Points Tnx and T"y lie on the same arcs closer t o  al and 

cl respectively. 

(y , T2y) by the homomorphic and direct methods : 

We will use \p to map an arc (x, T"X) onto an arc 
1' 1 

n n n x dy, T1x- T2y. 
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P n Obviously, in the transformations of T1 the image of arc [x ,  Tlx] (and 

arc [y, T,y] in the transformation of T,) will cover the entire arcs n P 
1 le 

.L sib: (1 <i <,n) (as well as all the cidi arcs). We thus define \p (4) on 
1 1  arc TF, TY+"x as T;9TiP. A similar construction is possible on arc a* 

and b-7 
unknown quantity is a simple one, and we will therefore omit it. 

1 1+1 . The proof that the found substitution of a variable was the 
1 1  

5 .  The construction of boundaries. If T(") ($) - 2 n m  
changes its sign, then T is an internal point of G, because with a slight 

change of T 
and T will retain the cycle. 

in the sum of F+ (TC F+, if t(n) (4) - 2 n m z  0) and F-. 
transformation of TCFo=F+ nF- to a rotation, we must change the points 
of one cycle to 2 n ; L  by a smooth change of a variable, and then redefine 

- n 
The boundary of Em is therefore included 

t(n) (+), it will continue to change the sign as before, 

- n 
To convert the 

I I  

the parameter on all the arcs [27rg n' n with the exception of 

one (l=O), - according to formula 

Y (0) =2n; + T-' (q) .  

m 
n A small change of the rotation to angle 27r-may change it to a 

transformation from any E:, just as was done in the proof of theorem 5 

(point 3 ) .  
true for all transformations frTFg, which proves the last assertion of 
theorem 6 .  

- n 
It follows from the previous argument that the same holds 

10.4. It follows from theorem 6 (point 4 of the proof) that 
normal transformations are crude in the sense of Andronov-Pontryagin [lo]. 
Since, according to theorem 5 ,  the set of all normal transformations is 
absolutely dense, no abnormal transformation can be approximate, 

From a topological point of view, normal transformations fill an 

It will be shown in the next paragraph that an ergodic case is also 
overwhelming part of the transformation space - an absolutely dense open 
set. 
typical from the point of view of m,easure. 

/75 
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911. The Case of an Irrational p .  

11.1. Let us examine a set E of an irrational p level. Accord- 
in the C2, ..., CC 

ing to the Denjoy theorem, every transformation of T E E  
A spaces can be changed to a rotation to angle 2np by a continuous 
change of a variable. 
to a rotation by a smooth change of a variable. 
of such transformations by Ecp (and by EA* general designation E'). 

P 

But we are interested in a transformation changing 
We will designate a set 

cc P' P 

THEOREM 7. lo. The set E A is absolutely dense in E according 
P P ,  

to topology C. All sets E' are cornpendent. P 

m K 
2 O .  If p is such that I p - - I  >-7 with any integers m and 

l"1 
n+ 0 ,  the $ set is open in E according to topology A. 

P' 

Proof, 1'. Let To denote a rotation to angle 2 n p ,  and let 
TIE E;, Then there exists a smooth Substitution of a variable 

such,that T1 = YTo Y-'. The substitution of 

changes To to To E YOTO YC'; thus the line To, connecting TO with TI, lies 
entirely in E' The connectivity E' has been proved. P' P 

A 
P We will construct in E a transformation T* in a prescribed 

neighborhood TEEp. According to the Denjoy theorem, there is a con- 

We will con- 
struct an analytic change of Y* (+) by variable (+) so that Y and¶J*, 
Y-1 and Y*-l are little different in metric C. Then T* = P q g  Y*-l will 
approximate T in metric C and belong to EA 
fully proved. 

tinuous change of variable Y (+)> such that T = "TO Y- 1 . 

The assertion 1" has been 
P O  

A 
2 O .  The fact that the set Ep is open in EpnAl follows from 

theorem 2 .  
of rotation TO in E A A  is included in E:. 

Obviously, all that has to be shown is that some neighborhood 
The transformation TCEpnA 

P 
--. may be written as 
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of transformation To is defined by the R, c and the neighborhood U 
inequality I F(4)I < C with I Im 41 < R. 
4 . 3 ) ,  the given R is accompanied by a C such that all transformations 
TCUR, 
proved. 

But in view of theorem 2 (see point 

Theorem 7 has been n E p  are analytically reduced to a rotation. 

11.2. Approaching the problem of typicalness from the point of 
view of measure (see [ 8 ] ) ,  we discover the lack of a sensible measure in 
functional spaces, and are therefore compelled to confine ourselves to 
finite-dimensional spaces. 

Let us examine a two-dimensional space of analytic transformations /76 

where, given IIm zl  < R ,  I bl <bo, F ( z ,  b) is an analytic function 
satisfying inequality I F ( z ,  b)l < LI bl . 

THEOREM 8. 

mes E,, 
limr = 1, 
0 4  -ne 

where E o  is a set of plane points (ab), a6 [0, 2 V I  , b e  1.0, 81 , such 
that transformation Aab changes to a rotation by an analytic substitu- 
tion of coordinate z .  

Proof. 1. Let us take a look at set Mk, a compact set.of points 
0 < p < 1, that satisfies inequality 

with all m, n>O. 
C O  C (K, R) > 0 and an analytic function A(b, p )  for b such that the 
transformations A2np + A (b , p ) ,  b at p c M p  I bl < C can be changed to a 

rotation by an analytic change of the parapeter: (2np + A (b, p ) ,  b) 

We will use % (b) to designate the set of pointsp + v, p F % ,  

with a fixed b. Then the transformation I+, : p 4 p + 

According to theorem 2, for any p c y I (  there exists 

Eo* 

will change 2n 
to set % (b). 
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E We will assume that E > O ,  and select K > O  so that mes M2K>1-- 3 
(this is possible, according to lemma 1 9 2 ) .  
b value is small enough, the following inequality is valid 

We will show that when the 

mes I M K  (b)  > 1 - e, - 
4 

and its immediate result will be theorem 8,  because it is obvious that 

0 

2nO >, mes EO > 2n 1 mes M - (b)  db.  
0 2 .  

2. Shown in 9 7  is a perfect set NK 0 = NK, M 2 K . I N K c  %. 
- 
2 

Obviously, all that has to be shown is that when b is sufficiently 
Zmall 

mes N K  (b) > 1 -e. 

(Inasmuch as K > O  is fixed, we will now omit index K: NK= N.) 

According to theorem 3 ,  the representation % : N - - . N  (b) is the 
limit of a uniformly converging sequence of instantaneous representations 

We will show that for any E >  0 there will be found a b ( E )  such 
that, with b c b ( E )  and any n 

-_ 
mesD;(N)>i-e. (3) 

In view of theorem 3,  there will be found b ( E )  such that with all n, m 
b c b  ( E ) ,  P E N  the following inequality will be valid 

n 
that is, in the representation of Db, N can be mapped almost without 
expans ion. 

We will prove that this b ( E )  was the unknown quantity (the index 
n will be omitted everywhere, as we are now dealing with a fixed n). Let 

..__ 
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E 
b<b ( E ) .  

S > O ,  such that 

By the definition of monogeneity, for every - there will be 
3 

according to selection b ( E ) .  

3. We will divide N into nonintersecting (but measurable) 
.r L 

parts Ni, 

be their images in the transformation D 

distance between two points Ni may be reduced, according to ( 4 ) ,  not 
2 E  more than 1- - times, then 3 

u 
i= 1 

Ni = N ,  each with a diameter less than 8, and let Ni (b) 

n 
b' 

Since in this transformation the 

f 
mes N (b) > (I - +) mes N', 

hence; 
L L - 

2e 2 mes N'(b) > (1 - T) 2 mes N'. 
i= 1 i=1 

Thus, 

and, as 

we get: 

mes N > 1 - YJ, e 

I 

mes N (b)  >(1 - $)(I - %) > i -e ,  



and inequality (3) has been proved, 
because the following is valid, 

Its corollary i s  inequality (2), 

LEMMA. Let E c [ 0 ,  11 be a perfect set, fn the sequence of its -_ 
continuous representations on F, G. 10, 11 uniformly converging to 
representation f : E -, F, and let 0 5 A < 1. 
all n, then mes F 2 1 - A .  

If mes Fn > 1 - A ,  with 

Proof. Let E > 0. Let us examine set D E  of the contiguous 
intervals F exceeding E .  
with n large enough, these intervals will differ very little from the 
corresponding contiguous intervals Fn. 
with any n, is less than A ,  as Fn > 1 - A .  The total length of DE 
therefore does not exceedA. 
the entire addition to F will not exceed A either, which is what had 
to be proved. 

There will be a finite number of them and, 

The total length of the latter, 

In view of the arbitrary nature of E < 0, 

/78 

n n 
Assuming that E = N, fn = I),,, Fn = % (N) , A = E ,  we will get 

inequality (2) from ( 3 ) .  Theorem 8 has been proved. 

512. Example 

Let us examine a two-dimensional space of circle representations: 

Fig. 8 

With E = 0, we get Ta,0, a rotation to angle a. With I E I < 1, 
formula (1) defines a direct one-to-one continuous representation of a 
circle. 
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With re1 I 1, t h e  s e t s  of t h e  l e v e l  of t he  continuous funct ion 

P (a, e) = P P a ,  e) 

can be s tudied  from two angles.  
(a, E )  of the  plane where p i s  ra t iona l ;  t he  boundaries of such regions 
a r e  found i n  t h e  semis t ab i l i t y  conditions of the  cycle.  
po in t  (a, E )  i s  included i n  the  set  of l e v e l  p = 0, i f  t h e  equation 

F i r s t ,  i t  is  poss ib le  t o  look for poin ts  

For example, 

cp = cp+a + ecoscp 

has a real so lu t ion ,  t h a t  i s ,  t h e  s t r a i g h t  l i n e s  a P + E serve as the  
boundary of region p = 0. 

m regions p = -. They approach t h e  s t r a i g h t  l i n e  E = 0 with tapering n 
prongs (Fig. 8): 

order  of tangency, 

curves as t h e i r  boundaries 

The same method can be usez t o  f i n d  the  

m 
n the  t w o  boundaries of the p =-have an (n - 1)- th  

1 = ~ r e g i d n s ,  f o r  example, have these  The p = 2 and p 1 

a = - + f e a f x e s + O ( e 4 ) .  2n fl fl 
3 (3) 

Hence w e  ge t  t he  approximate formulas which are s u i t a b l e  a l s o  f o r  not 
very small E : 
71 & 0.23237.. . . when E = 1, formula (2) produces 7~ 2 0.25 ins tead  of 

The second approach t o  a def in i t ion  of t he  s e t s  of l e v e l  p (a, e )  - /79 
i s  through t h e  use of the  Newtonmethod of the  approximate f inding of 
t h e  l i n e s  of i r r a t i o n a l  l e v e l p .  
we g e t  an approximate equation of the  l e v e l  l i n e s  

' 

After  two s teps  by t h e  Newton method 

which i s  q u i t e  e f f e c t i v e  when the cotangents a r e  not la rge .  
provides an  idea of t h e  nature  of t he  approximation convergence and t h e  
correspondence between t h i s  r e s u l t  and the  preceding one ( t h i s  f i gu re  
shows a graph of funct ion p (a)  = p (a, 1); the zero approximation of 
t h e  Newton method i s  ind ica ted  by 0 ,  the  f i r s t  approximation by I, and 
the second by 11; t h e  horizontal  sec t ions  of p = 0, 2 
independently, according t o  formulas (2), (3)).  With number a,  ind ica ted  
i n  formula ( 4 ) ,  the  change of var iable  

Fig.  9 

a r e  defined 
2' 3 



where Fp - E  4 . 
Remark. The "capturing" phenom- 

enon, corresponding to zones with rational 
rotation numbers, is well known in the 
theory of oscillation. 

The transformation (1) and diagram 
in Fig. 8 describe the operating condi- 
tions of a generator of relaxation.osci.1-- . 
lations synchronized with sinusoidal 
impulsee (see [36]). Another problem of 
a similar type, also connected with the 

changes transformation (1) into transformation 

9+-*+fJv+F,(* ,  e, PI, 

F i g .  9 

representation of a circle, is reviewed in the book [37] (pp. 221-231). 

913. Concerning Trajectories on a Torus* 

13.1. Let the following differential equation 

be given on the torus x, y E (0, 277), and let the usual theorem terbs of 
existence and uniqueness of solutions be fulfilled. 
trajectory runs through each point yo of meridian x = 0 

The following 

Y(S ,  Yo), Y(0, Yo) = Yo. 

Following Poincare, we will compare each point yo with point y1=y (2n, yo). 
We will then get a direct one-to-one representation of circle x = 0 which 
is continuous and, with a fairly smooth (or analytic) right-hand part, 
is smooth (or analytic); but if the function F (x, y) differs little 
from a constant. this representation will be close to a rotation. All 
the characterisiics of tiansformation y1 (yo) reflect corresponding 
characteristics of the solution of equation (l), and we must only formu- 
late the results of the preceding paragraphs in new terms. 

*See [ 11 - [ 4 1 ,  [ 141, [ 191 and [ 201. 

/80 

. 
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If the representation y1 (yo), made by the substitution of #(y) 
for variable y, changes to a rotation to angle 2 n p ,  it would be natural 
to extend such a substitution to the entire torus, indicating at point 
(x, Y (x, Yo)) 

Obviously, if 4(y) is a smooth (and correspondingly analytic) substitu- 
tion, the change of +(x, y) on the entire torus will be the same. The 
trajectories will be indicated in coordinates x, 4 as 

which is why they speak of such a substitution as rectifying the tra- 
jectories. A.  N. Kolmogorov 1141 achieved an analytic rectification in 
the case of an analytic integral invariant. 
of theorem 2 ,  that if function F (x, y) is analytically close to a 
constant, and if rotation number p fulfills the usual arithmetical terms, 
the trajectories can be rectified analytically. 
an,analytic integral invariant in the dynamic system 

We can affirm, on the basis 

Hence the presence of 

(the invariant measure is the area in coordinates x, 4). 

On the other hand, it is possible, as in the example of Q1, to 
construct such an analytic function F (x, y) that the invariant measure 
of the system is not absolutely continuous in relation to area dx dy, 
even though the rotation number p is irrational and the system ergodic.* 

13.2. Let us assume the following system 
equations 

on the torus with an analytic right-hand part. 
equation 

Let us take a look at 

...- 
Wootnote to proofreading. The contrary assertion that appeared in 
abstract [41] during the printing of this work is erroneous. (p. 8 0 )  

, 
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which has the same integral curves as the system. 
'rectified, according to point 13.1, the system will look like this i n  
the new coordinates 

If they can be 

where A' (x, 4) - A (x, y(x, 4)). 

invariant 

following system (with the usual assumptions ofp) 

This system has an analytic integral 

and publication [14] shows how t o  change it to the 1 
A' (x, 4)'  

rdu ' dv x = l ,  -- dt - P  

by an analytic change of variables, 

A contrary possibility in connection w th bot.. an equation and a /81 
system is offered by the availability of limit cycles [20]. 
of the space of the right-hand parts of system (1) into sets of the 
rotation number level, the segregation of rough systems and the discus- 
sion of typicalness are similar to those reviewed in 959-11. 
that: 

The division 

It appears 

1. The predominant topological case is that of normal cycles 
The appropriate set of right-hand parts i s  ' (which is also acrude case).* 

4 open and absolutely dense; but this case cannot occur in systems with an 
integral invariant. 

2. The ergodic case (of an irrational p )  is also typical, if 

For systems with an analytic integral invariant this case 
the evaluation of typicalness is based on measures in finite-dimensional 
subspaces. 
is predominant. 

13.3. In a multidimensional case lacking an integral invariant 
the rotation number is not defined. It is nevertheless possible to make 
the following assertion on the basis of the remark in 4 . 4 .  

LEMMA 9. Let i; = (pl, . .., pn) be a vector with incommensurable 
+ 

components, such that with any integral vector k 

*It is asserted in abstract [ 191, judging from 1211, that the necessary 
and adequate condition for a crude case is the presence of one stable 
cycle. That is incorrect. (p .  81) 
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Then there exists such E ( R ,  C ,  n)>O that for any analytic vector field 
? (z) on the torus (that is, such that 3 (G + 2&) = ? (2)) , and a suf- 
ficiently small I i? (;)I < e with TIm <R, there will be found a vector 
a for which the differential equation system 

dx + ' +  

; i i - = F ( 5 ) + ; 2  

is changed to 

d z  - 
-&- = 2np 

by an analytic change of variables, 

'$14. The Dirichlet Problem for the Equation of a 
Vibrating String 

14.1. 
directions, that is, its boundary r intersects each of the straight lines 
x = c ,  y E c at not more than two points. 

The Dirichlet problem for the e q u a t i o n 2  = 0 on D is to find 

Let D be a region on a plane which ie convex in coordinate 

a2 
ax ay 

on it the function u (x, y) I 4 ( x )  + Y (y) which is converted to 
given function f (a) ( a e f )  : ulr = f. 

in a 

In this connection, f,+, V ,  r may be expected to meet various 
requirements in regard to smoothness, analyticity, etc. 

When D is a rectangle 0.5 x + y SA, 0 y - x 6 t, it is con- 
venient to change to the coordinates e = x + y, T =  y - x, Then our 
equation is found to be the equation of a string, and the problem can be 
interpreted as finding the motion of a string by two instantaneous 
photographs and the end-point motion. 
(standing waves) it is clear that when 1 and t are commensurable, the 
problem is not always solvable, and if it is, it cannot be solved by a 
unique method. 
[22], [23], 151, [ 241, [ 171, [ 281); difficulties of a similar order 
are encountered also in the solution of certain other problems (see 

From physical considerations 

This problem is dealt with in a number of abstracts (see 

[251-[271).  

14.2. Uniqueness theorems (see [ 5 ] ) .  We shall compare the 
boundary rwith some of its representations (see Fig. 10). 
transformation- changing point a f f  to point PaEr with the same coordi- 
nate x; let Q be a transformation changing point a E to point QaEr with 
the same coordinate y. These transformations are continuous, one-to-one 

Let P be a 
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Fig. 10 Fig. 11 

and change the orientation of the contour line. We will designate 
QP = T. Obviously, 

T is a direct homomorphic representation. 

THEOREM 10 (see [SI). If the contour line of is such that for 
some point aoE r the set Tnao (n 
on r, then the Dirichlet problem for 
tinuous solution. 

0 ,  1, 2, . . .) is absolutely compact 
cannot have more than one con- 

Proof. The solution u (x, y) = 4 (x) + 'If (y) defines the func- 
tions +(x), V(y) correct to a constant. We will show that, by the 
terms of the theorem, a knowledge of +(x) at one point aCr makes it 
possible to define 4 (Tna), 'P (Tna) in all points Tna (n = 0 ,  1, . ..) 
(we write 4 (a) and 'P (a) to designate +(x) and V(y) where x, y are 
the coordinates of point aer). 

Knowing 4 (a) , it is easy to find 

as the abscissas at points a and Pa are the same. 
to define 

It is then possible 

by using the coincidence of the ordinates of points Pa andTa. 
shall use the same method to get+, \p in all points TnPa, Tna. 
form an absolutely compact set on r, and the continuous functions coin- 
ciding at these points therefore also coincide everywhere on r. 
thenrem has been proved. 

Later we 
They 

The 
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When D is a rectangle 0 5 x + y 1, 0 y - x st, transformation /83 
T is in effect a rotation. Namely, if the following parameter is intro- 
duced in the contour line of r, 

the length read off from point 0 to a along the contour line 
then our transformation 

T :  T6- 6 + - 2nt 
t + l  

is a rotation (turn) to angle 2 7 7 m .  
introduce a parameter in r so that the transformation is recorded in it 
as a rotation. 
a circle, The straight lines running in coordinate directions will be- 
come two families of parallel lines, with two straight lines of different 
families forming an angle vp which is not necessarily a right angle, 
Obviously, when the ellipse is subjected to transformation T, the circle 
will rotate to angle 2 r p  (Fig. 10). 

If D is an ellipse, it is easy to 

Namely, we will take an affined mapping of an ellipse on 

If is a curve with a limited curvature, then T is a twice dif- 
ferentiable transformation; it follows, according to the Denjoy theorem, 
that when the rotation number p of transformation T is irrational, the 
set Tna is absolutely compact on r. Hence 

THEOREM 11 (see [5], [24]). If has a limited curvature and p is 
irrational, the Dirichlet problem can have only one continuous solution. 

Remark. Using the theorem of the density point, it is easy to 
show that, by the terms of our theorem, there can be only one measurable 
solution. On the other hand, with p being irrational, the method of 
proving theorem 10 enables us to construct any number of solutions, but 
mostly immeasurable ones. 

14.3. A Thorough Investigation of a Rectangle. 

THEOREM 12 (see 1331, [ 171). Let a given function f (e), 
differentiable p + E times along the boundary, be on boundary r of 

satisfying inequality p - - 
the Dirichlet problem with the mentioned boundary function has a.p - 1 
times differentiable solution, and is correct in relation to f (6). 
f is anaiytic, t hc  s ;o lu tLm with the same p is analytic. 

with any m and n and some K > 0, I :l>m3 
If 
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In the case of some irrational p ,  regardless even of the 
analyticity of f (e), the solution may be found to be 

1) only continuously differentiable, 

2) differentiable k times but not k + 1 times, 
3) only continuous, 

4) discontinuous, 

5) immeasurable. 

Proof. If 

then, inasmuch as +(e) depends only on x, and V ( 6 )  only on y, we have: /84 
~p (6) = ~p (- 21tp - O), bn = b-nefn*nk , 
$ ( + ) = $ ( - * ) I  Cn C-n. 

- 
As f (6) is real, and therefore an= am.,, we find from inequality 

f (a) = 4(6) + I(+): + 

or 

Now that a formal solution has 
completed by a verbatim repeat of the 

been found, the proof can be 
reasoning of 42." 

Remark. Formula (1) shows that by breaking the series it is 
possible, in all cases of p ,  to construct an "approximate solution" 
whose degree of. approximation is the higher, the less commensurable & and 
t are, With a rationalp, the approximation is not higher than the side 
defined by p ,  and when I and t are highly iuuneasurable, we have theorem 

qootnote to proofreading. In an article published by P. P. Mosolov 
1421, when this article was at the printer's, an assertion similar to 
theorem 12 is proved with reference to any linear differential equation 
with constant coefficients where the orders of all derivatives are 
even-numbered. 

I I 
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11. 
in this sense [28]. 

N. N. Vakhania refers to the correctness with respect to the region 

We can state that the dependence of the solution on p is monogenic 
(see 9 7 ) .  

14.4. A general case, If boundary D is such that transformation T 
can be represented as a rotation in a parameter which is a smooth function 
of a boundary point, it is obvious that all the reasoning of 14.3. is ap- 
plicable to such a contour line, and in the case of a "sufficiently 
irrational" p ,  the Dirichlet problem has a smooth solution. 

The ellipse for which a parameter was constructed in 14.2. can 
serve as an example. 
regardless of the smoothness of r ,  it is impossible to guarantee that 
the parameter.(existing according to the Denjoy theorem), in which 
transformation T becomes a rotation, will be smooth. 
that by a continuous change of variables x, y of the x -., u (x) and 

(y) type ("conserving equation-= O"),  it is possible t o  map a Y - V  

region, for which T has an irrationalp, onto a rectangle or ellipse with 
the same p .  But this change, generally speaking, is only continuous, 
and it can change a smooth boundary condition on a curve to an uneven con- 
dition on an ellipse. 

Generally, however, given an irrational p ,  and 

F. John [ 5 ]  showed 

a 2, 
ax ay 

We should point out that if r is an analytic curve, then P and Q, 
as well as T and Tn, are analytic representations. 
curve analytically close to an ellipse, the transformation in the suitable 
parameter will be analytically close to a rotation. 
from theorem 2 that all the curves for which pCMk are similar to an 
ellipse, in relation to the solvability of the Dirichlet problem, are at 
any rate fairly close to an ellipse. 

But if is also a 

It therefore follows 

The other theorems dealing with the representation of a circle 
can be formulated in these terms in exactly the same way. 
if transformation T has a cycle, the Dirichlet problem with a zero 
boundary condition has a nonzero solution (at least a piecewise constant 
solution; for more details see [24]). 
equation of a vibrating string is a problem of eigen-values for S. L. 
Sobolev's two-dimensional equation 

In part.icular, /85 

The Dirichlet problem for the 

(see [ 241, [ 271 , [ 291, [ 301). The spectrum includes the A -values for 
which the representation TA, built on curve rA, has a cycle (here the 
curve r, subjected to a A-dependent extension, is designated by rA). 
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