WARNING!

The materials and works contained within EPE Online — which are made available by Wimborne Publishing Ltd and Maxfield & Montrose Interactive Inc — are copyrighted. You are permitted to download locally these materials and works and to make one (1) hard copy of such materials and works for your personal use. International copyright laws, however, prohibit any further copying or reproduction of such materials and works, or any republication of any kind.

Maxfield & Montrose Interactive Inc and Wimborne Publishing Ltd have used their best efforts in preparing these materials and works. However, Maxfield & Montrose Interactive Inc and Wimborne Publishing Ltd make no warranties of any kind, expressed or implied, with regard to the documentation or data contained herein, and specifically disclaim, without limitation, any implied warranties of merchantability and fitness for a particular purpose. Because of possible variances in the quality and condition of materials and workmanship used by readers, EPE Online, its publishers and agents disclaim any responsibility for the safe and proper functioning of reader-constructed projects based on or from information published in these materials and works.

In no event shall Maxfield & Montrose Interactive Inc or Wimborne Publishing Ltd be responsible or liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or any other damages in connection with or arising out of furnishing, performance, or use of these materials and works.
Projects and Circuits

WIND-UP TORCH by Thomas Scarborough 724
An occasional twist of a knob provides light without battery power

PIC DUAL-CHAN VIRTUAL SCOPE by John Becker 752
A virtual oscilloscope interface for monitoring audio frequency signals via your computer

FRIDGE/FREEZER ALARM by Owen Bishop 764
Another Top-Tenner - audibly warns of imminent money loss!

INGLENUITY UNLIMITED hosted by Alan Winstanley 766
Anti-Tamper Loop Alarm; Doorbell Extension and Entry/Exit Indicator; Mini Photo Slave Flash; Colour TV Tester Add-On

EPE MOODLOOP FIELD STRENGTH INDICATOR by Andy Flind 781
Check that your Moodloop’s loop is working, and find the sources of 50Hz mains fields

Series and Features

INTERFACE by Robert Penfold 734
Digital and Analogue Temperature PC Interface

TEACH-IN 2000 – 12. 7-Segment Displays, L.C.D.s, Digital-to-Analogue, Miscellany by John Becker 736
Concluding the 12-part series providing essential info for the electronics novice, with breadboard experiments and interactive computer simulations

NEW TECHNOLOGY UPDATE by Ian Poole 744
IBM proposes a microprocessor that performs one quadrillion operations per second

CIRCUIT SURGERY by Alan Winstanley and Ian Bell 747
Testing transistors the quick and easy way; Keep Soldering On; Earthy Feelings

PEAK ATLAS COMPONENT ANALYSER REVIEW by Andy Flind 770
Testing a surprisingly powerful semiconductor analyser

NET WORK – THE INTERNET PAGE surfed by Alan Winstanley 774
Multiple Choice Mail; Problems Addressed

Regulars and Services

EDITORIAL 723
SHOPTALK with David Barrington 728
The essential guide to component buying for EPE projects

NEWS – Barry Fox highlights technology’s leading edge 730
Plus everyday news from the world of electronics

ELECTRONICS VIDEOS Our range of educational videos 746
READOUT. John Becker addresses general points arising 761

CD-ROMS FOR ELECTRONICS 772
Electronic Projects; Filters; Digital Works 3.0; Parts Gallery + Electronic Circuits and Components; Digital Electronics; Analogue Electronics; PiCtutor; Modular Circuit Design; Electronic Components Photos

BACK ISSUES Did you miss these? Some now on CD-ROM! 776
ELECTRONICS MANUALS 778
Essential reference works for hobbyists, students and service engineers

DIRECT BOOK SERVICE 785
A wide range of technical books available by mail order

PRINTED CIRCUIT BOARD AND SOFTWARE SERVICE 788
PCBs for EPE projects. Plus EPE software

ADVERTISERS INDEX 792

NOTE NEW PUBLISHING DATE
November issue on sale Thursday October 12

© Wimborne Publishing Ltd 2000. Copyright in all drawings, photographs and articles published in EVERYDAY PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.

Our November 2000 issue will be published on Thursday, 12 October 2000. See page 715 for details

Readers Services * Editorial and Advertisement Departments 723

Everyday Practical Electronics, October 2000 713
NOTE NEW PUBLISHING DATE
NO ONE DOES IT BETTER

NEXT MONTH
FREE! GIANT DATA CHART
– BIPOLAR TRANSISTORS –

PAST, PRESENT AND PINOUTS!
AROUND 500 TRANSISTORS AND THEIR CHARACTERISTICS
COVERS NPN, PNP, SILICON, GERMANIUM, EQUIVALENTS, COMPLEMENTS, FUNCTIONS AND OUTLINES. TABLING VOLTAGE, CURRENT, FREQUENCY AND POWER FACTORS
GIANT SIZE – 57cm x 77cm.
THE IDEAL PINOUT PIN-UP FOR ANY WORKSHOP OR CLASSROOM!

SAMPLE AND HOLD MODULE
An add-on unit for your multimeter which works equally well with analogue or digital types. As the name suggests, its function is to sample a changing voltage and hold it to give you time to read its value. Reading a changing voltage is difficult with a digital meter because the final two or three figures of the reading may be changing too fast to be seen.
Typically, the meter takes several samples per second so it is not possible to read each sample individually. We can only read a value when it is reasonably steady, perhaps varying only in the least significant digit. An analogue meter is easier to read with a rapidly changing voltage, because the eye can average out the changes over a small interval of time. There is also the inertia of the needle and coil unit to help steady the readings. Whether you have a digital or analogue meter, there are occasions when you might want to sample and read the voltage at a precise instant, or to sample it and read it at regular intervals of time. This project helps you do this.

OPTO-ALARM
An optically balanced light alarm for general purpose security applications. The alarm is triggered by increasing light level. Alarm activation occurs when the light level increases rapidly. Varying light levels from cloud movement, 50Hz mains flicker from fluorescent lamps, dusk to dawn light changes and total darkness situations, will not cause false alarms.
The Opto-Alarm incorporates an exit delay indicated by a green l.e.d. to allow departure from the protected area, and to allow time to set the system for required operation, a red l.e.d. indicates any triggering whilst setting up. When time-out occurs, the exit l.e.d. extinguishes and further triggering will activate a warning tone, followed by full siren activation for a pre-set period, after which the alarm will fully reset until activated further.

NOTE NEW PUBLISHING DATE
NO ONE DOES IT BETTER

Everyday Practical Electronics, October 2000

DON'T MISS AN ISSUE – PLACE YOUR ORDER NOW!
Demand is bound to be high

NOVEMBER ISSUE ON SALE THURSDAY, OCTOBER 12
NEW PRODUCT FEATURE

Sound Effects Generator

Create an almost infinite variety of interesting/mental sound effects using three 9V batteries. Various effects include: whoop, whoop, whoop, bomb, gunfire, drums, motor noise, telephone ringing, all at great volume. Control volume using a potentiometer. Only 30x25x35mm. £2.95.

Audio to Light Modulator

Control electronic & electro-optical devices from an audio carrier. Ideal for making some cash? Well this could be just what you need! £5.00.

Liquidity Sensor Alarm

Set liquid levels & simply replace the water relay when a leak occurs. £10.95.

INTRODUCTION TO L.C.D.s AND MORE!

A comprehensive 68-page manual with extensive hands-on tutorial series are provided. £14.95.

PROJECT KITS

Our electronic kits are supplied complete with all components, high quality PCBs & clear instructions. postage only £3.50.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1019KT</td>
<td>£11.95</td>
<td>2 CHANNEL RELAY BOARD</td>
</tr>
<tr>
<td>3057KT</td>
<td>£9.95</td>
<td>12-BIT PC DATA ACQUISITION/CONTROL UNIT</td>
</tr>
<tr>
<td>3058KT</td>
<td>£9.95</td>
<td>1-WATT FM TRANSMITTER</td>
</tr>
<tr>
<td>3059KT</td>
<td>£9.95</td>
<td>4-WATT FM TRANSMITTER</td>
</tr>
<tr>
<td>3060KT</td>
<td>£9.95</td>
<td>2-WATT FM TRANSMITTER</td>
</tr>
<tr>
<td>3061KT</td>
<td>£13.95</td>
<td>30A15 £13.95 UNIPOLAR STEPPER MOTOR DRIVER</td>
</tr>
<tr>
<td>3062KT</td>
<td>£13.95</td>
<td>3063KT £8.95 2 CHANNEL UHF RELAY SWITCH</td>
</tr>
<tr>
<td>3064KT</td>
<td>£13.95</td>
<td>1013KT £39.95 AUDIO TO LIGHT MODULATOR</td>
</tr>
<tr>
<td>3065KT</td>
<td>£13.95</td>
<td>3066KT £5.95 1 WATT MICRO/MINIATURE FM TRANSMITTER</td>
</tr>
<tr>
<td>3067KT</td>
<td>£13.95</td>
<td>3007KT £5.95 1 WATT FM TRANSMITTER</td>
</tr>
<tr>
<td>3068KT</td>
<td>£13.95</td>
<td>3069KT £8.95 4 WATT FM TRANSMITTER</td>
</tr>
<tr>
<td>3070KT</td>
<td>£13.95</td>
<td>3071KT £8.95 2 WATT FM TRANSMITTER</td>
</tr>
<tr>
<td>3072KT</td>
<td>£13.95</td>
<td>3073KT £8.95 1 WATT FM TRANSMITTER</td>
</tr>
<tr>
<td>3074KT</td>
<td>£13.95</td>
<td>3075KT £8.95 4 WATT FM TRANSMITTER</td>
</tr>
<tr>
<td>3076KT</td>
<td>£13.95</td>
<td>3077KT £8.95 2 WATT FM TRANSMITTER</td>
</tr>
<tr>
<td>3078KT</td>
<td>£13.95</td>
<td>3079KT £8.95 1 WATT FM TRANSMITTER</td>
</tr>
<tr>
<td>3080KT</td>
<td>£13.95</td>
<td>3081KT £8.95 4 WATT FM TRANSMITTER</td>
</tr>
<tr>
<td>3082KT</td>
<td>£13.95</td>
<td>3083KT £8.95 2 WATT FM TRANSMITTER</td>
</tr>
<tr>
<td>3084KT</td>
<td>£13.95</td>
<td>3085KT £8.95 1 WATT FM TRANSMITTER</td>
</tr>
</tbody>
</table>

TELEPHONE SURVEILLANCE

 plantation. The switch on a wireless intercom system is used to send and receive information. £10.00.

CRIMINAL RECOMMENDATIONS THEORETICAL

A must for any lawyer or law student. 4000+ pages of notes and over 80000 pages of references. £10.00.

BARGAIN BUY!

Great introduction to electronics. ideal for the building electronics expert! Build a radio, burglar alarm, warning system, music oscillator, door alarm, computer interface, etc. £9.95.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>3086KT</td>
<td>£13.95</td>
<td>2 CHANNEL RELAY BOARD</td>
</tr>
<tr>
<td>3087KT</td>
<td>£13.95</td>
<td>12-BIT PC DATA ACQUISITION/CONTROL UNIT</td>
</tr>
<tr>
<td>3088KT</td>
<td>£13.95</td>
<td>1-WATT FM TRANSMITTER</td>
</tr>
<tr>
<td>3089KT</td>
<td>£13.95</td>
<td>4-WATT FM TRANSMITTER</td>
</tr>
<tr>
<td>3090KT</td>
<td>£13.95</td>
<td>2-WATT FM TRANSMITTER</td>
</tr>
<tr>
<td>3091KT</td>
<td>£13.95</td>
<td>30A15 £13.95 UNIPOLAR STEPPER MOTOR DRIVER</td>
</tr>
<tr>
<td>3092KT</td>
<td>£13.95</td>
<td>3063KT £5.95 2 CHANNEL UHF RELAY SWITCH</td>
</tr>
<tr>
<td>3093KT</td>
<td>£13.95</td>
<td>3064KT £5.95 1 WATT MICRO/MINIATURE FM TRANSMITTER</td>
</tr>
<tr>
<td>3094KT</td>
<td>£13.95</td>
<td>3095KT £8.95 1 WATT FM TRANSMITTER</td>
</tr>
<tr>
<td>3096KT</td>
<td>£13.95</td>
<td>3097KT £8.95 4 WATT FM TRANSMITTER</td>
</tr>
<tr>
<td>3098KT</td>
<td>£13.95</td>
<td>3099KT £8.95 2 WATT FM TRANSMITTER</td>
</tr>
<tr>
<td>3100KT</td>
<td>£13.95</td>
<td>3101KT £54.95 AUDIO TO LIGHT MODULATOR</td>
</tr>
<tr>
<td>3102KT</td>
<td>£13.95</td>
<td>3103KT £17.50 1007KT £17.50 MINIATURE 9V TRANSMITTER</td>
</tr>
<tr>
<td>3104KT</td>
<td>£17.50</td>
<td>3105KT £17.50 12-BIT PC DATA ACQUISITION/CONTROL UNIT</td>
</tr>
<tr>
<td>3106KT</td>
<td>£17.50</td>
<td>3107KT £17.50 1-WATT FM TRANSMITTER</td>
</tr>
<tr>
<td>3108KT</td>
<td>£17.50</td>
<td>3109KT £17.50 4-WATT FM TRANSMITTER</td>
</tr>
<tr>
<td>3110KT</td>
<td>£17.50</td>
<td>3111KT £17.50 2-WATT FM TRANSMITTER</td>
</tr>
</tbody>
</table>

INFRARED SECURITY BEAM

Attach anywhere to phone line to prevent illegal tapping! £5.95.

ULTRASONIC MOVEMENT DETECTOR

Crystal sensor provides an electronic 'guard' that can be used to protect your home or business. £12.95.

PIR DETECTOR MODULE

longrightarrow 3-7m range. £14.95.

FUNCTION GENERATOR

Tunable over 200MHz to 13V output. £19.95.

MOBILE BEAT

When the insta-Beep button is pressed, a new beat can be heard that can be enjoyed anywhere! £19.95.

PHONE BUG

Automatically record all conversations. Connects between telephone & line. £19.95.

INFRARED ALARM SYSTEM

Protect your car from theft. £14.95.

INFRARED SECURITY BEAM

Attach anywhere to phone line to prevent illegal tapping! £5.95.

ULTRASONIC MOVEMENT DETECTOR

Crystal sensor provides an electronic 'guard' that can be used to protect your home or business. £12.95.

PIR DETECTOR MODULE

longrightarrow 3-7m range. £14.95.

FUNCTION GENERATOR

Tunable over 200MHz to 13V output. £19.95.

MOBILE BEAT

When the insta-Beep button is pressed, a new beat can be heard that can be enjoyed anywhere! £19.95.

PHONE BUG

Automatically record all conversations. Connects between telephone & line. £19.95.

INFRARED ALARM SYSTEM

Protect your car from theft. £14.95.
Looking for ICs TRANSISTORs?
A phone call to us could get a result. We offer an extensive range and with a world-wide database at our fingertips, we are able to source even more. We specialise in devices with the following prefix (to name but a few).

2N 2SA 2SB 2SC 2SD 2P 2SJ 2SK 3N 3SK 4N 6N 17 40 AD
ADC AN AM AY BA GC BD BDT BDV BDW BDX BF
BFR BJS BFT BXF BMY BLY BLX BS BR BRX BRY BS
BSS BSV BSW BSX BT BTA BTB BRW BU BUX BUT BUV
BUW BUH BUI BUZ CA CD CX CXA DAC DG DM DS
DTA DTC GL GM HA HCF HD HEF ICL ICM JRF I KA
KIA L LB LC LD LF LM M GSM MA MAB MAX MB
MC MDJ MJE MJF MM MN MPS MPSA MPSH MPSU
MRF NJM NE OM OP PA PAL PIC PN RC S SAA SAB
SAD SAJ SAS SDA SG SL SN SO STA STK STR STRD
STRM STRS SV1 T TA TAA TAG TBA TCA TDA TDB
TEA TIC TIP TIPL TEA TL TLC TLP TMS TPU T UUA
UAA UC UDN ULN UMA UPA UPC UDP VN X XR Z ZN
ZTS + many others

We can also offer equivalents (at customers’ risk)
We also stock a full range of other electronic components
Mail, phone, Fax Credit Card orders and callers welcome

Cricklewood Electronics Ltd
40-42 Cricklewood Broadway London NW2 3ET
Tel: 0181 452 0161 Fax: 0181 208 1441

PIC-Logicator
The fully graphical environment for designing control systems for PICmicros

Draw the system as an on-screen flowchart, test it in the software, and download it directly to the PICmicro.

- Fast and easy
- Ideal for new PICmicro users
- Great for robotics and animtronics projects

Primarily designed for use with FLASH reprogrammable microcontrollers (e.g. PIC16F84 and PIC16F873). Also supports OTP devices. A separate software application is provided to allow the Programmer to download hex files generated from assembler code or C.

PIC-Logicator Emulator
Allows in-circuit emulation of the PICmicro, either in real time or responding directly to an on-screen simulation.

PIC-Logicator Pack
PIC-Logicator Software for PCs running Windows 95/98, and Programmer complete with serial lead, power supply and user manual.
PIC-L £149.95

www.pic-logicator.com
- Interactive software demo
- Direct purchase

Prices include UK carriage and VAT.
PIC-Logicator, Economatos/Education, Ltd., Epic House, Damall Rd, Sheffield S6 6AA, UK.
Tel 0114 281 3011, Email: education@economatos.co.uk

Everyday Practical Electronics, October 2000
Hewlett Packard 8510A – Digital Signal Analyzer
Hewlett Packard 8510B – JFET Current Source
Hewlett Packard 8510C – JFET Current Source
Hewlett Packard 8510D – JFET Current Source
Hewlett Packard 8510E – JFET Current Source
Hewlett Packard 8510F – JFET Current Source
Hewlett Packard 8510G – JFET Current Source
Hewlett Packard 8510H – JFET Current Source
Hewlett Packard 8510I – JFET Current Source
Hewlett Packard 8510J – JFET Current Source
Hewlett Packard 8510K – JFET Current Source
Hewlett Packard 8510L – JFET Current Source
Hewlett Packard 8510M – JFET Current Source
Hewlett Packard 8510N – JFET Current Source
Hewlett Packard 8510O – JFET Current Source
Hewlett Packard 8510P – JFET Current Source
Hewlett Packard 8510Q – JFET Current Source
Hewlett Packard 8510R – JFET Current Source
Hewlett Packard 8510S – JFET Current Source
Hewlett Packard 8510T – JFET Current Source
Hewlett Packard 8510U – JFET Current Source
Hewlett Packard 8510V – JFET Current Source
Hewlett Packard 8510W – JFET Current Source
Hewlett Packard 8510X – JFET Current Source
Hewlett Packard 8510Y – JFET Current Source
Hewlett Packard 8510Z – JFET Current Source
Hewlett Packard 8510AA – JFET Current Source
Hewlett Packard 8510AB – JFET Current Source
Hewlett Packard 8510AC – JFET Current Source
Hewlett Packard 8510AD – JFET Current Source
Hewlett Packard 8510AE – JFET Current Source
Hewlett Packard 8510AF – JFET Current Source
Hewlett Packard 8510AG – JFET Current Source
Hewlett Packard 8510AH – JFET Current Source
Hewlett Packard 8510AI – JFET Current Source
Hewlett Packard 8510AJ – JFET Current Source
Hewlett Packard 8510AK – JFET Current Source
Hewlett Packard 8510AL – JFET Current Source
Hewlett Packard 8510AM – JFET Current Source
Hewlett Packard 8510AN – JFET Current Source
Hewlett Packard 8510AO – JFET Current Source
Hewlett Packard 8510AP – JFET Current Source
Hewlett Packard 8510AQ – JFET Current Source
Hewlett Packard 8510AR – JFET Current Source
Hewlett Packard 8510AS – JFET Current Source
Hewlett Packard 8510AT – JFET Current Source
Hewlett Packard 8510AU – JFET Current Source
Hewlett Packard 8510AV – JFET Current Source
Hewlett Packard 8510AW – JFET Current Source
Hewlett Packard 8510AX – JFET Current Source
Hewlett Packard 8510AY – JFET Current Source
Hewlett Packard 8510AZ – JFET Current Source
Hewlett Packard 8510AA – JFET Current Source
Hewlett Packard 8510AB – JFET Current Source
Hewlett Packard 8510AC – JFET Current Source
Hewlett Packard 8510AD – JFET Current Source
Hewlett Packard 8510AE – JFET Current Source
Hewlett Packard 8510AF – JFET Current Source
Hewlett Packard 8510AG – JFET Current Source
Hewlett Packard 8510AH – JFET Current Source
Hewlett Packard 8510AI – JFET Current Source
Hewlett Packard 8510AJ – JFET Current Source
Hewlett Packard 8510AK – JFET Current Source
Hewlett Packard 8510AL – JFET Current Source
Hewlett Packard 8510AM – JFET Current Source
Hewlett Packard 8510AN – JFET Current Source
Hewlett Packard 8510AO – JFET Current Source
Hewlett Packard 8510AP – JFET Current Source
Hewlett Packard 8510AQ – JFET Current Source
Hewlett Packard 8510AR – JFET Current Source
Hewlett Packard 8510AS – JFET Current Source
Hewlett Packard 8510AT – JFET Current Source
Hewlett Packard 8510AU – JFET Current Source
Hewlett Packard 8510AV – JFET Current Source
Hewlett Packard 8510AW – JFET Current Source
Hewlett Packard 8510AX – JFET Current Source
Hewlett Packard 8510AY – JFET Current Source
Hewlett Packard 8510AZ – JFET Current Source
Hewlett Packard 8510AA – JFET Current Source
Hewlett Packard 8510AB – JFET Current Source
Hewlett Packard 8510AC – JFET Current Source
Hewlett Packard 8510AD – JFET Current Source
Hewlett Packard 8510AE – JFET Current Source
Hewlett Packard 8510AF – JFET Current Source
Hewlett Packard 8510AG – JFET Current Source
Hewlett Packard 8510AH – JFET Current Source
Hewlett Packard 8510AI – JFET Current Source
Hewlett Packard 8510AJ – JF BINLEY INDUSTRIAL ESTATE, COVENTRY CV3 2SF Tel: 01203 650702 Fax: 01203 650773 Mobile: 0860 400683 (Preamises situated close to Eastern-by-pass in Coventry with easy access to M1, M6, M40, M45 and M69)
EPE MICROCONTROLLER
P.I. TREASURE HUNTER
The latest MAGENTA DESIGN - highly stable & sensitive – with I.C. control of all timing functions and advanced pulse separation techniques.
- High stability drift cancelling
- Easy to build & use
- No ground effect, works in seawater
- Detects gold, silver, ferrous & non-ferrous metals
- Efficient quartz controlled microcontroller pulse generation.
- Full kit with headphones & all hardware

KIT 847.............£63.95

PORTABLE ULTRASONIC Pest SCARER
A powerful 230kHz ultrasound generator in a compact hand-held case. MOSFET output drives a special sealed transducer with intense pulses via a special tuned transformer. Sweeping frequency output is designed to give maximum output without any special setting up.

KIT 842..................£22.56

IC ECREAKER

PIC REAL TIME IN-CIRCUIT EMULATOR – SEE PAGE 749

DC Motor/Geareboxes
Our Popular & Versatile DC motor/Gearebox sets.
- Ideal for Models, Robots, Buggies etc. 1.5V to 4.5V
- Multi ratio gearbox gives wide range of speeds.
- LARGE TYPE – MGL £6.95
- SMALL – MGS – £4.77

Stepping Motors
MD38...Mini 48 step...£8.65
MD35...Std 48 step...£9.99
MD200...200 step...£12.99
MD24...Large 200 step...£22.95

EPE MICROCONTROLLER
PI. TREASURE HUNTER
The latest MAGENTA DESIGN – highly stable & sensitive – with I.C. control of all timing functions and advanced pulse separation techniques.
- High stability drift cancelling
- Easy to build & use
- No ground effect, works in seawater
- Detects gold, silver, ferrous & non-ferrous metals
- Efficient quartz controlled microcontroller pulse generation.
- Full kit with headphones & all hardware

KIT 847.............£63.95

ULTRASONIC PEST SCARER
Keep pests/pests away from newly sown areas, fruit, vegetable and flower beds, children’s play areas, patios etc. This project produces intense pulses of ultrasound which deter visiting animals.
- KIT INCLUDES ALL COMPONENTS, PCB & CASE
- EFFICIENT 100V TRANSDUCER OUTPUT
- COMPLETELY INAUDIBLE TO HUMANS
- UP TO 4 METRES RANGE
- LOW CURRENT DRAIN

KIT 812..................£15.00

EPE TEACH-IN 2000
Full set of top quality NEW components for this educational series. All as specified by EPE. Kit includes breadboard, wire, croc clips, pins and all components for experiments, as listed in introduction to Part 1. Batteries and tools not included.

TEACH-IN 2000 -

KIT 879£44.95 MULTIMETER £14.45

12V EPROM ERASER
A safe low cost eraser for up to 4 EPROMs at a time in less than 20 minutes. Operates from a 12V supply (400mA). Used extensively for mobile work - updating equipment in the field etc. Also in educational situations where mains supplies are not available. Safety interlock prevents contact with UV.

KIT 790£29.90

SUPER BAT DETECTOR
1 WATT O/P. BUILT IN SPEAKER, COMPACT CASE 20kHz-140kHz

NEW DESIGN WITH 40kHz MIC.
A new circuit using a 'full bridge' audio amplifier i.c., internal speaker, and/ or headphone plugs socket. The latest sensitive 'drain' sounder, 'double balanced mixer' give a stable, high performance superhetrodyne design.

KIT 861£24.99 ALSO AVAILABLE Built & Tested...£39.99

1000V & 500V INSULATION TESTER
Superb new design. Regulated output, efficient circuit. Dual-scale meter, compact case. Reads up to 200 Megohms. Kit includes wound coil, cut-out case, meter scale, PCB & ALL components.

KIT 848£32.95

1000V & 500V INSULATION TESTER
Superb new design. Regulated output, efficient circuit. Dual-scale meter, compact case. Reads up to 200 Megohms. Kit includes wound coil, cut-out case, meter scale, PCB & ALL components.

KIT 848£32.95

PIC PIPE DESCALER
- SIMPLE TO BUILD
- HIGH POWER OUTPUT
- FREQUENCY
- AUDIO & VISUAL MONITORING
An affordable circuit which sweeps the incoming water supply with variable frequency electromagnetic signals. May reduce scale formation, dissolve existing scale and improve lathering ability by altering the way salts in the water behave.
- Kit includes case, P.C.B., coupling coil and all components.
- High coil current ensures maximum effect, L.E.D. monitor.

KIT 868£22.95 POWER UNIT......£3.99

MICRO PEST SCARER
Our latest design – The ultimate scarer for the garden. Uses special microchip to give random delay and pulse time. Easy to build reliable circuit. Keeps pests/pests away from newly sown areas, play areas, etc. uses power source from 9 to 24 volts.
- RANDOM PULSES
- HIGH POWER
- DUAL OPTION

KIT 867£19.99 KIT + SLAVE UNIT.............£32.50

WINDICATOR

KIT 856£28.00

DUAL OUTPUT TENS UNIT
As featured in March '97 issue. Magenta have prepared a FULL KIT for this excellent new project. All components, PCB, hardware and electrodes are included. Designed for simple assembly and testing and providing high level dual output drive.

KIT 866 Full kit including four electrodes £32.90

MOSFET MkII VARIABLE BENCH POWER SUPPLY 0-25V 2.5A
Based on our MkI design and preserving all the features, but now with switching pre-regulator for much higher efficiency. Panel meters indicate Watts and Amps. Fully variable down to zero. Toroidal mains transformer. Kit includes punched and printed case and all parts. As featured in April 1994 EPE. An essential piece of equipment.

Kit No. 845£64.95

ULTRASONIC PEST SCARER
Keep pests/pests away from newly sown areas, fruit, vegetable and flower beds, children’s play areas, patios etc. This project produces intense pulses of ultrasound which deter visiting animals.
- KIT INCLUDES ALL COMPONENTS, PCB & CASE
- EFFICIENT 100V TRANSDUCER OUTPUT
- COMPLETELY INAUDIBLE TO HUMANS
- UP TO 4 METRES RANGE
- LOW CURRENT DRAIN

KIT 812£15.00
SIMPLE PIC PROGRAMMER

INCREDIBLE LOW PRICE!
Kit 857 £12.99
Power Supply £3.99

Includes 1-PIC16F84 Chip
Software Disk, Lead
Connector, Professional
PC Board & Instructions

Based on February ’96 EPE. Magenta designed PCB and kit. PCB with ‘Reset’ switch, Program switch, 5V regulator and test L.E.D.s, and connection points for access to all A and B port pins.

PIC 16C84 DISPLAY DRIVER

**INCORPORATES 1-PIC16F84 WITH
DEMO PROGRAM SOFTWARE
DISK, PCB, INSTRUCTIONS
AND 16-CHARACTER 2-LINE
LCD DISPLAY**

Kit 860 £19.99
Power Supply £3.99

FULL PROGRAM SOURCE
CODE SUPPLIED – DEVELOP
YOUR OWN APPLICATION!

Another super PIC project from Magenta. Supplied with PCB, industry standard 2-line x 16-character display, data, all components, and software to include in your own programs. Ideal development base for meters, terminals, calculators, counters, timers – Just waiting for your application!

**PIC 16F84 MAINS POWER 4-CHANNEL
CONTROLLER & LIGHT CHASER**

- WITH PROGRAMMED 16F84 AND DISK WITH
SOURCE CODE IN MPASM
- ZERO VOLT SWITCHING
- MULTIPLE CHASE PATTERNS
- OPTO ISOLATED
- 5 AMP OUTPUT
- 12 KEYPAD CONTROL
- SPEED/DIMMING POT.
- HARD-FIRED TRIACS

Kit 855 £39.95

Now features full 4-channel chaser software on DISK and pre-programmed PIC16F84 chip. Easily re-programmed for your own applications. Software source code is fully commented so that it can be followed easily.

PhizzyB

ALL PARTS FOR SERIES INCLUDING PCBs,
PROGRAMMED CHIP, CD-ROM AND DISPLAYS

MAIN BOARD – FULL KIT £131.95
I/O PORT KIT.......................... £16.99
L.C.D.................................. £12.99
8-BIT SWITCH/LATCH.................. £7.95
INT. MODULE.................................. £10.45

**68000 DEVELOPMENT AND
TRAINING KIT**

Kit 621 £99.95
+ ON BOARD
5V REGULATOR
+ SERIAL LEAD £3.99

**MINI-LAB & MICRO LAB
ELECTRONICS TEACH-IN 7**

As featured in EPE and now published as Teach-In 7. All parts are supplied by Magenta.
Teach-In 7 is £3.95 from us or EPE.
Full Mini Lab Kit – £119.95 –
Power supply extra – £22.55
Full Micro Lab Kit – £155.95
Built Micro Lab – £189.95

Tel: 01283 565435 Fax: 01283 546932 E-mail: sales@magenta2000.co.uk

8-CHANNEL DATA LOGGER

As featured in Aug/Sept. ’99 EPE. Full kit with Magenta redesigned PCB – LCD fits directly on board. Use as Data Logger or as a test bed for many other 16F877 projects. Kit includes programmed chip, 8 EEPROMs, PCB, case and all components.

PIC TUTOR BOARD KIT

Includes: PIC16F84 Chip, TOP Quality PCB printed with Component Layout and all components* (*not ZIF Socket or Displays). Included with the Magenta Kit is a disk with Test and Demonstration routines.

Kit 870 £27.95, Built & Tested £42.95

LCD Display £7.99
LED Display £6.99

Reprints Mar/Apr/May 98 – £3.00 set 3

PIC TOOLKIT V2

- SUPER UPGRADE FROM V1:
- 18, 28 AND 40-PIN CHIPS
- READ, WRITE, ASSEMBLE & DISASSEMBLE PICS
- SIMPLE POWER SUPPLY OPTIONS 5V-20V
- ALL SWITCHING UNDER SOFTWARE CONTROL
- MAGENTA DESIGNED PCB HAS TERMINAL PINS AND
- OSCILLATOR CONNECTIONS FOR ALL CHIPS
- INCLUDES SOFTWARE AND PIC CHIP

Kit 878 £22.99 with 16F84 . . . £29.99 with 16F877

SUPER PIC PROGRAMMER

- READS, PROGRAMS, AND VERIFIES
- WINDOWS® SOFTWARE
- PIC16C6X, 7X, AND 8X
- USE ANY PC PARALLEL PORT
- USES STANDARD MICROCHIP
- HEX FILES
- OPTIONAL DISASSEMBLER SOFTWARE (EXTRA)
- PCB, LEAD, ALL COMPONENTS, TURNED-PIN SOCKETS FOR 18, 28, AND 40 PIN ICs

Kit 862 £29.99
Power Supply £3.99

PIC STEPPING MOTOR DRIVER

**INCORPORATES 1-PIC16F84 WITH
DEMO PROGRAM SOFTWARE DISK, PCB, INSTRUCTIONS AND MOTOR.**

Kit 863 £18.99

FULL SOURCE CODE SUPPLIED
ALSO USE FOR DRIVING OTHER POWER DEVICES e.g. SOLENOIDS

Another NEW Magenta PIC project. Drives any 4-phase unipolar motor – up to 24V and 1A. Kit includes all components and 48 step motor! Chip is pre-programmed with demo software, then write your own, and re-program the same chip! Circuit accepts inputs from switches etc and drives motor in response. Also runs standard demo sequence from memory.

PIC TUTOR BOARD KIT

EPE PIC Tutorial

At last! A Real, Practical, Hands-On Series

- Learn Programming from scratch using PIC16F84
- Start by lighting L.E.D.s and do 30 tutorials to
- Sound Generation, Data Display, and a Security System.

PIC TUTOR BOARD KIT

Includes: PIC16F84 Chip, TOP Quality PCB printed with Component Layout and all components* (*not ZIF Socket or Displays). Included with the Magenta Kit is a disk with Test and Demonstration routines.

MINI-LAB & MICRO LAB ELECTRONICS TEACH-IN 7

As featured in EPE and now published as Teach-In 7. All parts are supplied by Magenta. Teach-In 7 is £3.95 from us or EPE. Full Mini Lab Kit – £119.95 – Power supply extra – £22.55 Full Micro Lab Kit – £155.95 Built Micro Lab – £189.95

Tel: 01283 565435 Fax: 01283 546932 E-mail: sales@magenta2000.co.uk
<table>
<thead>
<tr>
<th>Capacitors</th>
<th>Value</th>
<th>Voltage</th>
<th>Adults</th>
<th>Kids</th>
<th>Mains</th>
<th>Size</th>
<th>Order Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1µF 16v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>260</td>
<td>41236</td>
</tr>
<tr>
<td>1µF 25v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>260</td>
<td>41237</td>
</tr>
<tr>
<td>1µF 40v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>260</td>
<td>41238</td>
</tr>
<tr>
<td>1µF 63v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>260</td>
<td>41239</td>
</tr>
<tr>
<td>1µF 100v</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>260</td>
<td>41240</td>
</tr>
</tbody>
</table>

Convertible Data Acquisition

<table>
<thead>
<tr>
<th>Bridge Rectifiers</th>
<th>Value</th>
<th>Order Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>3A 200v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A 300v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A 500v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A 250v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A 400v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A 750v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A 200v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A 300v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A 500v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A 250v</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thyristors

<table>
<thead>
<tr>
<th>Thyristors</th>
<th>Value</th>
<th>Order Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIAC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Voltage Regulators

<table>
<thead>
<tr>
<th>Voltage Regulators</th>
<th>Value</th>
<th>Order Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quality Components

- **Mains**
 - 41241
 - 41242
 - 41243
 - 41244
 - 41245
 - 41246

- **Kids**
 - 41247
 - 41248
 - 41249
 - 41250
 - 41251

- **Adults**
 - 41252
 - 41253
 - 41254
 - 41255
 - 41256

Teach-in 2000 & EPE Projects

- **Hardware & Tools Pack**
 - Normal £43.34
 - Components Pack (1)
 - Normal £15.72
 - Components Pack (2)
 - Normal £12.58

[Full details on our Web site](http://www.esr.co.uk)
SUPPLY PROBLEMS
I have often referred to supply problems associated with components but now we are facing one associated with the magazine. To put it briefly the major retail chains in the UK simply cannot carry all the available magazines in their shops, so they are restricting the range of titles they carry. You may find it increasingly difficult to obtain your copy of EPE (and many other specialist magazines) off the shelf, particularly if you do not live in a large town or city.

There is little we can do to overcome this problem but there are ways in which you can overcome it. If you normally buy your magazine off the shelf it may be worthwhile placing an order with your supplier so that he will “shop save” an issue for you. Since all issues supplied to retailers are on Sale Or Return you do not have to buy the magazine when you go to see it, your newsagent can always return it to his wholesaler. Elsewhere in this issue you will find a Newsagent Order Form (page 768) which will allow you to request that your newsagent reserves or delivers your copy of EPE each month.

CHEAPER AND CHEAPER
There is the cheaper alternative of taking out a subscription. This of course means that you have to pay in advance, but we have tried to take the sting out of that by offering a new six month subscription and by giving a discount of over 12% (that’s £2 off the cover price for six issues). If you are truly committed to the magazine there is also now an extra discount if you buy a one year subscription – 16% off, or the equivalent of two issues free – or a two year subscription – 24% off, or the equivalent of nearly six issues free.

So, although you pay in advance for a subscription, you will get a discount on the cover price each year and your magazine will be posted in time to arrive before it appears on the bookstalls (UK addresses). You also avoid any cover price rises that may occur during the subscription period. A subscription order form appears on page 732.

A two year subscription on standard air service to overseas addresses now also represents a saving on the normal UK cover price and that includes the postage, so it’s also a bargain.

Of course, there is an even cheaper alternative and that is to download the magazine from our Online web site. EPE Online is available a few days after the printed issue but only costs $9.99(US) for 12 issues – that’s about 55p an issue. It’s certainly a bargain and it’s the way to go if you live outside of the UK, where printed issues are hard to find, and have good web access and a decent printer. Log on to www.epemag.com and take a look, you can pay on-line on a secure server using a credit card and download the magazine almost immediately – it takes about 20 seconds to verify and confirm your order.

NOT PUBLISHED
Please don’t believe the “not yet published”, “never heard of it mate”, “it’s late coming out this month” stories we get reported to us. We have not published an issue late, or missed an issue, in the last 20 years, so we don’t intend to start now. You should, however, note our new publishing date which, from next month onwards, will be the second Thursday in the month – the November issue will be out on October 25th.

AVAILABILITY
Copies of EPE are available on subscription anywhere in the world (see below), from all UK newsagents (distributed by COMAG) and from the following electronic component retailers: Omni Electronics and Maplin in S. Africa. EPE can also be purchased from retail magazine outlets around the world. An Internet on-line version can be purchased for just $9.99(US) per year available from www.epemag.com.

SUBSCRIPTIONS
Subscriptions for delivery direct to any address in the
UK: 6 months £14.50, 12 months £27.50, two years £50; Overseas: 6 months £17.50 standard air service or £27 express air service, 1 year £33.50 standard air service or £51 express air service, 2 years £62 standard air service or £91 express air service.

Online subscriptions, for downloading the magazine via the internet, $9.99(US) for one year available from www.epemag.com.

Cheques or bank drafts (in £ sterling only) payable to Everyday Practical Electronics and sent to EPE, Sub. Dept., Allen House, East Borough, Wimborne, Dorset BH21 1PF; Tel: 01202 881749; Fax: 01202 841692. E-mail: subs@epemag.wimborne.co.uk. Also via the Web at: http://www.epemag.wimborne.co.uk. Subscriptions start with the next available issue. We accept MasterCard or Visa. (For past issues see the Back Issues page.)

BINDERS
Binders to hold one volume (12 issues) are available from the above address. These are finished in blue pvc, printed with the magazine logo in gold on the spine. Price £5.95 plus £3.50 p&p for overseas readers the postage is £10.00 to everywhere except Australia and Papua New Guinea which cost £10.50. Normally sent within seven days but please allow 28 days for delivery – more for overseas.

Payment In £ sterling only please. Visa and MasterCard accepted, minimum credit card charge £3. Send, fax or phone your card number and card expiry date with your name, address etc. Or order on our secure server via our UK web site. Overseas customers – your credit card will be charged by the card provider in your local currency at the existing exchange rate.

EDITORS
MIKE KENNARD
Deputy Editor: DAVID BARRINGTON
Technical Editor: JOHN BECKER
Business Manager: DAVID J. LEAVER
Subscriptions: MARILYN GOLDBERG
Administration: FAY KENNARD
Editor/Admin: Wimborne (01202) 881749
Advertisement Manager: PETER J. MEW, Frinton (01255) 861161
Advertisement Copy Controller: PETER SHERIDAN, Wimborne (01202) 882299
On-Line Editor: ALAN WINSTANLEY
EPE Online (Internet version) Editors: CLIVE (MAX) MAXFIELD and ALVIN BROWN

READERS' ENQUIRIES
E-mail: techdept@epemag.wimborne.co.uk

We are unable to offer any advice on the use, purchase, repair or modification of commercial equipment or the incorporation or modification of designs published in the magazine. We regret that we cannot provide data or answer queries on articles or projects that are more than five years old. Letters requiring a personal reply must be accompanied by a stamped self-addressed envelope or a self-addressed envelope and international reply coupons. All reasonable precautions are taken to ensure that the advice and data given to readers is reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it.

COMPONENT SUPPLIES
We do not supply electronic components or kits for building the projects featured, these can be supplied by advertisers (see ShopTalk).

We advise readers to check that all parts are still available before commencing any project in a back-dated issue.

ADVERTISEMENTS
Advertisements are published by advertisers, whether these advertisements are bona fide, the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or in inserts.

The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufacture.

TRANSMITTERS/BUGS/TELEPHONE EQUIPMENT
We advise readers that certain items of radio transmitting and telephone equipment which may be advertised in our pages cannot be legally used in the UK. Readers should check the law before buying any radio transmitting or telephone equipment as a fine, confiscation of equipment and/or imprisonment can result from illegal use or ownership. The laws vary from country to country; readers should check local laws.

Everyday Practical Electronics, October 2000

723
A common problem with small torches is the short life-span both of the batteries and the bulb. The batteries of a small “penlite” torch will commonly last only two to three hours, and many bulb filaments burn no more than a few weeks before fusing. Besides this, torch batteries can sometimes be hard to come by, especially when camping or visiting remote areas.

The idea for a better torch was born a few years ago when the author was caught in a violent tropical storm on a remote dirt track, and his penlite torch rapidly faded and died.

With new light emitting diode (l.e.d.) technology, it is now possible to build a torch that quite adequately lights the way five to ten metres in front. In fact, since power consumption is so small, it is possible to power the light for a considerable length of time from a few turns of a small generator with a capacitor “reservoir” – the sole source of power for this torch (no batteries).

In addition to this, the white l.e.d. used in the circuit has a life expectancy of years, not weeks as in the case of a standard filament bulb.

While the light output of the Wind-up Torch is modest in comparison with some modern torches, it matches several candlepower at medium power, and is thus quite serviceable. It will provide ample light around a camp table, for walking on a footpath, or for reading.

The light output of the torch is continuously variable, and its expected service from each full wind is as follows:
- Book-light 90 minutes
- Medium-power beam 40 minutes
- Beam for walking 15 minutes

The regulator is based on a field effect transistor (f.e.t.), which draws just a few microamps, and provides a very steady voltage from the falling voltage of the reservoir capacitor.

The final stage incorporates a very low power astable circuit, which pulses the white l.e.d. so as to conserve power. A compromise was sought that reduces power consumption to a minimum, while not reducing light level too noticeably, or causing any visual disturbance through the pulsed light. By pulsing the light, power consumption is greatly reduced, and torchlight extended more than ten times.

A wide range of 12V stepper motors may be used for the generator and they come in various shapes and sizes. If they are purchased new, they can be costly. However, if an old floppy disk drive (working or non-working) is purchased and the stepper motor removed, the cost may be reduced considerably.

It is unlikely that a floppy disk drive has failed due to stepper motor failure, so even if a motor has been removed from a non-working drive, it is still likely to be sound. The stepper motor in the circuit was removed from an old 5·25-inch floppy disk drive.
More often than not, the four windings of a stepper motor are commoned, with the common (+VE) lead coloured red. It is easy to test with a multimeter which is the common lead. Measure the resistances across every combination of leads — if the resistances from one lead to all the rest are less than every other resistance measured, this is the common lead. If, on the other hand, some combinations of leads indicate open circuit, the motor’s windings are likely to be separate.

The voltage produced by both types of motor is a.c., which needs to be converted to d.c., using full-wave rectification, as shown in Fig.2.

The circuit in Fig.2a illustrates how the four windings of a stepper motor are wired if it has commoned leads. Fig.2b shows the circuit if the motor has separate windings.

Since commoned windings are by far the most usual arrangement with stepper motors, the component layout of the Wind-up Torch (Fig.4 later) is designed specifically for such motors.

MAIN CIRCUIT DIAGRAM

The main circuit diagram for the Wind-up Torch is shown in Fig.3.

The rectified d.c. output from the stepper motor circuit is fed into capacitor C1, which serves to smooth the fluctuating output of the generator.

From C1, the voltage is fed via rectifier diode D1, which prevents reverse leakage of current, into two 1F (one Farad) reservoir capacitors, C2 and C3. These are "memory retention" (back-up) types and need to be treated with care, since they are both pricy and easily damaged.

The rectified d.c. voltage from the stepper motor will vary considerably, depending on its type and the speed at which it is turned. Since the maximum voltage rating of C2 and C3 is 5·5V, a 5·1V Zener diode regulator (D2) is incorporated into the supply line following diode D1. The Zener used has a 5W rating, although a 1·3W type was tested thoroughly without failure. Charge current is around 15mA on a moderate wind.

CIRCUIT OPERATION

The main regulator section of the circuit is based on f.e.t. TR2. This holds a very steady voltage as the reservoir voltage falls, and will likely show a marginal rise in voltage for some time. When the Wind-up Torch is adjusted for use as a book-light (3V), it maintains over 95 per cent of voltage for about 90 minutes. At the highest brightness setting (3·6V), it maintains over 95 per cent of voltage for 15 minutes. The regulator was tested up to 5V without failure of the i.e.d. — however, this is not advised, and the circuit disallows it.

Originally, a simple resistor was tried as a regulator between the reservoir capacitor and astable IC1. This limited current consumption and was found to double the life of the reservoir voltage. Assume, however, that the resistance could be automatically reduced as capacitor voltage falls — this would further extend the reservoir’s life.

In fact, by substituting a f.e.t. (TR2) for the resistor, and controlling its conductance, the circuit used here outperforms the simple “resistor regulator” by a factor of 10. Total power consumption of the regulator is just 15µA.

A f.e.t. was chosen for the task since, unlike a bipolar transistor which is current controlled, it is voltage (or field effect) controlled, and draws a minute current — a very necessary feature of this application. A negative voltage applied to the gate of the f.e.t. creates a field effect, and “pinches off” current travelling from drain to source — while a positive voltage at the gate increases conductance.

Bipolar transistor TR1, potentiometer VR1 and resistor R4 form a voltage divider which determines the conductance of the f.e.t. As the voltage (and therefore current) declines across capacitors C2 and C3, so TR1 becomes less conductive, the potential at its collector rises, and TR2’s conductance increases. Therefore TR2 provides a very steady supply to IC1 and i.e.d. D3.

Note that transistor TR1 has an “A” suffix. This is important, and refers to the low gain of the transistor. Equivalents should be chosen carefully. The considerably larger BD241C may be used as a replacement, if transistors R1 and R2 are paralleled in the R1 position, and a link wire is substituted in the R2 position on the circuit board.

The purpose of capacitor C4 is to maintain a steady power supply for astable IC1, reducing peak current passing through TR2, which has a maximum rating of about 20mA.

The astable circuit is very straightforward, being based on an ICM7555HPA timer, IC1. The importance of using this particular device is that it has a supply...
current of just 60µA, and will operate effectively down to 2V. It also has an output sink current of 100mA, which is more than adequate for the present application. A standard 555 timer should not be used, due to its vastly greater current consumption.

High values have been chosen for resistors R5 and R6, so as to keep power consumption to a minimum.

The timer (IC1) is used in oscillator mode and outputs a square wave at pin 3, the peak amplitude being the same as the voltage powering the i.c. This output drives l.e.d. D3, pulsing it on for the duration that the output is low. A ballast resistor is not required for the l.e.d. since the effective current flow is limited by the control circuit.

The high brightness white l.e.d. used is the product of recent advances in semiconductor technology, having been commercially available for about two years. It has a 400mcd output, which, when focussed, gives a beam of several candlepower. It will light up objects at a distance of about 30 metres.

If a white l.e.d. is unobtainable, a high brightness coloured l.e.d. may be used in its place, although their light is not as effective, or as pleasing to the eye.

The Wind-up Torch circuit is built on a piece of stripboard having 15 holes by 24 copper strips. Details of the topside component layout, together with the underside details, are shown in Fig.4.

Commence construction by cutting a standard piece of stripboard down to size using a hacksaw. A small indentation may be cut in the stripboard at positions O15-P16 to pass wires if desired. Create the breaks in the underside of the stripboard with a drill or other appropriate tool.

Space is at a premium, but all the components should fit into place without difficulty, provided you use a miniature plate ceramic capacitor for C5, miniature radial capacitors for C1 and C4, and the specified bridge rectifiers.

Solder the wire links and solder pins (double-ended pins serve best), then the 8-pin dual-in-line socket. Continue with the resistors, diodes D1 and D2, and the four rectifiers (one for each motor winding), followed by the capacitors and transistors. Be careful to observe the correct polarity of the bridge rectifiers, transistors, diodes and electrolytic capacitors.

Solder in l.e.d. D3, leaving it with long legs for later adjustment, and be sure to orientate it parallel with the board for the best optical results.

Capacitor C3 is piggy-backed on top of C2 to conserve space. Additional memory retention capacitors could be used to extend torch life, but this would make winding more time-consuming.

Prepare four sheathed wires 10cm long, and solder them to potentiometer VR1 and switch S1, and then back to the stripboard. Finally, attach the stepper motor leads to the solder pins, and insert IC1, observing its correct orientation.

The Wind-Up Torch is built into a plastic case with slotted walls, but more adventurous constructors might wish to choose a case of their own preferred shape and size.

In order to keep construction as simple as possible, the generator is operated simply by turning a small knob, attached to the motor spindle, between index finger and thumb (a larger knob necessitates movement of the wrist, and is not as convenient).
The knob should have a fixing nut to prevent any slippage. A regular stepper motor will easily produce sufficient charge in this way – more ambitious constructors could construct a crank handle with the help of a brazing iron or Meccano parts.

The motor is housed at one far end of the case, with its shaft pointing face downwards, and protruding through a hole in the case. If the motor has a mounting bracket, this may be used to brace it. Or, particularly if it is square in shape, it may be wedged into place with wooden wedges on each side, and glued into position.

If a stepper motor has been salvaged from a floppy disk drive, it is likely to have a large, bulbous head. In such an instance, the head may be removed fairly easily with a hacksaw, or a knob may be mounted over the head.

Holes are prepared in one of the narrow sides of the case to receive slider switch S1 and potentiometer VR1 (mounting on the flat side of the case may interfere with the light beam). A large hole is prepared for the lens at the opposite end to the motor. S1 is a slide switch, so as to prevent accidental switching when packed into a suitcase or rucksack. Prepare the holes for S1 and VR1 after having established the position of the lens or lenses.

LENS

The light of the white l.e.d. is fairly diffuse, and needs to be focussed into a beam. In order to focus it, a convex lens with short focal length (a short focussing distance) is required. A focal length of 30mm to 60mm is ideal. At any rate, the focal length should not exceed the available space in the case.

The lens diameter should also be large enough to catch sufficient light from the l.e.d., otherwise the torch’s brightness will be compromised. Lenses may also be twinned in order to shorten the focal length. It may be necessary to crop the sides of a larger lens to fit it into the case. Lenses may be glued to a ‘slide’ and slotted into the case, or may be glued at their edges to the inside of the case.

If ordered from a specialist supplier, lenses can be pricey. However, the author found adequate plastic lenses in a nearby toy shop. Those employed in this design were taken from two cheap ‘bug viewers’ and twinned. Suitable lenses may also be found at fetes or in junk shops.

Once the motor and the lens have been installed, and holes for S1 and VR1 prepared, the circuit board is inserted into a slot inside the case. It may be secured with dabs of general purpose glue.

IN FOCUS

You will need to establish the correct distance from the circuit board to the lens, so as to obtain a beam of ideal width. It was found that if the torch’s beam was too narrow, it was of little use in illuminating a page, or the full width of a path. A good compromise may be found as follows.

Aim the torch at a white wall, from a distance of about two metres. Adjust the distance between the circuit board and lens so as to find the most compact spot of light on the wall. Then shift the lens closer to the circuit board, until the diameter of the beam is about 50cm on the wall. It may even be necessary to adjust the position of the l.e.d. slightly on the circuit board.

The optical characteristics of the l.e.d. are such that banding (a bright circle of light) may occur at the perimeter of the beam. This may be cured by adding a strong, small convex lens (having a very short focal distance) directly in front of the l.e.d. to give an even distribution of light.

CALIBRATION

To check that the regulator is working correctly, measure the voltage across capacitor C4 (two solder pins have been inserted on the circuit board for this purpose at positions A2 and L2). Wire up four AA batteries (6V) across C1 until the voltage at C4 seems to have stabilised. Do not leave the AA batteries connected for any length of time, since this places heavy demands both on the batteries and on Zener diode D2.

As Brightness control VR1 is turned through its full range, the voltage across capacitor C4 should vary from less than 3V to higher than 3-6V, but not higher than 4V. If the voltage rises above 4V, resistor R4 needs its value to be increased; if it does not rise above 3-6V, then R4 needs to be decreased. Differences in the tolerances of transistors TR1 and TR2 may in exceptional circumstances necessitate such modification.

Mark off the 3V, 3-3V, and 3-6V settings on the outside of the case for reference.

IN USE

Set the Brightness control VR1 to 3V (book-light brightness). Turn the generator knob briskly between index finger and thumb (it may be turned in either direction).

Generally speaking, once a residual charge exists in the reservoir capacitors, a good wind of half a minute will fully charge the torch, and small “in between” charges will keep it going almost effortlessly. Note, however, that the very first time the Wind-up Torch is used, it may need up to five minutes to reach full charge, and one or two minutes of winding before the l.e.d. even illuminates. Do not despair – once a residual charge exists in the reservoir, subsequent charges will require only a fraction of the effort.

Assuming you begin with no charge at all in the reservoir capacitors, at first no light will be seen; then the light will pulsate in sync with your turning. Finally a steady light will shine. The Wind-up Torch will be fully charged a little while after a steady shine is observed.
JUMP START

Instead of such initial effort, the torch may also be “jump-started” by connecting four AA batteries (6V) across C1 until the l.e.d. begins to illuminate (as suggested for the calibration test). Then disconnect the batteries and continue winding. Be careful to observe the correct polarity. You may even wish to incorporate small batteries and a pushbutton switch into the design, attached to C1, to jump-start the torch after long periods of disuse.

The torch may also be wound up whilst it is switched off, then switched on at a later time. When switched off, it will hold its charge for a day before requiring recharging. If the torch’s light has faded, and it is not likely to be used again immediately, switch it off so as not to lose what residual charge is in the capacitors.

Small adjustments of VR1 can mean large extensions of life, and vice versa. The torch’s life shortens rapidly at higher light intensities, yet lengthens exponentially at dimmer settings.

The author may be contacted at: scarboro@iafrica.com

PIC Dual-Chan Virtual Scope

Although using a PIC microcontroller does cut down on the component count, you might think that it is almost inevitable that with a project like this month’s PIC-Dual-Chan Virtual Scope that some of the components would appear to be a bit special and will cause local sourcing problems.

Not so! Nearly all the components used in the prototype model are RS types and readers should be able to order these through any bona-fide RS stockist. Alternatively, they can be ordered through Electromall (02 1536 304555 or http://rsww.com), their mail order outlet.

Starting with the Maxim MAX492 dual, rail-to-rail, op.amp, this carries the RS order code of 182-2738. (Maxim can be found on the web at: www.maxim-ic.com).

Regarding the Toshiba TC55257-85L 32Kbyte SRAM, of the several versions listed, either of the following will be OK for this circuit. The TC55257DPL-85L is listed as code 298-190 and the TC55257DPI-85L is coded 317-007.

The 20MHz version of the PIC16F877 is now quite plentiful and should be easy to obtain. However, for those readers unable to program their own PICs, a ready-programmed PIC16F877-20P can be purchased from Magneta Electronics (02 1283 655435 or www.magento.co.uk) for the inclusive price of £10 (overseas readers add £1 for p&p). For those who wish to program their own PICs, the software is available from the Editorial offices on a 3.5-in. PC-compatible disk, see PIC Service page. It is also available free via the EPE website: ftp://ftp.epemag.wimborne.co.uk/pub/PIC/PICvscope. The software is written in TASM.

The rest of the components are standard shelf items. If you wish to use the same RS case, this is listed as 267-2720. The printed circuit board is available from the EPE PCB Service, code 275 (see page 788).

Wind-up Torch

The first item we would like to cover concerning parts for the Wind-up Torch project is the 12V stepper motor. Some good news here, one which closely resembles the one used in the prototype is currently being advertised by Magneta (02 1283 655435 or www.magento.co.uk), order code MD36. Also, we understand that a Phillips 12V mini stepper motor advertised recently by J&N Factors (02 1444 881965) is still available and is a “bargain” at just £2 each; quote order ref. 2P457. These two motors have not been tried in the model.

Note that the BS237 transistor must be the one with an “N” suffix. This is important as it refers to the required low gain version. The only listing for the BS237A appears to be from Cricklewood (020 8245 0161, Fax 020 8268 1441), the author advises that the BS241C may be used as a replacement, but you will have to parallel resistors R1 and R2 in R1’s position on the p.c.b. and add a link wire in R2’s position.

The 1 Farad 5·5VW d.c. “memory back-up” capacitors are fairly expensive items and it might pay to shop around before buying, try Greenweld, Bull Electrical, Cricklewood and J&N Factors to name a few. The case in the model came from Maplin, code JR01B and will set you back nearly £6 each plus p&p. They can also supply the following: plastic case (code YU52G) and the 5W Zener diode (code AY65V).

Fridge/Freezer Alarm

Only the temperature sensor chip is likely to be a problem when sourcing parts for the Fridge/Freezer Alarm, this month’s “Top Tenner” project.

The TelCom TC622 single trip-point temperature sensor comes in two versions: the TC622VAT has a temperature range of –40°C to +125°C, with a claimed precision of ±1°C; and the slightly cheaper TC622EAT which has a range of –40°C to +85°C, with the same precision. Both types are suitable for this project and can be purchased from Maplin (020 870 264 6000 or www.maplin.co.uk), code NU411 (TC622EAT) and NU42V (TC622VAT).

The latest news we have concerning the sensors is that stocks are running at around 150 pieces of the TC622EAT and about 300 of the TC622VAT. We understand that once stocks are exhausted they will not be replaced.

The 12-channel power MOSFET device should be readily available, but if any readers do have trouble finding the VN10K1M MOSFET it is currently listed by Electromall (02 1536 304555 or http://rsww.com) code 655-537 and Maplin, code Q227E.

Most of our component advertisers will be able to suggest a suitable 6V or 12V solid-state buzzer for this project. The prototype used the Maplin 6V round buzzer, code FK81C. If you opt for a higher supply voltage, try the 12V version, code FK62D.

EPE Moodloop Field Strength Indicator

Some readers may experience difficulty in purchasing the AD8352 dual op.amp called for in the EPE Moodloop Field Strength Indicator project. This is intended for low voltage operation and has rail-to-rail outputs, ideal for this application. The one in the model came from Maplin (020 870 264 6000 or www.maplin.co.uk), code OA16S.

Although the author states that the linear Hall Effect device is inexpensive and widely available, we have not found it so. The only listing for the type UG3503U we came across was from the above company, code GX09K.

The LP2950 micropower 5V regulator was chosen as it is claimed to be better suited to battery operation than the standard 78L05 voltage regulator, has a smaller quiescent current and can operate with an input to output voltage difference of just 100mV. The LP2950 regulator also came from the above source, code AV35Q, but most of our components advertisers should be able to help regarding the 10-l.e.d. bargraph and the small hand-held case, with battery compartment. Remember, it is the bargraph with individual l.e.d.s that is required. Maplin supplied the bargraph (code BY65V) and case (type HH2–code ZB16S) used in the prototype.

Remote Control IR Decoder

The high brightness “white light” i.e. d.e.d. used in the model also came from the last mentioned company and is the program- mable 7867A from the name of which it is obvious the NR73Q. Although not tried, the author informs us a much brighter one has just been introduced in Germany (Conrad Elec., code 153745-11).

This same company keeps focussing lenses for l.e.d.s, code 183621-11. Conrad’s web site is at: www.conrad.de. However, you may still find that copying the author and extracting plastic lenses from toys is your cheapest approach here.

Products

Completed Wind-up Torch showing the small wind-up knob and l.e.d. lens beam window.

Please Take Note

Remote Control IR Decoder

Source code (.ASM) files were added to the ftp site and EPE Disk 3 on 12 Aug ’00.
Engineers working for Fuji Photo Film in Japan have taken time off from making digital cameras to look at nature, and decided that the electronics industry has been doing things the wrong way. Whereas natural views contain mainly vertical and horizontal lines, the sensor chips used in digital cameras are best suited to capturing diagonal lines. Fuji is now changing the shape and angle of its sensors to let a digital camera take sharper pictures in lower light.

Matrixed Pixels

Digital cameras have a conventional lens which focuses the scene to be photographed on a charge coupled device (CCD) instead of photo film. The CCD is a matrix of tiny photo-diodes and electrical connectors, arranged in horizontal lines like the scanning lines of a TV picture. The diodes convert light into electricity which digitally codes the image, and the code is stored in a memory chip.

Each diode represents one picture point or pixel and modern CCDs cram two million onto a rectangular chip, a few centimetres wide. If the diodes are made octagonal, into a matrix of tiny photo-diodes and electrical connectors, arranged in horizontal lines like the scanning lines of a TV picture. The diodes convert light into electricity which digitally codes the image, and the code is stored in a memory chip.

So the camera can only be used in bright sunlight or with electronic flash. The practical limit for conventional CCDs is around three million pixels.

Fuji spent three years analysing a wide range of photographs and saw that, largely because of gravity, most natural and man-made objects have vertical and horizontal edge details. The horizontal alignment patterns of the CCD pixels creates linear gaps in which horizontal and vertical detail is lost.

Honeycomb Mosaic

Because still picture cameras are not tied to TV line structures, Fuji’s new Super CCD can use diodes which are octagonal, instead of rectangular, and arranged in a honeycomb mosaic, along 45 degree diagonals. This allows larger diodes to be packed closer together, with no linear gaps to lose natural detail.

The larger diodes gather more light energy so need less ambient light to take a picture. The first Super CCD chips have a sensitivity equivalent to photographic film with an ISO rating of 800. The honeycomb arrangement gives 2.5 million octagonal pixels the resolution of four million rectangles.

Super CCD recently made its debut in Fuji’s new FinePix 4700 camera, costing around £700/$1000.

Surround sound

YOU are probably aware that British company NXT invented SurfaceSound flat panel loudspeaker technology. This technology has revolutionised the way in which loudspeaker units can be manufactured, moving totally away from the time-honoured concept that such items must have large internal dimensions in order to allow the enclosure to satisfactorily reproduce the audio spectrum.

Flat panel speakers are in use in many venues, frequently unrecognisable as such, being “disguised” as pictures hanging on the wall, the sound generated across their surface, and without internal depth. Restaurants and hotels are typical users.

The domestic market is now being appealed to by NXT’s latest involvement. LG Electronics of Korea has launched its first TV which features motorised NXT panels on each side. The TV can be used with the panels folded in or out.

For more information contact New Transducers Ltd, 37 Ixworth Place, London SW3 3QH. Tel: 020 7343 5050. Fax: 020 7343 5055. E-mail: marketing@nxtsound.com. Web: www.nxtsound.com.

Surround sound

Sky’s 2001 catalogue

THE Sky Tronic brand of electronic products is now successfully established in nine European countries and is regarded as a major brand in consumer electronics. The products are well itemised and displayed in the 240 pages of the new 2000/2001 catalogue received from Sky Electronics.

The catalogue is superbly produced with full-colour photographs of the enormous range of products, which are so numerous we can only summarise the general categories: audio and video, disco, car hi-fi, communication, time and temperature, CCTV and security, electrical, hobby electronic kits, computer accessories, test equipment, power supplies, tools, connectors, cables, speakers, PA systems.

The catalogue is free to callers, or send stamps to the value of £1.85 to cover postage.

Sky Electronics are at 40-42 Cricklewood Broadway, London NW2 3ET. Tel: 020 8450 0995. Fax: 020 8208 1441. Web: www.skyelectronics.co.uk.

Sky Electronics are at 40-42 Cricklewood Broadway, London NW2 3ET. Tel: 020 8450 0995. Fax: 020 8208 1441. Web: www.skyelectronics.co.uk.

Sky Electronics are at 40-42 Cricklewood Broadway, London NW2 3ET. Tel: 020 8450 0995. Fax: 020 8208 1441. Web: www.skyelectronics.co.uk.

Sky Electronics are at 40-42 Cricklewood Broadway, London NW2 3ET. Tel: 020 8450 0995. Fax: 020 8208 1441. Web: www.skyelectronics.co.uk.

Sky Electronics are at 40-42 Cricklewood Broadway, London NW2 3ET. Tel: 020 8450 0995. Fax: 020 8208 1441. Web: www.skyelectronics.co.uk.
JACKSON VARIABLE CAPACITORS

VARIABLE capacitors of the type used in applications such as radio transmission and reception, and other frequency-tuning circuits, are covered in depth within the latest Jackson Brothers catalogue.

Specifications for all types are detailed and well-presented, and include colour photographs which are superbly clear, being printed on a glossy art paper. Bail drives, dials, universal couplings and other accessories are covered too. You may recall that the original Jackson Brothers company suffered severe problems a while back, but were rescued from disaster by Mainline Electronics. The quality of the products shown in the new catalogue confirms how well the business has recovered. Interestingly, a brief history of Jacksons is given in the catalogue.

For more information contact Mainline Electronics, Dept. EPE, PO Box 235, Leicester LE2 9SH. Tel: 0116 277 7648. Fax: 0116 247 7551. E-mail: sales@mainlinegroup.co.uk.

WAP WAY OUT?

By Barry Fox.

THE much hyped WAP (Wireless Application Protocol) cellphone system is on its way out. The phones are so hard to set up, the stripped-down online content so unexciting and the 9.6Kbps data speed so slow that the manufacturers have sold less than half the half million they hoped. The networks are giving WAP phones away in the hope that users will generate revenue by playing with them.

BT Cellnet gives away the Motorola Talkabout WAP phone pre-loaded with a strategic selection of accessible sites (like BT’s Genie) and no instructions on how to go through the very tricky process of altering the selection. Those who try to change the settings must go online and spend at calltime while struggling.

Motorola says it is ready to sell new phones which use the General Packet Radio Service, and since 1994 has been building GPRS capability into network control equipment. Cisco Systems is providing software. T-Mobile in Germany and BT Cellnet in the UK are supposedly up and running, although how to get a phone and service remains unclear.

GPRS works ten times faster with full-featured Internet Protocol. Users are charged for data transferred, not time connected.

New GPRS phones, such as Motorola’s Accompli, should handle WAP if anyone still wants it, but WAP phones cannot use GPRS.

PIC Programming CD-ROM

IN June’s News we reported favourably on Eric Edward’s CD-ROM Let’s Do It – The Practical Electronics Book. Well, Eric’s been enjoying himself again, this time writing a CD-ROM called Let’s Do It – PIC Programming.

Eric is really devoted to sharing with you, in his own inimitable and enthusiastic style, his knowledge and experience of electronics and “all that sails with her”. Once again Eric has written the CD-ROM in the style of a “book”, with chapters and indexes. It can be read through Adobe Acrobat which, if you do not already possess it, can be installed from the CD-ROM itself (Adobe V4.05).

The “book” is dedicated to PIC BASIC, although there is an introduction to machine code and mnemonics. You will need a PIC BASIC compiler because, as Eric says, one cannot be included on the CD-ROM for copyright reasons. He gives a short list of recommendations on obtaining one inexpensively (or free!).

Included on the CD-ROM is an enormous selection of text files of the examples and projects which Eric discusses, and which you can compile to suitable HEX files with your PIC BASIC compiler. We reckon you’ll thoroughly enjoy Eric’s offerings if you prefer to take the PIC BASIC route to PIC software development.

This CD-ROM costs £10, plus £1 p&p (£1.95 Europe, £2.95 rest of world). Send for your copy to Eric Edwards GF6W8LJI, 11 Old Vicarage Road, Barry, Vale of Glamorgan, CF62 6RA. Tel: 01446 740498. E-mail: gw8ljj@tesco.net.

SMART FOOD

By Barry Fox

SUPERMARKET chain Sainsbury’s will soon trial a new smart Tag labelling system that lets a warehouse or store identify goods, by date or batch.

Philips has developed disposable sticky labels which sandwich a memory and 13.56MHz transponder chip between two layers of paper. Product identification data is loaded into the labels before they are stuck to crates, pallets or individual items. The labels then use the power from interrogation signals to transmit identifying code.

Sainsbury’s will first use the system on frozen foods to identify use-by dates. If there is a health scare, with infected beef or poisoned food, the labels allow rapid recall. The labels will later allow shoppers hands-free checkout.

RAPID’S CATALOGUE

RAPID Electronics’ latest components catalogue has landed (heavily!) on the Editorial desk. It is Rapid’s largest issue to date and features over 19,000 product lines across nearly 700 pages.

We periodically say that some catalogues are an absolute must for all electronics hobbyists, Rapid’s is certainly one of them. There are all the regular components included that we all need from time to time: passives, semiconductors, switches, sensors, transducers and the like. There are also the larger equipment-type products, plus tools, technical publications and service aids.

Being a leading BSI Registered Supplier, Rapid say they are committed to total customer service and their friendly staff will be delighted to help you with any enquiry, and ensuring that orders are despatched on the day of receipt. There is no minimum order value and orders over £30 are carriage free, with £2.50 carriage charged for orders below that value. Since May this year Rapid have been operating out of a purpose built distribution centre.

For more information contact Rapid Electronics, Dept. EPE, Heckworth Close, Colchester CO4 4BF. Tel: 01206 751166. Fax: 01206 751188. E-mail: rapidede.co.uk. Web: www.rapidelectronics.co.uk.

HANDS-FREE DEBATE

IN the July issue Barry Fox advised that Which? magazine’s research report brought into question the safety of mobile phone earpieces in respect of possible increased radiation hazard.

A press release from the Department of Trade and Industry (DTI) has added to the debate. E-Minister Patricia Hewitt has published a report which “confirms that using Personal Hands-Free (PHF) kits with mobile phones reduces exposure to electromagnetic fields . . . compared to the normal use of mobile phones”.

However, the DTI communication goes on to state that “the Independent Expert Group on Mobile Phones and Health (IEGMP) . . . recommended further work”.

EASY-PC V3

FOR many years one of the leading popular printed circuit design software packages has been Easy-PC. Version 3 for Windows has recently been released as an upgrade for Easy-PC ProXM users. A demo disk is available which allows you to try all of the options, including the autorouter.

For more information contact Number One Systems, Dept. EPE, Oak Lane, Tewkesbury, Glos GL20 7LR. Tel: 01684 773662. Fax: 01684 773664. E-mail info@numberone.com. Web: www.numberone.com

POWER-LESS L.C.D.S

ZBD Displays Ltd are a subsidiary of DERA, the Defence Evaluation and Research Agency, and are to commercialise a new type of liquid crystal display, known as ZBD and invented by DERA.

Whereas conventional l.c.d.s require the image to be rewritten more than 30 times a second, even if the image remains unchanged, ZBD displays retain their image even after power is turned off.

In principle, ZBD displays with thousands of lines are feasible at resolutions equivalent to desk top printing. DERA’s press release suggests a range of potential applications, including mobile phones, credit and smart cards, supermarket labels, electronic books. Currently the displays are monochrome but colour versions are likely to be developed.

KWIK-I-E PROBE

HERE’S a handy tool for the DIY-er, a non-contact probe that can measure both voltage and current without the need to strip or break wires. Manufacturers Amprobe have introduced their KWIK-I-E probe (also known as K-1) that has a two-range bargraph display to indicate voltage from 6V to 600V and current from 0·6A to 60A.

It is small, compact, easy to use and can be carried in the pocket. It is also CE and UL approved. Priced at £69 plus VAT, the probe is available from Professional Instrument Distributors, Dept EPE, 3 Brackenley Court, Embsay, N. Yorks BD23 6PX. Tel: 01756 799737.

DON’T WAIT – TAKE OUT A SUBSCRIPTION NOW AND SAVE MONEY! ★

ALSO: NEXT MONTH WE ARE GIVING AWAY A GIANT TRANSISTOR DATA CHART – WITH DATA ON AROUND 500 TRANSISTORS – IT’S THE IDEAL PIN-UP FOR ANY WORKSHOP OR CLASSROOM!

SUBSCRIPTION ORDER FORM

I enclose payment of £........................... (cheque/PO in £ sterling only), payable to Everyday Practical Electronics.

Access or Visa No.

Signature ...

Card Ex. Date ..

Please supply name and address of cardholder if different from the subscription address shown below. Subscriptions can only start with the next available issue. For back numbers see the Editorial page.

Name ...

Address ..

... Post code

732 Everyday Practical Electronics, October 2000
The chip select input is then returned to
until all eight bits of data have been read.

A reference voltage applied to pin 1 of
IC4 sets the full-scale sensitivity, and in
this case resistors R4 and R5 set the refer-
ence at about half the supply potential, or
2·5V in other words.

Temperature Sensor

A reference voltage is applied to pin 1 of
IC4 and the next bit of data is
read from pin 6. A clock pulse is then
needed for the most significant bit of data can be
read, and either 128 or 0 is added to the
value stored in the variable called
Reading, depending on whether the input line is high or low. A clock pulse is
then generated and the input line is
read again. This time 64 or zero is added
to the value stored in Reading, depend-
ing on whether the input line is high or low.

To reconstruct the 8-bit value from the
output from IC2 by a factor of approxi-
mately two so that the resolution is
increased to a more worthwhile 0·5
degrees. In practice preset potentiometer
VR1 is adjusted for the voltage gain that
gives optimum accuracy, and the unit
should be calibrated against an accurately
known temperature of around 25°C to
100°C.

For optimum results IC2 requires a neg-
ative supply for load resistor R1, and IC3
also requires a negative supply. A supply
potential of almost –5V is produced from
the positive supply by way of a simple
switch-mode supply based on IC1. The
total current drain on the
+5 volt supply is only a
few milliamps. The con-
nections to the printer
port are made via a 25-
way male D-connector,
and the required connec-
tions to the printer
port are made via a 25-
way male D-connector,
and the required connec-
tions are shown in Fig.2.

Software

The Visual BASIC 6
program compiles to a
small .EXE file, but note
that it will only run if it is
supported by the free-
ware file called
inpout32.dll. Both files
are available from the EPE web site. This
provides the Inp and Out instructions used to communicate with the interface.

The main routine is assigned to a timer
component so that regular readings are
taken. Initially the timer is disabled, but
operating one of the command buttons
(see Fig.3) sets the port address range and
starts the timer. Printer ports 1 and 2 are
normally at base addresses of H378 and
H379.

Main Routine

The main routine starts by setting up
the two output lines and initialising a
conversion. The first bit of data is then
read, and either 128 or 0 is added to the
value stored in the variable called
Reading, depending on whether the input line is high or low. A clock pulse is
then generated and the input line is
read again. This time 64 or zero is added
to the value stored in Reading, depend-
ing on whether the input line is high or low.

This process is repeated with the other
bits of data, with the appropriate value or
zero being added to Reading each time.
The value stored in Reading is then
identical to the 8-bit value read by the
converter.

It is only necessary to divide the value
stored in Reading by two in order to pro-
duce the correct value for the digital
display. The analogue display requires
rather more manipulation of the value
before it is ready for use as the Y2 co-ordi-
nate of Linel, which is the line that
provides the tube of red alcohol in the
virtual thermometer. This co-ordinate has
a value of 500 at 100 degrees, increasing to
4500 at 0 degrees.

Multiplying the value in Reading by
20 gets the scaling right, and adding
between the temperature sensor and the tube. A plastic tube is not a good choice if the sensor in something like a small glass test-tube. Essential to ensure that the liquids are
Everyday Practical Electronics, October 2000

Listing 1: Temperature interface program

<table>
<thead>
<tr>
<th>Dim Port1 As Integer</th>
<th>Dim Port2 As Integer</th>
<th>Dim Port3 As Integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Sub Command1_Click()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port1 = 632</td>
<td>Port2 = 633</td>
<td>Port3 = 64</td>
</tr>
<tr>
<td>Timer1.Enabled = True</td>
<td>End Sub</td>
<td></td>
</tr>
<tr>
<td>Private Sub Command2_Click()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port1 = 888</td>
<td>Port2 = 889</td>
<td>Port3 = 890</td>
</tr>
<tr>
<td>Timer1.Enabled = True</td>
<td>End Sub</td>
<td></td>
</tr>
<tr>
<td>Private Sub Timer1_Timer()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Out Port3, 1</td>
<td>Out Port3, 2</td>
<td>Out Port3, 3</td>
</tr>
<tr>
<td>For D = 1 To 2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Next D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dta = Inp(Port2) And 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If Dta = 8 Then Reading = Reading + 500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Else Reading = Reading * 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If Dta = 8 Then Reading = Reading + 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Out Port3, 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Out Port3, 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dta = Inp(Port2) And 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If Dta = 8 Then Reading = Reading + 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Out Port3, 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Out Port3, 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dta = Inp(Port2) And 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If Dta = 8 Then Reading = Reading + 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Out Port3, 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Out Port3, 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dta = Inp(Port2) And 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If Dta = 8 Then Reading = Reading + 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Out Port3, 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Out Port3, 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dta = Inp(Port2) And 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If Dta = 8 Then Reading = Reading + 104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Out Port3, 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Out Port3, 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dta = Inp(Port2) And 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If Dta = 8 Then Reading = Reading + 248</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Out Port3, 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Out Port3, 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dta = Inp(Port2) And 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If Dta = 8 Then Reading = Reading + 628</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Out Port3, 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Out Port3, 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dta = Inp(Port2) And 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If Dta = 8 Then Reading = Reading + 500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linel.Y2 Reading</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End Sub</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

500 takes care of the offset. Deducting this value from 5000 provides the required inversion so that the value goes from 4500 at 0 degrees to 500 at 100 degrees.

In Use
If the interface is used with liquids it is essential to ensure that the liquids are kept away from the leads of IC2. The usual solution is to fit the temperature sensor in something like a small glass test-tube. A plastic tube is not a good choice if the unit will be used with hot liquids, since it might melt.

Some heatsink compound can be used to provide a good thermal contact between the temperature sensor and the test-tube. Due care and adequate safety precautions must be taken if the unit is used with hot liquids.

Fig. 3. The program has digital and analogue readouts.
With your breadboard experiments throughout much of the Teach-In 2000 series, you have frequently been illustrating the response of digital gate outputs by using light emitting diodes (l.e.d.s) as the display devices.

As you are probably well aware, there are many types of more sophisticated display devices manufactured, allowing numerals, alphabet and other characters to be displayed.

We are not going to ask you to experiment with any of these other display types. They are too numerous and you might never find a future application for any particular type which we might recommend. Consequently we do not feel justified in putting you to the expense of buying one.

However, we can illustrate the basic principles through five computer demos. First we shall describe the principle behind the type known as a 7-segment display. We shall discuss it initially from the point of view of a device constructed using l.e.d.s as the illumination source.

7-SEGMENT DISPLAYS

From your main menu select Displays – Menu, then from the sub-menu offered select 7-Segment Display – Basics. Note that you can only return to the menu from this demo by using the <ENTER> key.

As the name implies, a 7-segment display has seven internal structures which are arranged as seven bars (segments). The segments are visible through the top surface of the display. In the case of an l.e.d. type, each segment has an l.e.d. behind it, seven l.e.d.s in all.

You already know that an l.e.d. can be turned on by supplying it with a current-limited voltage. If the voltage is absent, the l.e.d. is turned off. To use digital logic terminology, logic 1 (voltage high) turns the l.e.d. on, logic 0 (zero voltage) turns it off.

On your screen display when you first enter it (see also Photo 12.1) you will see the seven segments arranged as a figure-of-eight. Each segment is allocated an identity letter (A to G) and the order of this lettering is an “industry standard”, i.e. these letters always refer to the same segment irrespective of the display’s manufacturer (although they might be in either capital or lower case letters).

In the screen display, your eyes tell you that numeral 8 is displayed when all seven segments are turned on (it’s an optical illusion, of course, but we are accustomed to interpreting incomplete patterns as though they were complete).

Below the display, the turn-on logic is shown, a 1 appearing beneath each of the seven letters, 1111111 representing the logic for numeral 8.

From your keyboard, press <0>. Segment G has now disappeared (the l.e.d. has been turned off) and numeral zero is displayed. The logic line has changed to read 1111110.

Press any of the other numeral keys and observe the display results and their logic. Your own mental logic will tell you that while numerals can be constructed using seven segments, to display alphabet and other characters presents a problem. There are some alphabet letters, though, which can be displayed if you use a bit of visual imagination, but by no means all letters, and some of them only work if lower-case rather than capitals are acceptable.

The program allows you to press any keyboard key to see what letters can be generated using seven segments. Try with the full set of capital and lower case letters. When a letter cannot be constructed, the screen tells you so.

COMMON LOGIC

There are two basic types of 7-segment l.e.d. display manufactured, known as common cathode and common anode. Select sub-menu option 7-Segment LED Display – Detail. Again note that you can only return to the menu by pressing <ENTER>.

On the screen revealed (see also Photo 12.2) are two blocks of l.e.d.s, shown with ballast (current limiting) resistors for each l.e.d. The left-hand block shows that all the l.e.d. cathodes (k) are commmoned and connected to the 0V line. The logic which controls each l.e.d. is brought into each anode (a) separately via its own resistor.

This construction is known as a common cathode display, because all the cathodes have been commmoned together. The logic which controls this arrangement is that which we illustrated via the previous display screen.
The right-hand block of seven l.e.d.s shows that all the anodes (a) have been connected to the positive (+V) line via the ballast resistors, while the control logic is connected to each l.e.d. cathode separately. This type of display arrangement is known as a common anode display.

Note, however, that in a real common anode display, the anodes would literally be commoned together within the device, and the resistors would be connected between the cathodes and the 0V line.

Because the controlling voltage is applied to the cathodes, you will spot that logic 1 on any of them will turn that segment off, because logic 1 is the same voltage as applied to the resistors (i.e. no current can flow through the resistor-diode path). It is now logic 0 which turns on a segment.

Experiment by pressing any of the keys <A> to <G> (representing the segment letters) to turn the l.e.d.s on and off. Observe how the common anode logic is the opposite of that for the common cathode.

It is important to note that common anode and common cathode displays cannot be interchanged in a circuit because of the opposite controlling logic.

ALWAYS RESIST IT

With 7-segment l.e.d. displays, the same rules apply for calculating ballast resistor values in respect of the supply voltage as for single l.e.d.s (see Part 4).

NEVER use a single resistor to provide current to all seven segments simultaneously via the common line. Each segment MUST ALWAYS have its own ballast resistor.

You will occasionally see designs produced by inexperienced constructors in which a single resistor is used. Do not follow their example.

The problem is that each l.e.d. requires a certain amount of current to produce a given amount of brightness when turned on. The total current drawn from the power supply therefore varies depending on how many segments are turned on simultaneously.

If a single resistor provides the current to all seven segments, the current passed through each l.e.d. will vary with the number of other l.e.d.s turned on. Consequently, overall segment brightness will change accordingly. For example, numeral 1 (two segments) will thus appear brighter than numeral 8 (seven segments).

MULTIPLEXED DISPLAYS

You have probably seen that displays are available which have several 7-segment digits embodied in the same device, probably two or four (Photo 12.3).

With these devices it is common for just one set of seven segment-controlling lines to be used, these feeding to all of the digits simultaneously. Each digit, though has a separate power line feeding to its common anode or common cathode pin.

These devices work by only turning on a digit’s power line when the other digits’ power lines are turned off. The 7-bit data logic code is output to all digits simultaneously, but only the digit which has power applied shows that data.

With the data and digit power lines controlled at a sufficiently fast rate, the eye is deceived into thinking that all digits are turned on at the same time, but with each showing its own data. This system is known as multiplexing.

The principle is illustrated through submenu option 7-Segment LED Display – Multiplex.

On entry to the display (see also Photo 12.4), four digits are shown, displaying four numerals, 3456. Above them are the logic codes which represent each digit’s power line being turned on and off. They may appear just as a blur with faster computers. A common anode display is assumed.

This part of the program has been written so that you are deceived into thinking that all four digits are on simultaneously. However, press <F>.

The display is now shown at a much slower rate and you can see each digit being turned on while the others are turned off (see Photo 12.5). The power control logic above the digits is seen to be alternating between 0 and 1. A digit is only turned on if the power control is set at logic 1.
You will also see that each digit now appears much brighter than it did when all four were displayed simultaneously. This illustrates a problem with multiplexed displays.

Because (in this case of four digits) the time for which each digit is turned on is only a quarter of the total time between each occasion that this digit is turned on, when the multiplexing rate is fast the eye responds as though the digit is much less bright than if it were on continuously or multiplexed slowly. Press <F> a few times to alternate between fast and slow multiplexing.

If a 2-digit multiplexed display is used, the brilliance would appear to be half that of a continuous display. Likewise, the brilliance would appear to fall to one-eighth for an 8-digit multiplexed display.

To increase the apparent brilliance, lower values of ballast resistor can be used, provided that the specified current limit of each digit is not exceeded. There are also high-brightness displays available which are better suited for providing adequate brilliance without large current flow.

Be aware that a real-life multiplexed l.e.d. display may show a much reduced brilliance at faster rates than the demo screen would imply. We have cheated with the demo and just used two different colours for the fast/slow displays.

Use numeral keys <1> to <5> to increase the value displayed in each digit. The display behaves like a counter when digit rollover to zero occurs.

MATRIXED DISPLAYS

Another type of display technique is commonly encountered, known as a matrixed display. The principle is similar to that used for 7-segment displays, but it uses more segments. In fact, the segments are typically formed as small squares rather than bars and are usually known as pixels (picture screen elements).

Such devices as alphanumeric displays and your computer screen use this technique (so does a dot-matrix printer). Select sub-menu option Matrixed Displays – Basics, and also refer to Photo 12.6.

Matrixed displays use a block of pixels, varying in quantity depending on the application. The alphanumeric l.c.d.s used in some recent EPE projects have 35 pixels per character, arranged as five across by seven down (a 5 × 7 matrix). The computer screen mode being used by the Teach-In 2000 software (QBASIC/QuickBASIC screen mode 9) uses an 8 × 14 matrix for each standard text character.

The demo screen shows exaggerated examples of both matrix formats. As with 7-segment displays, information is generated by turning the pixels on or off.

On first entry, the screen displays the pixels used to generate numeral 8, but the great advantage of matrixed displays is that they can be used to generate an enormous variety of characters, right across the full alphanumeric range and beyond, including various patterns. The 8 × 14 matrix, though, allows a greater variety than the 5 × 7.

Press any of the keys on the keyboard and see the equivalent data displayed in the two large matrixed formats. At the right of the final screen text line (e.g. Turn-on Matrix for 8), the same character selected (in this case 8) is also shown as a normal screen character. Cursor control keys do not generate a display.

In fact, the large 8 × 14 matrix is generated by the program actually scanning the screen area at the end of the final text line and “reading” the pixels which are used to display the selected character. It then re-interprets those same pixels and creates the larger pixel-representing squares that illustrate how the character is made up. If you examine the screen with a magnifying glass, you will see the truth of this.

ANOTHER CHALLENGE

The information displayed in the 5 × 7 matrix zone, however, has been created by using a look-up table. Being of an occasionally devious nature, the author felt that he would get you to create some of the data for that table!

Consequently, you will find as you press various keys, that although the equivalent 8 × 14 matrix is shown, the 5 × 7 is not. Your challenge is to add the necessary format data to the look-up table in order to create the missing characters. We’ll give more information in the Experimental section.

LIQUID CRYSTAL DISPLAYS

Unlike light emitting diodes (l.e.d.s), liquid crystal displays (l.c.d.s) do not emit light and operate on a very different principle. When switched on, the internal crystal structure polarises incident light (light shining on them) preventing it from passing through. When switched off, they allow the light to pass unhindered.

In the former case, the crystals appear dark compared to their background. In the latter, they appear almost invisible. By varying their darkness, the crystals can be made to form visible images, such as those demonstrated in the previous Matrixed Display section, or even pictures with some (expensive) graphic types.

Most l.c.d.s provide monochrome displays (effectively black and white). As you will probably know, though, l.c.d. colour displays are also manufactured (for laptop computer screens, for example).

Practically no current is required to flow through l.c.d.s, consequently they can be controlled without significant power consumption and are ideal for connecting to modern digital integrated circuits, such as those you have been using for this Teach-In series (but see important proviso later).

The advantages of low power consumption, though, are offset by certain disadvantages:

- Controlling signals need to be square waves
- An external lighting source is needed, either daylight or artificial
- The operating temperature range is limited (they can turn dark on a hot day, for example)
- The response time is slow – they typically operate at between 30Hz and 50Hz.

However, as the main advantage of low power consumption outweighs the disadvantages, l.c.d.s find use in numerous applications, from electronic meters and calculators to computer and TV screens.

They are available in many forms in which the quantity and shape of the segments or pixels can be manufactured so that letters, numbers and graphics can be displayed.

L.C.D. CONTROL PRINCIPLES

An l.c.d. is constructed with a backplane (BP) that is common to all segments and to which a square wave is applied. The segments or pixels are then indirectly controlled by the same square wave source but via their own pins. This aspect of the square wave can be set to be either in phase or out of phase (inverted) with respect to the backplane square wave.

When both signals have the same phase, i.e. both are at a positive level at the same time and then both are low at the same time, the l.c.d. crystals do not polarise the light and appear to be absent (turned off).
When both signals are out of phase, however, i.e. when one is high and the other is low, the individual segment to which the control line is connected then changes its crystalline orientation so that the light becomes polarised, in other words the segment is turned on (appears dark).

As you may have guessed, each segment has to be connected to its own control line, which can result in very large numbers of control lines being connected. With a simple 7-segment display with can show numbers from 0 to 9, seven control lines are needed for each digit, plus one for the backplane. Additional lines are needed if colons and decimal points are also required.

Very complex l.c.d.s have their controlling lines and circuits connected to them during manufacture, although simpler numeric displays need to be connected by the user, generally speaking in conjunction with a specially designed printed circuit board.

The sophistication of some l.c.d.s is such that “intelligent” integrated circuits are sold and designed to them to comprise a module which not only allocates the correct phase to various segments or pixels, but also contains a memory storage area for data sent by a computer or microcontroller. See Photos 12.7 and 12.8.

Many examples of the use of “intelligent” alphanumeric l.c.d.s have been published in recent EPE constructional projects. A forthcoming article discusses graphics l.c.d.s.

In circuit diagrams and constructional charts there are no specific symbols which are internationally recognised for l.c.d.s. Their representation depends on the whim of the circuit designer or the illustrator, although consistency of style is frequently observed by both.

The nature of the l.c.d. is usually obvious from the illustration and from written descriptions associated with it. An example circuit diagram symbol for a typical 4½-digit 7-segment l.c.d. is shown in Fig.12.1. There are countless variations. The control lines (40 of them) for the one shown each have to be connected by the user, usually in conjunction with special control devices (i.c.s).

L.C.D. DEMO SCREEN

Select LCD Displays – Principle from your sub-menu and we’ll illustrate the principle of l.c.d. control. See also Photo 12.9.

The screen demo shows the representation of a single l.c.d. 7-segment digit, but we only demonstrate the control of one segment, the top one. Although not shown, the same segment letters apply as for the l.e.d. version.

Note the two connections made to the digit, one to the top segment and one to the surrounding backplane. An XOR gate (discussed in Part 6) is shown controlling the segment. To the XOR gate at one input is connected the same backplane signal line, and a controlling signal line is connected to the other input.

The logic level at the XOR gate’s inputs and output is indicated numerically and by coloured “flags” (for fun!). The backplane connection letters apply as for the l.e.d. version.

During this Teach-In series we have occasionally had to omit small items of information for space reasons, saying that we would discuss them at a later date. Now’s the time for it!

TEMP-CO

In Part 1 reference was made in passing to a resistor’s power and temperature coefficients.

You’ve no doubt deduced it by now, but a component’s power rating is expressed in watts (W) or fractions of a watt, e.g. milliwatts (mW). It refers to the amount of power (volts x amps) which that component can safely handle without becoming overheated. Since heat can affect the characteristics of components, wattage ratings should be chosen to be higher than that calculated for normal operation.
Where a manufacturer quotes the temperature coefficient of a component, this parameter states the typical amount by which a component's nominal value will change in response to a change in its temperature. It may be quoted as a value in parts per million (ppm) or as a percentage of its value related to a given temperature change unit, i.e. one per cent per degree Celsius (1%/°C).

Such components as resistors and capacitors always have this coefficient quoted by the manufacturer. Temperature ratings can also be of significance regarding some aspects of more sophisticated components, such as transistors and integrated circuits, for example.

The term temperature coefficient is sometimes abbreviated to tempco or temp-co.

Fan-out

In Part 2 we suggested that you should note the actual output voltage of a logic gate when different load values were placed on it. All integrated circuits have a limit on the amount of power that can be drawn from (sourced) or drawn by (sunk) their outputs.

In extreme circumstances of excess current flow, the i.c. could die, but it is more usual in many modern components for the output to limit the amount of current flow being required of it. The result is that often the output voltage will either fall below the usual maximum when sourcing, or rise above the usual minimum when sinking.

In such cases when digital logic is concerned, the logic voltage swing may be insufficient to be recognised as a logic change by the ensuing circuit(s). In many cases, data sheets will state the amount of current which a logic output can handle before the trigger thresholds are not reached.

Data sheets may sometimes quote a fan-out value. Fan-out states the number of similar logic devices which a particular device can control. The limitation is caused by the fact that the inputs of the controlled devices may require a small but significant amount of current flow. With that factor specified, the manufacture calculates the fan-out value accordingly.

Modern CMOS digital logic devices have inputs which usually require hardly any current, being formed from field effect transistors (f.e.t.s), see Part 7.

Oscilloscopes

We had hoped to describe the features which you might expect on an oscilloscope. Sadly, there is no space to include this subject.

Instead, we refer you to the EPE two-part feature article on oscilloscopes, More Scope for Good Measurements of June/July '96. Whilst technology has moved on somewhat since then, you should find that the basic discussion is informative.

We strongly recommend that you purchase an inexpensive standard oscilloscope or computer controlled virtual oscilloscope as soon as funds permit. We would also recommend that you read How To Use Oscilloscopes and Other Test Equipment – available from the EPE Direct Book Service, see page 785.

Panel 12.1. Speed and Frequency

To expand a bit on Frequency which we covered in Part 5, here are just a few additional comments:

- Data sheets for integrated circuits (i.c.s) may quote several speed factors, each of them referring to different aspects of an i.c.'s operation. Values relating to speed and frequency may seem to be similar factors, but there is a significant difference between them.

 - Speed may be quoted with regard to how quickly an i.c. responds to a single event, i.e. how quickly it can respond to a change in voltage at one of its inputs, say from 0V to 5V. Other inputs on the same i.c. may be quoted as having different rates of response.

 - Frequency response, though, in this context of an i.c., is the rate at which the component can handle and process repeated changes on all inputs and through subsequent internal operations.

Although a frequency value can be calculated for a given speed at which an input responds, this should not be taken as the frequency value at which the whole device can operate.

Frequency is also quoted in other contexts, with regard to capacitors, transistors, coils etc. Here the frequency value is usually the maximum that the component will respond to or allow to pass through without degradation of the signal amplitude and/or waveform shape.

Components can often seem to be theoretically capable of handling higher frequencies, but examination of the resulting waveforms on a oscilloscope may show, for example, that square waves have become more like sine waves and that the peak-to-peak voltage is far less than the original input value.

ONWARDS

That's all for this final Tutorial, but do move on to the Experimental section. We shall then generally wind-up the Teach-In 2000 series in a brief concluding section.
between consecutive input values is thus 2·55V / 255 = 0·01V.

The DAC used now has a slightly more complicated structure, however. The upper and lower references against which the D-to-A conversion is compared are actually set by currents flowing at pins 14 and 15.

The negative reference current is fixed by resistor R2. The positive reference is set by R1 and preset VR1, in order to simulate the voltage control that would be used in other types of DAC.

There are two outputs at which it is also possible to experiment, presets VR2 and VR3 on the positive line. To allow you the opportunity to experiment, presets VR2 and VR3 are used in series with resistors R3 and R4.

There are DACs which directly produce an output voltage rather than a current, but the DAC0800 was chosen because it is probably the least expensive.

DAC POWER SUPPLY

The DAC0800 is normally used with a positive voltage on pin 13, 0V on pin 1 and a negative voltage on pin 3. Ideally the positive and negative supplies should be symmetrical with respect to 0V, i.e. +5V/0V/–5V. The device can in fact operate at between +4·5V/0V/–4·5V and +18V/0V/–18V.

For our demo, however, we want you to use either +6V/0V/–6V or +5V/0V/–6V. For the former (+6V) you will need a secondary 6V battery. Those of you who built the regulated supply described in Part 11, can use that supply for +5V, and use your existing 6V battery to provide –6V.

Note that although we described in Part 11 how a negative supply could be generated from a positive supply, the current available by that method is insufficient to power the DAC0800’s negative pin.

RELATIVITY MATTERS

Make sure that the battery supplying –6V is connected as shown in Fig.12.2, i.e. its positive terminal (+) connected to the 0V rail of the breadboard, and its negative terminal (–) to the point indicated.

Connect the positive supply in the same way you have been doing in previous parts of Teach-In.

The equivalent power supply circuit is shown in Fig.12.4a. It is worth noting how two batteries can be connected in series to provide either a +VE/0V–VE supply, or a supply that is the total of the two battery voltages (Fig.12.4b), depending on which terminal is regarded as the 0V (common) connection. Other power sources (e.g. mains operated power supplies) can sometimes be treated similarly, depending on how they are constructed. It’s relativity again.

Set VR1 fully clockwise to provide the maximum reference current from the positive rail. Set VR2 and VR3 fully anticlockwise to provide the minimum resistance between the positive rail and the respective output pins.

Connect your meter to read the voltage at the positive output terminal pin, and connect the breadboard to the computer via the printer cable.

COMPUTER-TO-DAC

From the main program menu now run Parallel Port Data Display/Set. Since the original software was released with Part 1, a minor change has been made to this option and is included with the V1.1 software released with Part 7.

Photo 12.10. Detail of the DAC circuit, showing connections to port interface board.

Fig.12.4. Effective battery output voltages are relative to which terminal is nominated as the 0V (ground) connection.
At the bottom right-hand side of the screen the option to increment or decrement an 8-bit counter (counting range 0 to 255 decimal) has been included (using keys <-> and -<->). The counter outputs its 8-bit value to the printer port, and thus to the DAC. Consequently, you can control the DAC from your computer either by changing the output byte bits by number or at an incremental rate via the new output counter option.

Set the output byte for 00000000 (zero) and note the meter voltage reading, which will probably be about 1V below the positive power rail voltage (i.e. +4V for a +5V supply). Press the minus key (-) on the keyboard to set the output byte to 11111111 (255). The meter will probably now show a reading close to the positive supply rail voltage.

Hold the minus key pressed, causing the output byte value to progressively decrease, observing your meter while you do so. Note how the voltage falls with decreasing byte values, eventually back to the original lowest point when the byte reaches zero. The process is repeated when the roll-over from 0 to 255 has occurred.

Now monitor the negative output of the DAC and repeat the same tests. This time you will see voltages vary in the opposite direction, e.g. +4V for 255 and +5V for zero.

Now set the output byte at 255 and with your meter still monitoring the negative output, slowly adjust VR3 clockwise. Observe how the output progressively falls, well into the negative voltage region. Press the plus key (+) for an output byte value of zero. The meter reading should now show the maximum value you previously obtained.

Do the same test with the positive output (using VR2) and observe the voltage changes.

These two tests show how the output voltage can be changed not only by the digital value fed to the DAC, but also by the output resistance voltage in relation to the current, just as you found when experimenting with transistors.

Note, though, that different settings of VR2 and VR3 in combination to each other can cause an interactive response within the DAC and affect the output voltages.

Set VR2 and VR3 fully anticlockwise again and now experiment by changing the setting of VR1 and with different output byte values. Then do the same with different settings for VR2 and VR3 as well.

These tests should show you how changes in various controllable factors of the DAC affect the output voltages. All of which illustrates examples of how you might use your computer (or another digital circuit) to control d.c. voltages in a design of your own invention.

YOU AND THE MATRIX

We said earlier that we would like you to add additional data for use with the Matrixed Displays demo screen, allowing the creation of characters and symbols not already included. Here’s what you do:

Through text editor MS-DOS Edit or Windows Notepad, load test file TY2KMRTRX.TXT held in the Teach-In 2000 directory (folder) TY2KPROG.

The first lines of the text in this file are shown in Photo 12.11. Each line holds the data used by the program to generate the matrixed display for the letter preceding it.

In each line, the pixels required to be seen as active are indicated by a 1. Those that are to be blank have a decimal point (representing logic 0).

There are seven groups of five pixels represented in each line. The first group being that for the top line of the 5 × 7 matrixed display. The identity letter at the beginning of each line is followed by a single space. Each 5-bit pixel group is also separated by a single space.

What we would like you to do is to add additional lines to the end of the text file (following on after the data for numeral 9) which provide the data for any letters or characters which the matrix display tells you are not yet available. The new lines can be in any alphanumeric order you like (the program automatically sorts them).

Before you start, make a backup copy of the file just in case you get it messed up (although you could reload the file from your original disk or Net download if you needed to). We suggest a backup name of TY2KMRTRX.BAK.

To help you create a character, it is probably best if you use a sheet of paper on which you have drawn dots for a 5 × 7 matrix. Then more heavily mark those dots which you think are needed by the character you are trying to create. The data line needed in the text file can then be keyed in from your keyboard, using the “dots and ones” format that represents the paper sketch.

Save the text file in the normal way (under its TY2KMRTRX.TXT name) when you have finished (you will prompted if you try to exit the Edit/Notepad program without doing so). Then re-run your Teach-In program and see how your newly created data is interpreted on screen.

If it does not look right, return to the text editor program and amend the data.

You will find this experience useful should you ever wish to create special symbols for use with an alphanumeric or graphics l.c.d.

Have fun – that’s the last of our Teach-In 2000 experiments!

TEACH-IN 2000 - Over to you

Well, after these many months (12 for you, but around 24 for the author in preparation) we have come to the end of the Teach-In 2000 series. It’s not that we have no more to teach you, we have, but the space allocated has run out (we’ve already run over by two issues)!

We know you have enjoyed this series. We hope you have learned a great deal from it and now have the confidence to play around with inventing design ideas using some of the many building blocks we have discussed.

A summary of the subjects which we have covered in Teach-In 2000 is given in Table 12.1.

ELECTRONICS BOOKS

There are many books which will help you to increase your knowledge further, but too numerous to mention by name. There are many featured in our Direct Book Service pages, for which the subjects are changed on a repeating cycle of three issues. Books are frequently being added.

There is also the Modern Electronics Manual to which we refer you, and is another source in relation to EPE. It is advertised in each issue.

The first hundred pages or so of MEM are written by your friendly Teach-In 2000 author and expand on the information given in this series, plus offering a great deal more. Several well-respected authors have written the other 900 or so pages, and they go into greater technical detail about electronics and its applications. It is a publication for which Supplements are published quarterly.

CATALOGUES

No electronic constructor’s workroom is complete without a good selection of catalogues. There are masses of sources, not just through EPE’s advert pages, but also through the Internet.

Many sources specialise in specific areas; a fair number of them, though, are general distributors and retailers. Those in
the UK which have the largest general catalogues which are a MUST to possess for any user of electronic components, are those from RS Components (trade only) or Electromail (the retail division of RS), Farnell Electronic Components, Maplin Electronics and Rapid Electronics.

However, do not overlook other suppliers whose catalogues may be smaller but who may have ranges and prices which compete favourably with larger companies. Indeed some of them stock components which the larger suppliers do not.

KEEPING INFORMED

Also keep reading EPE – remember that we are the leading hobbyist electronics publication and place a heavy emphasis on electronics education. Other sources of information are available on CD-ROM and Video as listed each month in EPE. Also, if you have Internet access, take a browse through the EPE On-Line Web Site (www.epemag.com), from where a number of informative feature articles can be downloaded covering a variety of electronics subjects.

Make use, too, of our web site at www.epemag.wimborne.co.uk, through which you can access many other sources of information, and exchange views with other electronics enthusiasts through our Chat Zone. You will also find Alan Winstanley’s excellent illustrated Basic Soldering Guide and the History of EPE here.

HERE’S WISHING YOU . . .

We hope that your increasing study and knowledge of electronics will not only provide you with designing and constructional pleasure, but that it might also lead to career opportunities for some of you. This has happened for many EPE readers over the years.

Whilst it’s goodbye for this series, we’ll meet again through our other pages!

Table 12.1. Teach-In Subjects

<table>
<thead>
<tr>
<th>Part</th>
<th>Issue</th>
<th>Subject</th>
</tr>
</thead>
</table>
| 1 | Nov 99| Colour codes
Resistors |
| 2 | Dec 99| Capacitors – general
Capacitors – RC timing
Inverter gate
Inverter gate oscillator
Schmitt trigger |
| 3 | Jan 00| Potentiometers
Sensor resistors
Ohm’s Law |
| 4 | Feb 00| Diodes and l.e.d.s
Schmitt trigger oscillator
Computer interface construction |
| 5 | Mar 00| Waveforms
Sine wave relationships
Frequency and time
Analogue-to-Digital converter |
| 6 | Apr 00| Logic gates
Binary and hexadecimal
Binary and decimal counters |
| 7 | May 00| Op.amps – general |
| 8 | Jun 00| Op.amps – Comparators, Mixers, Audio and
Sensor Amplifiers |
| 9 | Jul 00| Transistors |
| 10 | Aug 00| Power supplies – Transformers, Rectifiers |
| 11 | Sep 00| Power supplies – Voltage regulation
Variable Power supply, +5V regulator assembly
Capacitors – Integration, Differentiation |
| 12 | Oct 00| 7-segment displays
Liquid crystal displays
Digital-to-Analogue converter
Miscellany |
Computing has come a long way in the last few years, but new developments that are under way at IBM may mean that computing technology will take a quantum leap in the next few years. Recently they have announced a new development that will ultimately lead to a computer that is capable of performing one quadrillion operations per second (one petaflop).

This project is being funded by IBM themselves and is not a government development programme, and this is quite unusual for a programme of this size. Taking about five years in total, the development adopts a radical new approach to computer design. Both the technology to be used and the approach are revolutionary, and this will enable the programme to be undertaken so quickly. The time estimated is about a third that would normally be expected under normal project conditions.

Called Blue Gene, the programme has resulted from a requirement to study the immensely complicated human proteins. It is expected that when the project is complete, the computer will be able to provide significant help in increasing our knowledge of the way in which proteins are structured and in particular the way in which they fold. This will be an important step in the future of healthcare and medicine.

Smash

The new computer is based around a new architecture called SMASH. This stands for Simple, MAny and Self-Healing. This gives an insight into the way in which it works. In fact the new technology appears to be one of the largest revolutions in computer science since the mid-1980s.

To give an idea of the extent of the performance of the new computer it is estimated to be 500 times more powerful than the most powerful computer in existence, and typically two million times more powerful than the high performance PCs in use today.

To achieve these levels of performance the new architecture has three particular features. It greatly simplifies the number of instructions that each processor has to carry out. Not only does this allow them to operate faster, but in doing so it reduces the power requirements that would otherwise be needed. Secondly it enables a far greater degree of parallel processing to be undertaken.

Typically the system will be capable of handling more than eight million different computational threads. This is a major advance when compared to a maximum of around 5000 using current technology.

The third new feature is possibly one of the most interesting because the computer will be self-stabilising and healing. This feature will enable the computer to recognise and overcome failures by avoiding faulty areas like processors and computing threads. With a computer of this complexity, this type of feature is of particular importance, and it is one that should become more important as technology becomes more complex in the years to come.

Thread Unit

The core item in the Blue Gene computer is an item called the thread unit. This is basically a RISC processor that has been reduced to the bare minimum. Having an instruction set of 57 instructions it has been designed to produce the maximum throughput for the minimum amount of silicon.

Further analysis of the actual architecture needed for the new units revealed that floating point functions were only required on a small proportion of the operations. To maximise the effectiveness of each of the processors eight thread units are grouped together with two 500MHz floating point processors. One of these units is used for add and subtract and the other for multiply and divide functions.

Additionally, half a megabyte of memory is provided in each processor group and this has been made possible by the use of IBM’s recently developed memory-in-logic process. The whole combination of the eight thread units, two floating-point units, memory and some additional logic combines to produce a one Gflop processor.

However, this is only part of a single chip that will be used in Blue Gene. Around thirty of these processors will be incorporated into a chip. The exact number still needs to be finalised and will depend on a number of factors relating to the performance and the removal of heat.

One of the other major areas to be addressed is that of inter-processor communication. To achieve the best performance from each of the processors communication will need to be very efficient. It will use two bi-directional 128-bit data rings. There will be one between each row and column of processors on the chip.

Using these, data is tagged and can be transferred internally between the processors, or it can be transferred off the chip via six external busses. The speed of this will be kept down to 500MHz to enable the chips to operate within their required power rating. Although it is anticipated they could operate at speeds up to 1GHz, this would increase the overall power consumption to a point that would be unacceptable.

Manufacturing

Each chip will measure 21mm × 21 mm. This is a significant advance over anything currently in production today. The main problem will be yield. Using current technology the yield on chips of this complexity would be very low. However, the self-healing aspects of the architecture can be used to advantage, and chips with up to two defective processors will be used. This will enable costs to be kept within reasonable bounds.

There are six external busses and these will operate at speeds of one or two Gbytes per second. These provide interconnectivity with external chips and they are organised in a three dimensional matrix with 30 processors at each node.

Physically, the chips will be mounted on boards containing a total of around 36 chips. The actual design of this board is quite challenging because the chip to chip busses will need to be kept below 150mm to ensure that delays do not rise to levels that cannot be tolerated. These boards will then be able to provide a throughput equivalent to 900 Gflops.

In turn these boards will be arranged in a matrix 16 boards by 16 boards in the horizontal plane and five boards high to give a total of 1280 boards and the final performance of over one Pflop.

Failures

With the phenomenal number of processors in the computer it is estimated that random failures will occur about every four days. In addition to this random soft errors caused by cosmic rays will also be a problem. To resolve these problems the processors will operate in a master-slave configuration so that the results can be checked. If incorrect they will be recalculated.

This mode of operation means that the whole system is very resilient, and significant amounts of the system could fail or be removed and the system would still work, albeit rather more slowly.

This new computer is a particularly exciting development. Although not complete yet, it paves the way for the future.

Not only does it promise to provide a way of analysing proteins for research into better healthcare, but it also maps out the way for the future of computers as well.

Further information can be found at www.ibm.com and search on Blue Gene.
www.tech-supplies.co.uk is a new online store that caters for all your electronic, robotic and educational technology projects. We already supply a wide range of unique materials and components to the educational sector, and are now pleased to offer the public the same range, with the added benefit of secure online ordering and prompt delivery. Visit the site now to find out more! As a special introductory offer all orders over £30 received before the end of November 2000 will automatically be entered into a draw to win an amazing Aibo robotic dog worth over £1800.

MODELLING MATERIALS
We supply a wide range of unique modelling materials such as ‘polymorph’ plastic, low cost wheels/cams & gearboxes, and electronic components.

ROBOTS, BUGGYS, ETC..
Bugs, rockets, self-assembly radio control robots and parts for school and public competitions. These make ideal gifts!

MICROCONTROLLERS
Our award-winning range of PIC microcontroller products is already widely used in education. These unique programming and emulator systems are now available direct to the public.
VIDEOS ON ELECTRONICS

A range of videos selected by EPE and designed to provide instruction on electronics theory. Each video gives a sound introduction and grounding in a specialised area of the subject. The tapes make learning both easier and more enjoyable than pure textbook or magazine study. They have proved particularly useful in schools, colleges, training departments and electronics clubs as well as to general hobbyists and those following distance learning courses etc.

BASICS

VT201 to VT206 is a basic electronics course and is designed to be used as a complete series, if required.

VT201 54 minutes. Part One: D.C. Circuits. This video is an absolute must for the beginner. Series circuits, parallel circuits, Ohms law, how to use the digital multimeter and much more.

Order Code VT201

VT202 62 minutes. Part Two: A.C. Circuits. This is your next step in understanding the basics of electronics. You will learn about coils, transformers, capacitors, etc are used in common circuits.

Order Code VT202

Order Code VT203

VT204 56 minutes. Part Four: Power Supplies. Guides you step-by-step through different sections of a power supply.

Order Code VT204

VT205 57 minutes. Part Five: Amplifiers. Shows you how amplifiers work as you have never seen them before. Class A, class B, class C, op.amps, etc.

Order Code VT205

VT206 54 minutes. Part Six: Oscillators. Oscillators are found in both linear and digital circuits. Gives a good basic background in oscillator circuits.

Order Code VT206

£34.95 each inc. VAT & postage

Order 8 or more get one extra FREE
Order 16 get two extra FREE

ORDERING: Price includes postage to anywhere in the world.

OVERSEAS ORDERS: We use the VAT portion of the price to pay for air mail postage and packing, wherever you live in the world. Just send £34.95 per tape. All payments in £ sterling only (send cheque or money order drawn on a UK bank). Make cheques payable to Direct Book Service.

Visa and Mastercard orders accepted – please give card number, card expiry date and cardholder’s address if different from the delivery address.

Orders are normally sent within seven days but please allow a maximum of 28 days, longer for overseas orders.

Send your order to: Direct Book Service, Allen House, East Borough, Wimborne, Dorset BH21 1PF

Direct Book Service is a division of Wimborne Publishing Ltd., Publishers of EPE

Tel: 01202 881749, Fax: 01202 841692

Due to the cost we cannot reply to overseas orders or queries by Fax.

E-mail: dbv@epemag.wimborne.co.uk

Everyday Practical Electronics, October 2000

VCR MAINTENANCE

VT102 84 minutes: Introduction to VCR Repair. Warning, not for the beginner. Through the use of block diagrams this video will take you through the various circuits found in the NTSC VHS system. You will follow the signal from the input to the audio/video heads then from the heads back to the output.

Order Code VT102

VT103 35 minutes: A step-by-step easy to follow procedure for professionally cleaning the tape path and replacing many of the belts in most VHS VCR’s. The viewer will also become familiar with the various parts found in the tape path.

Order Code VT103

DIGITAL

Now for the digital series of six videos. This series is designed to provide a good grounding in digital and computer technology.

VT301 54 minutes. Digital One: Gates begins with the basics as you learn about seven of the most common gates which are used in almost every digital circuit, plus Binary notation.

Order Code VT301

VT302 55 minutes. Digital Two: Flip Flops will further enhance your knowledge of digital basics. You will learn about Octal and Hexadecimal notation groups, flip-flops, counters, etc.

Order Code VT302

VT303 54 minutes. Digital Three: Registers and Displays is your next step in obtaining a solid understanding of the basic circuits found in today’s digital designs. Gets into multiplexers, registers, display devices, etc.

Order Code VT303

VT304 59 minutes. Digital Four: DAC and ADC shows you how the computer is able to communicate with the real world. You will learn about digital-to-analogue and analogue-to-digital converter circuits.

Order Code VT304

VT305 56 minutes. Digital Five: Memory Devices introduces you to the technology used in many of today’s memory devices. You will learn all about ROM devices and then proceed into PROM, EPROM, EEPROM, SRAM, DRAM, and MBM devices.

Order Code VT305

VT306 56 minutes. Digital Six: The CPU gives you a thorough understanding in the basics of the central processing unit and the input/output circuits used to make the system work.

Order Code VT306

£34.95 each inc. VAT & postage

Order 8 or more get one extra FREE
Order 16 get two extra FREE

ORDERING: Price includes postage to anywhere in the world.

OVERSEAS ORDERS: We use the VAT portion of the price to pay for air mail postage and packing, wherever you live in the world. Just send £34.95 per tape. All payments in £ sterling only (send cheque or money order drawn on a UK bank). Make cheques payable to Direct Book Service.

Visa and Mastercard orders accepted – please give card number, card expiry date and cardholder’s address if different from the delivery address.

Orders are normally sent within seven days but please allow a maximum of 28 days, longer for overseas orders.

Send your order to: Direct Book Service, Allen House, East Borough, Wimborne, Dorset BH21 1PF

Direct Book Service is a division of Wimborne Publishing Ltd., Publishers of EPE

Tel: 01202 881749, Fax: 01202 841692

Due to the cost we cannot reply to overseas orders or queries by Fax.

E-mail: dbv@epemag.wimborne.co.uk

Everyday Practical Electronics, October 2000

RADIO

VT401 61 minutes. A.M. Radio Theory. The most complete video ever produced on a.m. radio. Begins with the basics of a.m. transmission and proceeds to the major stages of a.m. reception. Learn how the signal is detected, converted and reproduced. Also covers the Motorola C-QUAM a.m. stereo system.

Order Code VT401

VT402 58 minutes. F.M. Radio Part 1. F.M. basics including the functional blocks of a receiver. Plus r.f. amplifier, mixer oscillator, i.f. amplifier, limiter and f.m. decoder stages of a typical f.m. receiver.

Order Code VT402

VT403 58 minutes. F.M. Radio Part 2. A continuation of f.m. technology from Part 1. Begins with the detector stage output, proceeds to the 19kHz amplifier, frequency doubler, stereo demultiplexer and audio amplifier stages. Also covers RDS digital data encoding and decoding.

Order Code VT403

MISCELLANEOUS

VT501 58 minutes. Fibre Optics. From the fundamentals of fibre optic technology through cable manufacture to connectors, transmitters and receivers.

Order Code VT501

VT502 57 minutes. Laser Technology. A basic introduction covering some of the common uses of laser devices, plus the operation of the Ruby Rod laser, HeNe laser, CO2 gas laser and semiconductor laser devices. Also covers the basics of CD and bar code scanning.

Order Code VT502

Each video uses a mixture of animated current flow in circuits plus text, plus cartoon instruction etc., and a very full commentary to get the points across. The tapes are imported by us and originate from VCR Educational Products Co, an American supplier. We are the worldwide distributors of the PAL and SECAM versions of these tapes. (All videos are to the UK PAL standard on VHS tapes unless you specifically request SECAM versions.)
A few practical reminders about testing transistors the quick and easy way are discussed in this month’s column of reader’s queries.

Keep Soldering On
I am building a tube amplifier kit that uses “eyelet” fibre circuit boards. The instructions say to heat the eyelet and then put the solder to the tip.

My concern is that there is a brown residue (from the rosin?) left on the solder afterwards. I understood that the rosin burns away, but on my boards it is still visible. The joints seem solid. Am I doing something wrong? A. Harris via E-mail.

The purpose of flux in a solder is to help the molten solder to flow better, by removing oxides and deposits. What you are seeing is the remainder of the rosin flux contained within the solder. It does mostly burn away (which is where the smoke comes from) but there will be some left on the board afterwards.

You can clean it off using a proprietary aerosol cleaner if you like, but on a “turret board” or eyelet board it won’t make any difference whatsoever on performance.

Reminds me of the managing director of an electronics company I worked for many years ago, who gave me a rocket for “using an electronics company I worked for many years ago, who gave me a rocket for “using...” claiming that I had

put the solder to the tip. My concern is that there is a brown residue (from the rosin?) left on the solder afterwards. I understood that the rosin burns away, but on my boards it is still visible. The joints seem solid. Am I doing something wrong? A. Harris via E-mail.

The purpose of flux in a solder is to help the molten solder to flow better, by removing oxides and deposits. What you are seeing is the remainder of the rosin flux contained within the solder. It does mostly burn away (which is where the smoke comes from) but there will be some left on the board afterwards.

You can clean it off using a proprietary aerosol cleaner if you like, but on a “turret board” or eyelet board it won’t make any difference whatsoever on performance.

Reminds me of the managing director of an electronics company I worked for many years ago, who gave me a rocket for “using an electronics company I worked for many years ago, who gave me a rocket for “using...” claiming that I had probably shorted out the entire board. He was actually referring to the flux residue which he thought conducted electricity!

Check Those Transistors
I have a bit of trouble with a metal-cased 2N3055 power transistor – I can’t seem to find which of the two pins is the collector/emitter! The only thing I found was that when doing a continuity test across the pins, I get a reading one way but not the other. I’m not sure what conclusion to draw from that. Mark, via the Net.

A quick and easy transistor test is one of those things worth reminding readers about. With experience you’ll learn that the metal case of most power transistors is wired to the collector (c). The two pins are for the base (b) and emitter (e) connections.

You can hook up to the collector in a number of ways, e.g. if screwing the transistor to a heatsink, use a solder tag under one of the mounting bolts. It is sometimes important to ensure that nothing else comes in contact with the collector, so an insulated mounting kit should be used.

A bipolar transistor, including the metal-cased 2N3055, can be considered as equivalent to two back-to-back diodes. How bipolar transistors are formed this way using an n-p-n sandwich structure is shown in Fig.1. An npn transistor appears to contain two cathodes (emitter and collector) and one anode (base), and you can see how the base is common to both diodes. The opposite conditions pertain to pnp transistors.

By using an ordinary moving coil multimeter you can perform some quick tests to help identify the pinouts, and also to help test the integrity of the device. A digital multimeter may have a diode check range which can also be used to test bipolar transistors, see later.

Take Note
The first thing to note is that a moving-coil multimeter has an internal battery needed for measuring resistance, and the meter’s positive terminal actually sinks current, i.e. current comes out of its negative terminal. (The opposite seems to be true of digital types.)

An ordinary silicon diode can soon be given a “go-no-go” check using the resistance range. Diodes have a high resistance in one direction only. Obviously a high resistance in both directions indicates open circuit whilst a low resistance indicates a short.

A random 1N4148 diode measured 5kΩ (5 kilohms) when forward biased: the negative lead therefore being connected to the anode. This can be used as the basis for testing transistors and it’s handy to know how to run a quick check on a suspect or unmarked device.

A sample 2N3055 power transistor was tested (see photos) and the following results were obtained, remembering that when a terminal is positively biased, this means it is connected to the negative test lead of a moving-coil meter. The pinout details are shown in Fig. 2.

A low resistance of about 4k was read, a high resistance about 800k. If the emitter-collector test shows a low resistance, this indicates a short or open circuit respectively, and you can consign it to the bin.
Source of Leaks

The leakage current of an npn bipolar transistor can also be quickly checked. Simply hook the resistance meter negative lead (+supply) to the collector and the emitter to the positive terminal (–supply), leaving the base unconnected. This should indicate a high resistance. Any noticeable deflection in the reading hints at a leaky transistor.

Leakage current actually rises with temperature, so you can try heating it with a hot air gun (a hot air blower on my gas-powered iron was ideal) to see what happens. After about a minute or so the leakage current will rise substantially. Experiment with some old surplus devices as well.

When using an auto-ranging digital multimeter, the preceding go-no-go testing method won’t work on the resistance range as the DMM has a very high impedance, but you can still use a diode check function to measure and identify the internal diodes of bipolar transistors (see photos). Just remember that this time, the DMM’s positive lead is a source of current. A “good” diode will have a forward voltage of roughly 0.45V upwards as shown on my AVO meter, and its anode will be connected to the positive lead.

Earthly feelings

I was a test engineer for an electrical contractor for many years, and reading Circuit Surgery in EPE September 2000 issue I noted that Fernando Bentes de Jesus is receiving electric shocks from his dishwasher which does not appear to be earthed – any voltage appearing on the metal case would otherwise flow to earth and not through him. All electrical installation must be earthed for the RCD [GFCI in the USA] to protect life and property.

The RCD works by sensing the imbalance between the phase “live” and neutral, with current flowing phase to earth, or neutral to earth. It will not protect against phase to neutral. As you rightly say, the RCD should trip out in 40 milliseconds. Ideally, it should be tested with a RCD tester that will pass the rated current and measure the trip time; the test button on the RCD only tests the mechanical side of the trip. Tony Hitchings, Hereford via E-mail.

Thanks for the valuable advice. ARW.

Quick and Easy Go-No-Go Testing Using Your Multimeter

The collector of a 2N3055 is connected to the metal case of the device. Use multimeter test probes to check the internal diodes. Using a moving coil meter set to its resistance range to test the transistor. Note that current flows out of the negative lead. The device will have a low resistance (4k to 5k) when forward biased.

The diode test range of a digital multimeter can be used to measure the forward voltage of a transistor diode. A good reading is in the region of 0.45V to 0.9V.
A COMPLETE RANGE OF INVERTERS

150W TO 1000W - 12V & 24V

A Complete range of regulated inverters to power 220V and 240V AC equipment via a car, lorry or boat battery. Due to their high performance (>90%) the inverters generate very little heat. The high stability of the output frequency (+/-1%) makes them equally suitable to power sensitive devices.

These inverters generate a modified sine wave, which are considerably superior to the square waves which are produced by most other inverters. Due to this superior feature they are capable of powering electrical equipment such as TV's, videos, microwave ovens, electrical lamps, pumps, battery chargers, etc.

Low Battery Alarm
The inverters give an audible warning signal when the battery voltage is lower than 10.5V (21V for the 24V version). The inverter automatically shuts off when the battery voltage drops below 10V (20V for the 24V version). Fuse protected input circuitry.

<table>
<thead>
<tr>
<th>Order Code</th>
<th>Power</th>
<th>Voltage</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>651.581</td>
<td>150W Continuous</td>
<td>12V</td>
<td>£38.49</td>
</tr>
<tr>
<td>651.578</td>
<td>150W Continuous</td>
<td>24V</td>
<td>£38.49</td>
</tr>
<tr>
<td>651.582</td>
<td>300W Continuous</td>
<td>12V</td>
<td>£54.36</td>
</tr>
<tr>
<td>651.585</td>
<td>300W Continuous</td>
<td>24V</td>
<td>£54.36</td>
</tr>
<tr>
<td>651.583</td>
<td>600W Continuous</td>
<td>12V</td>
<td>£118.42</td>
</tr>
<tr>
<td>651.593</td>
<td>600W Continuous</td>
<td>24V</td>
<td>£118.42</td>
</tr>
<tr>
<td>651.587</td>
<td>1000W Continuous</td>
<td>12V</td>
<td>£174.60</td>
</tr>
<tr>
<td>651.597</td>
<td>1000W Continuous</td>
<td>24V</td>
<td>£174.60</td>
</tr>
</tbody>
</table>

All prices are inclusive of VAT. Carriage £6.00 Per Order.

Many uses include:- * Fetes * Fairgrounds * Airshows * Picnics * Camping * Caravans * Boats * Carnivals * Field Research and * Amateur Radio field days.

DELIVERY CHARGES ARE £6.00 PER ORDER. OFFICIAL ORDERS FROM SCHOOLS, COLLEGES, GOVT. BODIES, PLC'S ETC. PRICES ARE INCLUSIVE OF VAT. SALES COUNTER, VISA AND ACCESS ACCEPTED BY POST, PHONE OR FAX, OR EMAIL US AT SALES@BKELEC.COM ALTERNATIVELY SEND CHEQUE OR POSTAL ORDERS MADE PAYABLE TO BK ELECTRONICS.

For Full Specifications View our web site at:- WWW.BKELEC.COM/INVERTERS.HTM
The leading magazine for vintage radio enthusiasts

Whether your interest is in domestic radio and TV or in amateur radio, in military, aeronautical or marine communications, in radar and radio navigation, in instruments, in broadcasting, in audio and recording, or in professional radio systems fixed or mobile, Radio Bygones is the magazine for you.

Articles on restoration and repair, history, circuit techniques, personalities, reminiscences and just plain nostalgia – you'll find them all. Plus features on museums and private collections and a full-colour photograph in every issue.

It's mostly about valves, of course, but 'solid-state' – whether of the coherer and spark-gap variety or early transistors – also has a place.

From the days of Maxwell, Hertz, Lodge and Marconi to what was the state-of-the-art just a few short years ago . . .

There is also a selection of free readers' For Sale and Wanted advertisements in every issue.

Radio Bygones covers it all!

The magazine is published six times a year, and is available by postal subscription. It is not available at newsagents.

To take out a subscription, or to request a sample copy, please complete the form below and return it to:

Radio Bygones, Allen House, East Borough, Wimborne, Dorset BH21 1PF.

Tel: 01202 881749. Fax 01202 841692. Web sites: www.radiobygones.co.uk www.radiobygones.com

Radio Bygones Order Form

A Sample Copy of Radio Bygones £3.25
(Add 70p for overseas Airmail postage)

Subscriptions (post paid):

United Kingdom £18.50 £35.00
Rest of Europe (Airmail) £20.50 £39.00
Rest of the World (Airmail) £24.50 £47.00

☐ Yes, I would like a sample copy of Radio Bygones
☐ Yes, I would like to take out a subscription for:
☐ One year (6 issues) ☐ Two years (12 issues)
☐ I enclose a cheque/Eurocheque/PO for £
payable to Wimborne Publishing Ltd
☐ Please debit my Visa/Mastercard

Note Minimum credit card payment is £5

My credit card number is:

Please print clearly, and check that you have the number correct

The card is valid from: to:

My name is ..

My address ..

...
Post Code/Zip ...

Signed ..
New – The PIC 18Cxxx series

FED PIC C Compiler – Version 3.0 now available

- Designed to ANSI C Standards
- Complete development environment includes editor, assembler, simulator, waveform analyser and terminal emulator (see screenshot below)
- Libraries include serial interfaces, I2C, LCD, keypads, delays, string handling, hardware etc.
- Simulator runs up to 10 times faster than MPLAB, allows inputs to be defined, multiple breakpoint types, single stepping, step over etc.
- Supports all 14-bit core PICs – 12C67x, 16C55x, 16C6x, 16C7x, 16C8x, 16C87x, etc.
- Will produce code for MPLAB

LEARN to Program PIC’s in C with FED!

Download FREE from our web site

With the FED introductory manual: “Learn to program PIC’s with FED PIC C”

- Suitable for complete beginners to PICs or to the C programming language
- Leads through example
- Introduces simple C programs, then covers variables and casting, pointers, structures and unions, functions, etc.
- All examples will run fully within the simulator, or on the FED 16F84 and 16F877 development boards
- Covers use of interrupts and programming for real time applications
- Hints and tips on good programming practice with the PIC
- Full examples of debugging using FED PIC C are included
- Included FREE on our PIC C Compiler CD ROM, or available in paper copy

Prices (reductions for PICDESIM/WIZPIC & our programmer users)

C Compiler with all manuals on CD ROM £60. CD ROM with printed manuals £75.

Buy with PICDESIM/WIZPIC or our Programmer – £45.00 CD-ROM.

“Learn to program PICs with FED PIC C” paper copy – £7.50.

PIC Programmers including 18Cxxx

PIC Serial Programmer (Left)

Handles serially programmed PIC devices in a 40-pin multi-width ZIF socket. 16C55X, 16C6X, 16C7X, 16C8x, 16F8X, 12C508, 12C509, 16C72X PIC 14000, 16F87X, 18Cxxx etc. Also In-Circuit programming. Operates on PC serial port

Price : £45/kit
£50/built & tested

PIC Introductory – Programs 8 & 18 pin devices : 16C505, 16C55X, 16C61, 16C62X, 16C71, 16C71X, 16C8X, 16F8X, 12C508/9, 12C671/2 etc. £25/kit.

AVR – AVR1200, 2313, 4144, 8515, 8535, 4434 etc. in ZIF, 4.5V battery powered. Price : £40 for the kit or £45 built & tested.

WIZPIC

PIC Visual Development

- Rapid Application Development for the PIC microcontroller
- Drag and drop your software component selections on to your design
- Included components support timers, serial interfaces, I2C, LCD, 7-Seg displays, keypads, switches, port controls, and many more.
- Connect software components to PIC pins by point & click using the mouse
- Set parameters for each component from drop down list boxes, check boxes, or text entry
- Links your code automatically into library events (e.g. Button Pressed, Byte Received etc)
- Up to 10 times faster than MPLAB
- Supports all 14-bit core PIC’S -12C67x, 16C55x, 16C6x, 16C7x, 16C8x, 16C87x etc.

Cost – CD-ROM with Data sheets and application notes – £35.00, Floppy version £30.00.

All our Programmers operate on PC serial interface. No hard to handle parallel cable swapping! Programmers supplied with instructions, + Windows 3.1/95/98/NT software.

Upgrade programmers from our web site!

Forest Electronic Developments

60 Walkford Road, Christchurch, Dorset, BH23 5QG.

E-mail – info@fored.co.uk, or sales@fored.co.uk

Web Site – http://www.fored.co.uk

01425-274068 (Voice/Fax)

Prices are fully inclusive. Add £3.00 for P&P and handling to each order. Cheques/PoS payable to Forest Electronic Developments, or phone with credit card details.

18C452

New architecture (more instructions + Hardware multiply), 40MHz clock, 16K program words, 1536 bytes RAM. Easy to upgrade from 16F877

18C452/JW £20.00
18C452/OTP £8.00
PIC V-SCOPE

Sitting between these two designs is the PIC V-Scope described here. It provides waveform display of two signals simultaneously at rates much higher than the TI design offers, although lower than V-Scope can handle. It is considerably easier to construct than V-Scope. With care, even less-experienced hobbyists should stand an excellent chance of constructing it successfully.

In order to use the design, however, you need a PC-compatible computer capable of running QBasic or QuickBASIC and for it to “read” mouse controls via those programming dialects. As discussed later, the controlling program allows you to check on both points before purchasing any components. The author has run the prototype under Windows 3.1, 95 and 98. Many of the functions offered by this design are closely similar to those offered by V-Scope. Indeed, the controlling software is a cut-down version of that design.

CIRCUIT DIAGRAM

The complete circuit diagram for the PIC V-Scope is shown in Fig.1. Both input channels are identical and are formed around op.amps IC1a and IC1b. Taking just Channel 1, the signal is brought into socket SK1 and to switch S1, at which a choice of gain is offered, x1 (unity) or x10, as set by resistors R1 and R2 in relation to the value of R3. Other gains may be preset by changing the values of the resistors during assembly.

From R1/R2, the signal is routed to a.c. coupling capacitor C1, which can be bypassed via switch S2 for d.c. operation. The signal is then fed to the inverting input of IC1a, from where it is output to the PIC microcontroller, IC2, a PIC16F877 device. Mid-rail bias (2.5V) for both op.amps is set by the potential divider formed across R9 and R10, with smoothing provided by capacitor C3. This bias must be taken into account when monitoring d.c. signals.

The PIC16F877 microcontroller, as discussed in several previous EPE issues, has eight inputs which can be used for analogue-to-digital conversion. In this design, only inputs RA0 and RA1 are used. All other active PIC port pins are used in conventional digital input or output mode.

The basic role of the PIC is to perform the A-to-D conversion and output the result to the computer via socket SK4, either immediately on conversion, or after storing it temporarily in memory chip IC3.

PORTD is used for the memory data routing, while PORTC outputs the data to the computer. As is frequently the case with EPE designs, the computer’s parallel port handshake lines are used for the data output. Read/write control of IC3 is via the RA4/CE and RA5/WE connection pairs.

Communication from the computer to the PIC is via computer data lines DA0 to DA3, also connected through socket SK4.

SPECIFICATIONS...

- PIC microcontroller performs analogue-to-digital conversion, buffer memory/storage/recall and output to PC-compatible computer for display
- Computer control of all PIC program modes
- Selectable dual channel or either channel individually
- Two signal display modes, analogue and digital
- Waveform gain switchable for x1 or x10
- Input impedance 10kΩ and 100kΩ
- Maximum input signal level before display clipping 5V pk-pk, or 50V if x10 scope probe used
- Input switchable for a.c. or d.c.
- Waveform synchronisation (sync) selectable on/off by channel, with controllable trigger levels
- Waveform shift vertically for each channel
- Frequency range: nominally audio, but extending well below 1Hz and above 10kHz
- Frequency counting and waveform amplitude monitoring for each channel, selectable on/off
- Frequency count accuracy presettable from screen for fine tuning, with automatic recall of settings on start-up
- Three sampling modes: via 2Kbyte or 32Kbyte buffer memory, or immediate
- Screen grid on/off
- Waveform display hold on/off
- Waveform data output to disk, on demand or automatic, date and time stamped
- Waveform data input from disk files
- Disk files selectable by mouse from on-screen directory
- Operation via parallel printer port
- Port address selectable on-screen, with automatic recall on start-up
- Screen dump to printer, date and time stamped
- All functions mouse-selectable
- Additional keyboard control for some options
- Power supply, d.c., nominally 9V, but 7V to 15V acceptable, approx 6mA average, on-board 5V regulator
Resistors R12 to R15 bias the PIC’s respective input pins to 0V when the computer is not connected.

The PIC is operated at 5MHz, as set by crystal X1, and use of the 20MHz version (PIC16F877-20) is recommended. Whilst the author has successfully "over-run" a standard PIC16F877-4 (nominal 4MHz max.) in this circuit, satisfactory results cannot be guaranteed for other assemblies.

The PIC may be programmed on-board by those who have suitable programmers (e.g. PIC Toolkit Mk2 of May/June '99). Terminal strip TB1 provides the access connections.

The prototype is powered at 9V d.c., with connection via a PP3 battery clip. A power supply socket could be used instead. The circuit may be powered at between 7V and 15V d.c., with an average current consumption of about 6mA.

Full software, including source code, is available on 3.5-inch disk (for which a nominal handling charge applies) or free via the EPE web site. Pre-programmed PICs are also available from an external supplier. For more details see this month’s Shoptalk page.

PROGRAM OPERATION

Whether the PIC is instructed by the computer to sample with or without using the buffer memory, the basic process is the same. It samples the analogue input signals as fast as it can, converts them to digital format which it sooner or later outputs to the computer.

A series of handshake commands are exchanged between the PIC and computer in order to maintain the correct sequence of events. The 8-bit data is output as two 4-bit nibbles, which are re-assembled by the computer software to a single byte and plotted on screen according to the value of the signal voltage. The entire sequence of data input and plotting is performed by a set of machine code routines.

Fig.1. Complete circuit diagram for the PIC Dual-Chan Virtual Scope.
During this process, the computer software assesses the data for display synchronisation, in which repeating signal traces commence on screen at the same relative waveform amplitudes. The sync trigger thresholds can be set under mouse control, both for amplitude levels, and whether positive or negative-going triggering is required. Sync control may be turned on or off via the mouse.

Data is also analysed for signal frequency and amplitude, with the results output to the screen at the end of each waveform traversing the display area. Frequency is quoted in Hertz (Hz). Amplitude is quoted in three values, maximum and minimum peaks, and the absolute difference between the two (peak-to-peak), in volts. This analysis sequence may also be turned on and off via the mouse.

The PIC microcontroller can be instructed to sample either two channels in parallel (the second channel sampled a few microseconds after the first), or either channel individually.

MEMORY

There are two basic sampling modes, immediate or buffered. In the immediate mode the PIC samples and converts the analogue data to digital and immediately stores them in IC3. Handshaking is not taken as in the immediate mode but immediately stored in IC3. Handshaking is required and the process is entirely under PIC control.

In dual-channel mode, alternate addresses are used for each channel, with a maximum sample quantity of 16K and 1K per channel. In single channel mode the full allocated block is used by that channel.

When the memory count reaches 2K or 32K, as appropriate, the PIC signals to the computer that the data is now ready to be transferred.

A slightly cut-down version of the sampling routine for one channel is shown in Listing 1. In the actual program, another routine is also called, to determine whether or not the mode needs to be changed.

To read data back from the memory in the same order, the counters are reset, IC3 WE is set high and OE set low with the commands:

- MOVW %00100000 MOVF PORTW
- MOVW %00110000 MOVWF PORTW

Data is then read back from each address via PORTD, with the command MOVF PORTD,W. The data is output to the computer, after which the counter is updated and the next sample recalled. The data transfer uses the same handshake protocol as for the immediate mode. The routines are too complex to be listed here.

This buffered technique allows samples to be taken far more rapidly than the immediate mode. There is, though, a brief delay between each sample batch being displayed on screen, but this is usually almost unnoticeable.

The choice of sampling mode is mouse-controlled, the computer sending the mode commands to the PIC via data lines DA0 to DA3.

A summary of the sampling modes is as follows:

- **Single channel (A or B):** Immediate, continuous, no batch limit
- **Single channel (A or B):** Buffered, 2048 or 32768 samples per batch
- **Dual channel (A + B):** Immediate, continuous, no batch limit
- **Dual channel (A + B):** Buffered, 1024 or 16384 samples per channel per batch

MODE RATES

To simplify programming and, more particularly, to speed data acquisition, separate routines are used in the PIC program for each mode.

There is also a choice of the rate at which the PIC actually does the analogue-to-digital conversion. As detailed in Table 11.1 of the PIC16F87x data book, the maximum rate (Tosc) at which the PIC can perform its A/D conversion is dependent upon the frequency at which the PIC is operated.

COMPONENTS

<table>
<thead>
<tr>
<th>Resistors</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1, R4, R5, R6 to R10, R12 to R16 10k (11 off)</td>
</tr>
<tr>
<td>R2, R3, R6, R7 100k (4 off)</td>
</tr>
<tr>
<td>R11 1k</td>
</tr>
<tr>
<td>All 0.25W 5% carbon film or better.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2 10μF radial elect, 16V (2 off)</td>
</tr>
<tr>
<td>C3, C6 22μF radial elect, 16V (2 off)</td>
</tr>
<tr>
<td>C4, C5 10pF ceramic disc, 5mm (2 off)</td>
</tr>
<tr>
<td>C7 to C9 100n ceramic disc, 5mm (3 off)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semiconductors</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 1N4148 signal diode</td>
</tr>
<tr>
<td>IC1 MAX492 dual op.amp, rail-to-rail (see text)</td>
</tr>
<tr>
<td>IC2 PIC16F877-20P microcontroller, pre-programmed (see text)</td>
</tr>
<tr>
<td>IC3 TC5525DPL-8SL 32Kbyte SRAM (see text)</td>
</tr>
<tr>
<td>IC4 78L05 +5V 100mA voltage regulator</td>
</tr>
</tbody>
</table>

Miscellaneous

S1 to S4 min.s.p.d.t. toggle switch (4 off)

SK1 to SK3 2mm single socket (3 off) (see text)

SK4 36-way Centronics socket, right-angle, p.c.b. mounting

TB1 4-way 1mm pin-header strip (see text)

X1 5MHz crystal

Printed circuit board, available from the EPE PCB Service, code 275; plastic case, 180mm x 120mm x 40mm; 8-pin d.i.i. socket; 28-pin d.i.i. socket, 40-pin d.i.i. socket; PP3 battery clip (see text); p.c.b. supports, self-adhesive, low profile (4 off); connecting wire; solder, etc.

Approx. Cost £33 excluding case

Everyday Practical Electronics, October 2000
For a 5MHz clock, as used in this
design, register ADCON0 has a maximum recommended
ADCl:ADCS0 (bits 7 and 6) value of binary 01 (8Tosc).
However, on experimentation, it was found that the
2T osc rate (binary 00) worked perfectly satisfactorily, providing
a four-times increase in A/D conversion speed.

Because this higher operating rate cannot
be guaranteed for all devices, the PIC
software has been given the option for
either rate to be selected from the com-
puter (see later). ADCON0 bit 7 is held low
and bit 6 is toggled between high and low
to alternate between 8Tosc and 2Tosc
(respectively).

DELAY CALLS

In the author’s PIC16F87x Mini
Tutorial (Oct ’99), an example of A/D con-
version was illustrated in which a delay
was imposed during multiple sampling
routines, in order to allow time for the PIC
to fully acquire each analogue value before
conversion is performed.
The PIC16F87x data book discusses this timing subject, but presents a compli-
cated formula for establishing the opti-
mum value. In the Tutorial example, delays of 256 clock cycles were given.

Further experience with the PIC16F87x in
several other applications, however, shows that this length of delay can be con-
siderably reduced. In the PIC V-Scope rou-
tine for single channel sampling, the delay
cau sed simply by the number of com-
mands in the routine is all that is required.

For dual channel sampling, though, an additional delay routine is called (DELAYB) which, with the CALL com-
mand itself, introduces a delay of nine
clock cycles in addition to that caused by
the sampling routine itself.

Without this additional delay, it was found that small amounts of each chan-
nel’s sampling were superimposed on the
other channel’s sampling. The reason being that the channels are sampled alter-
nately through the full cycle and the PIC
uses the same internal conversion cir-
cuit for all sampling. The effect was most
noticeable when one channel was sam-
ping a 5V logic waveform while the other
sampled a lower amplitude analogue
waveform.

The sample source inputs are alternated
between RA0 and RA1 by toggling
ADCON0 bit 3. The DELAYB3 instruction
is called immediately following the change
of this bit, and eliminates the effect. In fact
a delay of only six clock cycles also cured
it, but another three were included to allow
tolerance variations between devices.

BEFORE YOU BUILD

Through feedback from readers it is appropri-
ant that not all PIC-compatible com-
puter systems and their software are capa-
bile of running a QuickBASIC or QBASIC
program with the type of machine code
routines that are an integral part of this
design.

It is strongly recommended that before
you purchase any components for this
 circuit, you obtain and run its program as a test
of computer’s suitability.

First though, check that your computer has either QuickBASIC or QBASIC already
installed. If it has not, the chances are that you have QBASIC available on your
Windows 95/98 CD ROM. Recent corre-
sp on d ence in Readout says that it is to be
found in one of the following directories:
Win95: ```other\oldmsdos``` Win98: ```tools\oldmsdos```

There are two files, QBASIC.EXE and
QBASIC.HELP, being the program and its
Help file. Make a directory (folder) called
QBASIC on your hard drive and copy both
files into it. To run the program, just
type QBASIC.

Your PIC V-Scope
files must all be
copied into the same
directory that holds
QBASIC or Quick-
BASIC. From either
version of Basic, then
load and run program
PYSCOPE.BAS
(which may also be
called via
PYSCOPE.BAT
file).

It is important to
note that Quick-
BASIC must be
loaded and run with
the command QB/L,
which additionally
loads a QuickBASIC
library routine that
allows machine code
to be run with a Basic program. The PIC
V-Scope program will crash if the QB
library routine is not loaded. QBASIC has
this routine automatically included and does
not require (or accept) the QB/L
command.

On entry, the PIC V-Scope screen
should appear similar to that in the photo-
tographs, except that it will say that it is
waiting for a response from the circuit,
and will be without signal trace lines.
Ignore this statement and check that the
mouse cursor area is visible and that you
can move it around the screen.

Additionally check that when you left-
click it on the values in the TRIG and
SYNC boxes, they increment, and decrem ent if you right-click.

Note that throughout this text the terms
left-click and right-click mean pressing the
left-hand and right-hand mouse buttons,
respectively. A left-click is used on its own,
either button will perform the required
action.

Also check that when either mouse but-
ton is held down and any keyboard key
(except Q) is pressed, the TRIG or SYNC
values continue to change.

If the mouse performs these actions,
your computer should be capable of run-
ning the rest of the program and control-
ling the PIC V-Scope circuit. Sadly, if it
does not do these things, your computer is
incapable of controlling the circuit.

QUITTING THE PROGRAM

Pressing Q causes a Quit (exit) from
running the program. Left-clicking on
the box labelled QUIT causes the computer to “bleep” and a screen statement appears
asking if you are sure you want to quit.
Left-click if you wish to quit, or right-
click if you wish to continue running the program.

If the program has initially been run
from the PVSCOPE.BAT command, quit-
ting will return you to the screen from
which the command was originally given.
If the program has been loaded and run from the Basic menu, the program will
stop, telling you to “press any key”, and then show the program listing within the
Basic editing environment. To exit from
Basic in this instance, press in turn
ALT, F, X (the usual exit command keys).

```
Twin low-frequency waveforms sampled in immediate mode, with negative-going sync applied to Channel 2.
```

CONSTRUCTION

First a note on the op.amp (IC1) and
memory (IC3). A MAX 492 dual op.amp
having rail-to-rail outputs was used in the
prototype. It is likely that other dual rail-to-
rail opamps could be used if this Maxim
device is hard to locate (see Shoptalk page).
Alternatively, a more universal op.amp such
the LM358 or TL072 could be used, although
their outputs do not swing fully between
the power line voltages.

Whilst the TCS5257DP-85L 32Kbyte
SRAM (static random access memory)
device used for IC3 is readily available,
the 85ns access time (as indicated by the
85L suffix) is faster than actually needed and
the 100ns version would be acceptable.

Printed circuit board component layout
and tracking details are shown in Fig.2.
This board is available from the EPE PCB
Service, code 275.

Assemble the board in order of compo-
nent size, starting with the link wires, and
noting that two go under the IC3 position.
Sockets must be used for IC1, IC2 and IC3.
Do not insert these dual-in-line (d.i.l.)
devices until the correctness of the power
supply regulator circuit around IC4 has
been proved. The d.i.l. devices are CMOS
and require the usual anti-static handling
precautions, e.g. touching an earthed
 grounded) item before handling them.
Note that some components are mount-
ed directly on the switches. Sockets SK1
to SK3 are 2mm single types in the test
model but other types may be substituted
if preferred (e.g. BNC sockets for use with
proper scope probes).

Use 1mm terminal pins for the off-
board connections to the battery clip and
front panel components. A 4-pin 1mm
pitch pin-header was used for TB1

Everyday Practical Electronics, October 2000 755
allowing the author to plug in PIC Toolkit Mk2 via an existing connector (for on-board PIC programming – see later).

In the photograph of the p.c.b., two additional pin-header strips plus a preset pot are visible. These were purely for the author’s use during program development (an I.C.D. was used to monitor various aspects) and are not required for the published version. Ignore the unused holes seen in the p.c.b. component layout.

The plastic case used has detachable front and rear panels and measures 180mm x 120mm x 40mm. A source part number is quoted on this month’s Shoptalk page. In the prototype, the front panel components are positioned 12·5mm (0·5in) apart. The rear panel was omitted, allowing easy access to the computer connection socket, although a suitable slot could be cut if preferred.

If the unit is to be used with an external power supply rather than a 9V battery, a socket could be added to the front or rear panel.

FIRST CHECKS

Having thoroughly checked the complete assembly for satisfactory solder joints and component positioning, apply power and check that +5V is available at the output of regulator IC4, and at other principal points shown in the circuit diagram.

If all is well, the PIC can be programmed on-board, via the TB1 connector. The PIC Toolkit Mk2 programmer is ideal for this. The configuration settings required by the PIC before loading it with the program itself are those shown in Table 1. Insert IC1 and IC3 after the PIC has been programmed.

Any PC might have any one of three possible parallel printer port register pairs set as the active input/output address. In hex, the addresses are 378/379, 278/279, 3BC/3BD. The PIC V-Scope program must be set to use the same address pairs as set within the computer’s own system configuration.

When the PIC V-Scope Basic program is run, the “waiting response from circuit” message will initially be shown, but should disappear when the unit is plugged in and switched on, providing the correct port address applies. The initial port address default value is for 378/379.

If the message does not disappear, click on the PORT ADDRESS box at the bottom left of the screen. The value will change from showing &H378 to &H278 (&H being the prefix recognised by QB as meaning hex). If the message still does not disappear, click again to show &H3BC. A third click returns to &H378. The program automatically deduces the secondary address (e.g. &H379) from the primary.

If none of these addresses cause the computer to recognise that PIC V-Scope is connected and powered, recheck your assembly and its connections.

When the message disappears, the display area fills with a grid and two horizontal lines. The program and unit are now successfully operational.

The selected port register address value is automatically stored on disk (file PSCOPATH.TXT) and is recalled when the program is next loaded and run.

PORT REGISTER

Table 1. PIC16F877 configuration settings

<table>
<thead>
<tr>
<th>CP1</th>
<th>CP0</th>
<th>DBG</th>
<th>NIL</th>
<th>WRT</th>
<th>CPD</th>
<th>LVP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

When the message disappears, the display area fills with a grid and two horizontal lines. The program and unit are now successfully operational.

The selected port register address value is automatically stored on disk (file PSCOPATH.TXT) and is recalled when the program is next loaded and run.

USING THE SCOPE

With the PIC V-Scope connected and powered, on entry to the program screen the dual-channel mode is operational. Without signals being input to the circuit, two continuous horizontal lines will be seen across the display area. They are the signal trace lines for Channel 1 (upper) and Channel 2 (lower).
There are in fact two continuous lines in each position, the second indicating the 2·5V midway reference for that channel. Due to component tolerances in the circuit, there may be a slight displacement between the trace and reference lines. The latter is generated by the computer as the reference level, the other depends on the actual midway voltage as seen by the PIC’s ADC.

You may also just be able to make out a third line, which is dotted. This is the synchronisation trigger line, showing the level at which sync and frequency values are referenced.

Move the mouse pointer above the left-hand TRIG value (0 at present) and repeatedly left-click on this value. The dotted trigger line will be redrawn slightly higher up the screen on each click, immediately recommencing from the left even if the trace has not reached the right of the display. Right-clicking will lower the line position. The TRIG value in the box will increment or decrement accordingly on each click.

Clicking on the right-hand TRIG value similarly alters Channel 2.

As said earlier, pressing any keyboard key (except Q) while a mouse button is held pressed, progressively changes the TRIG value. The redraw of the screen data, however, waits until the key has been released.

Clicking on the SHIFT values changes the relative positions of all three lines for the selected channel.

Connect a signal generator to input 1, with an output frequency of about 1kHz, and with any reasonably uniform waveform shape. Set the input switches for ×1 and AC.

Note that if PIC V-Scope is battery powered, there must be a connection between its common (0V) socket SK3 and the common (ground) line of the signal generator or its power supply.

Increasing the amplitude of the input waveform from zero, observe the waveform similarly increasing on the screen display. Experiment with shifting the display up and down, and with changing the input frequency.

Clicking in the column headed CH2 ON at the bottom right of the display turns off Channel 2, with the heading changing to CH2 OFF. Channel 1 is now displayed on its own, more centrally on the screen. As the PIC is now only sampling one channel, the process is quicker and the waveform on screen is seen to be expanded horizontally – fewer cycles across its width.

Clicking on CH2 OFF restores Channel 2, with Channel 1 returning to its previous position and cycles per width.

Column CH1 ON behaves in the reverse fashion in respect of Channel 1. The program prevents both channels being switched off at once.

MEMORY BOX

The PIC is currently sampling with the buffer memory set for 2K bytes. A right-hand screen box confirms this, stating MEM 2K. Left-clicking on this box sets the buffer memory for 32K bytes, confirmed in the box as MEM 32K.

The waveform is now plotted at the end of this much longer sample batch, each screen-full consisting of consecutive sections of the memory. There is a brief pause when the memory has been down-loaded and the next batch is sampled.

A blue bargraph below the display area shows the progress of the sampling and display.

Left-clicking on the MEM 32K box puts the program into immediate mode, in which the buffer memory is not used, confirmed as MEM OFF. Waveforms are now much more closely spaced since the sampling and output process is slower, as stated earlier.

Left-clicking on MEM OFF returns the mode to MEM 2K. The MEM box can be right-clicked to select the options in the reverse order. The process is fully cyclic.

SYNC

So far you will have found that each waveform screen-full has started at different points in the waveform. Using SYNC stabilises the display so that repeating waveforms start at similar amplitude points.

Centre-right of the screen are the sync control boxes. The box to the left of the word SYNC is shown as yellow, indicating that sync is switched for Channel 1. However, the 3-box “lozenge” has its centre section in yellow, indicating that sync is turned off.
Clicking in the upper or lower triangles turns them yellow instead, indicating that sync is now active, triggering on the upwards or downwards edges, respectively. Clicking on the central box again turns sync off. Clicking in the box to the right of SYNC allocates sync to Channel 2.

This extra display area at which sync is triggered is changeable via the TRIG box, as described earlier. Note that if the value is set outside the amplitude range of the signal, the display will freeze because the trigger amplitude is not being found. There is a narrow “window” of values through which the waveform has to pass for the sync level to be recognised. Sync may be turned off while the display is frozen. There might be a brief pause before the mouse button is responded to due to a time-out routine while a sync level is being sought from the input signal.

DISPLAY HOLD

Clicking on the RUNNING box (lower right) causes the display to hold once it has reached the right-most point, upon which the word HOLDING is shown. Pressing any key (except Q) steps the display onto the next batch of samples. Clicking on HOLDING restores the program to RUNNING mode.

SCREEN GRID

Clicking on GRID (lower right) toggles the display grid on and off. Each vertical grid square represents approximately 400mV. The full screen height represents about 5V. The program does not allow signal amplitudes to be “tuned” precisely. This would have required extra processing commands (and thus time) both for the PIC and the data acquisition program, slowing down the display.

For a similar reason, the horizontal grid squares are not time/frequency related. Both vertically and horizontally, the grid should be used only as a guide to the relative positions of waveform points.

WAVEFORM SAVING

Waveforms can be saved to disk (in the same current QB directory/folder on the hard drive), under automatic or manual control. For the manual saving option, click on SAVE OFF (lower centre) to reveal SAVE ON. When a full batch of samples has been received, the WAIT SAVE box changes to SAVE NOW. Left-clicking on the SAVE box causes the raw waveform data (numerical values) to be saved with a unique coded time and date file name, which is displayed at the top of the screen until the next batch is waiting to be saved.

Right-clicking on WAIT SAVE aborts the save option for the current batch. Clicking on SAVE ON turns off the saving mode.

Clicking on AUTO SAVE causes each batch of data to be saved upon completion, again with timed and dated file names. This mode automatically sets the buffer memory for 32K if it is currently in 2K mode. In MEM OFF mode, 32K samples are always saved. All saved files hold 32K samples.

SAMPLE RECALL

Saved sample files can be recalled via the DIRECTORY or LIVE boxes. Left-clicking on either clears the display screen to show a directory of the sample files on disk. If there are no files yet saved, the screen tells you so, reverting to the display screen once the mouse button is released.

Files are listed with their coded names and can be selected via the mouse. Moving the mouse causes a highlight bar to shift over the file names. Left-clicking on a name reveals a lower screen line which asks if you wish to load that file, showing its code name and the time and date it was saved. To accept the file either left-click or press “Y”. Doing so loads it and returns to the display screen, showing the loaded waveforms.

Right-clicking or pressing “N” at this time allows you to choose another file.

Before a file name is selected, the directory can be exited by right-clicking. The highlight can move across most of the screen, but only a proper file name can be accepted, except any shown in the first line.

The first line shows the file name of the current replay waveform (if loaded). It also shows, at top left, the most recent file name selected by the mouse. This name cannot be selected from this position, the location is used by the program when reading the screen data. (Reading from the screen for directory purposes is quite complex, as a study of the program’s source code will reveal.)

During replay mode, the REPLAY box changes to show REPLAY. The SYNC, TRIG and SHIFT values become those at the time of recording. These and some other boxes become coloured red. The memory mode and save options are inoperative during replay.

To revert from replay mode to live sampling, right-click on DIRECTORY or REPLAY.

FILE NAME CODING

Saved waveform file names are coded in exactly the same fashion as used with the original V-Scop. The following is an example:

File name = 07913713.Y00
Imagine it split as 07 9 1 37 13 .Y00
Digits 1 and 2 = day of month (7)
Digit 3 = month number in hex from 1 to C (9 = September)
Digit 4 = hour in hex-fashion – 0 to 9 followed by the N (0 to 23), in this case 1 = 1 a.m. (post-midnight oil and tilt in the workshop yet again!)
Digits 5 and 6 = minutes in decimal (37)
Digits 7 and 8 = seconds in decimal (13) Y00 = year 2000 (who cares about Millennium Complacency in this instance?)

The example file name thus decodes as September 7 2000 at 1:37,15 a.m. and would be shown as 07SEP00 1:37.13 if selected.

Saved files can only be deleted from DOS or Windows.

FREQUENCY COUNTING

While waveform batches are being input, they are analysed for signal frequency. There must be at least three waveform cycles displayed for frequency to be calculated. The total number of amplitude changes above and below the trigger threshold is counted and at the end of the batch input this value is related to the number of sample bytes and then to a conversion value depending on the channel and buffer memory modes in use.

As explained earlier, the data acquisition rate changes depending on these modes and in relation to the speed at which the PIC and the computer process data.

Since these factors will be different for individual users, an on-screen correction facility has been provided.

The long oblong box at the bottom left of the screen is the area from which the values can be changed. The word FREQx: is followed by the value (in blue) by which the basic frequency count result is to be multiplied. Initially, this is the default value used by the author with the prototype. To the right of this value are three increment/decrement options. Clicking on these will change the multiplying value by the same amount, left-click upwards, right-click downwards.

Frequency factor correction needs to be done for each channel mode and using different settings of the frequency generator (which should be calibrated or have a frequency count display). Table 2 shows the modes and their suggested alignment frequencies for ADClF = 0 and ADClF = 1 (see later).

For each mode, change the screen’s frequency multiplying value until the frequency box at the bottom right shows close to the same frequency value(s) being input. Exact matching of the values should not be expected due to the nature of the sampling and analysis process.

During frequency alignment, a “Save when done” message is shown above the box. When you have finished alignment, click on SAVE in the box. The new factors will be stored in file PSCOPATH.TXT and will automatically be recalled when the program is next loaded and run.
Table 2. Suggested channel alignment modes and frequencies.

<table>
<thead>
<tr>
<th>CHAN 1</th>
<th>CHAN 2</th>
<th>MEM</th>
<th>FREQ (F=0)</th>
<th>FREQ (F=1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>200Hz</td>
<td>200Hz</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>200Hz</td>
<td>200Hz</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>2K</td>
<td>10kHz</td>
<td>4kHz</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>2K</td>
<td>10kHz</td>
<td>4kHz</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>32K</td>
<td>2kHz</td>
<td>1kHz</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>32K</td>
<td>10kHz</td>
<td>4kHz</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>32K</td>
<td>10kHz</td>
<td>4kHz</td>
</tr>
</tbody>
</table>

The word ORIG is at the left of the box. Clicking on this recalls the author's default values, which you then have the option of saving in place of your own if you wish. Correction of the frequency values can be done on any occasion you want.

DIGITAL DISPLAY

So far the sampled data has been displayed as analogue waveforms. There are two other modes available, Digital and Lissajous.

Left-clicking on the ANALOGUE box (lower right). It changes to DIGITAL and a whole mass of waveforms appear on screen, up to 16. They are in two groups of eight, representing the eight bits of each channel’s samples. The bits are in ascending order on the screen, bit 0 (LSB) lowest in each block, bit 7 (MSB) highest.

The digital display option was principally used in the original V-Scope to display 8-bit digital signals via separate input lines, but it seemed worthwhile leaving the mode in PIC V-Scope even though the input channels are analogue.

Frequency and voltage analysis are turned off in this mode, as is their display box at bottom right. Channels may still be turned on or off in this mode.

LISSAJOUS

Left-clicking on DIGITAL moves the display on to LISSAJOUS mode. Lissajous is that mode in which one channel provides vertical deflection while the other controls the horizontal. In a real scope it can be useful in visual comparison of frequency and phase between two signals.

It was written for the original V-Scope in which the sampling repetition rates are fast. Frankly, though, it has no realistic use in PIC V-Scope, other than as a visual curiosity. However, it seemed a pity to display it has been retained purely for curiosity. However, it seemed a pity to delete it and it has been retained purely for curiosity.

The ADC box, middle right, can be clicked to alternate between F = 1 and F = 0. This toggles the Tosc sampling rate value discussed earlier.

DEFAULT

If PIC V-Scope’s power is interrupted while the display program is running, the PIC’s mode setting data will be lost and it will revert to 2K 2-channel mode when reconnected. The same thing could happen if the printer lead is disconnected (as is necessary when screen-dumping to a printer).

In this situation, once power or the printer lead are reinstated, it is necessary to click on the DEFAULT box to restore the PIC’s mode values to those being used by the display program.

DATE/TIME BOX

Towards screen top right is the Display Date/Time box. This is updated on each completion of a waveform plotted across the screen. It should not be regarded as a true real-time clock since it is not updated while sampling is taking place, nor when the display is being Held, nor when the printer routine is in use.

INFO BOXES

The top-right box shows the program identity and version number. The current version is V1.0. This number will be updated should any program modifications be introduced (which will be reported in EPE if they are).

The third box down on the right was originally introduced for the author’s development information. Regard it as you wish – it has no significant user value!

OTHER READING

Discussing how to get the best out of any type of scope is beyond the reach of this article. However, the EPE feature article More Scope for Good Measurements (June/July – 96) is a useful text to read. See the Back Issues pages.

May you too find more scope for improving your understanding and successful construction of electronic circuits through using PIC V-Scope (and continuing to read EPE)!
Dear EPE,

Greetings from Zimbabwe. I have been a keen follower of EPE for the past four years and have built some of your projects. One of them has helped me to obtain a National Certificate in Electronics Servicing from the Ministry of Higher Education and Technology.

In the past three years, I have been a student at a government college, studying Radio and Television Servicing. I have been a keen subscriber to the Everyday Practical Electronics, October 2000...

We are delighted to hear of your success and that you are able to use it to help those in need. Your letter also brings home the importance of supporting those in need.

Innocent Mutasa, Mkoba, Gweru, Zimbabwe

We have been a long-time subscriber to your magazine and would like to extend our sincerest gratitude for the excellent shareware A86/D86 assembler/dissembler. However, I must admit that I have not used it for any parts of your program you need to do at speed. This is not the easiest of languages to learn, but I have found another computer language easier to learn.

G. A. Bobker, Unsworth, Bury, Lancashire

Curiously, I never got on with Sinclair machines but did take to the Commodore PET 32K and C64. It was with the PET I learned 6502, which was to hold me in good stead when upgrading to PICs and 8086 machine code. The latter still forms part of any of my QBasic/QuickBASIC programs that require machine code for high-speed sub-routines, using the excellent shareware A86/D86 assembler/dissembler assembler. However, I must admit that I have not yet cracked how to fully integrate the machine code with Basic, although I have evolved a workable "good-bodge" solution (as a study of such code with Basic, although I have evolved a workable "good-bodge" solution (as a study of such code with Basic, although I have evolved a workable "good-bodge" solution (as a study of such code with Basic, although I have evolved a workable "good-bodge" solution (as a study of such code with Basic, although I have evolved a workable "good-bodge" solution (as a study of such code with Basic, although I have evolved a workable "good-bodge" solution (as a study of such code with Basic, although I have evolved a workable "good-bodge" solution (as a study of such code...
CANUTE TIDE DISPLAY

Dear EPE,

Following your instructions in EPE June ’00, I embarked on putting together one of the Canute Tide Predictors. I took the easy route and got assistance from my product manager at Maplin, including a pre-programmed chip.

It has been many years since I carried out such a project. The predictor had a manual interface from Magenta, including a pre-settable table. Happily, I got everything together last weekend and bingo everything seemed to work as described. Unfortunately, only five days passed and the display started to lose its contrast. A quick adjustment to the variable resistor restored clarity, but a day later it faded again. Please note this is something that the PP3 battery is not responsible for.

Richard Berney, via the Net

Canute’s current consumption was quoted at only 6mA. I believe a typical alkaline PP3 is rated at about 550mA/hours, so in a worst-case situation you might get close to 100 hours per battery. However, you are likely to get a bit more life since Canute’s regulator can accept down to 7V and still provide a 5V output.

As quoted, 6mA current, it was assumed that readers would recognise that for long term use Canute should be run from a mains adaptor (9V battery eliminator). Only if a circuit draws a few microwatts should long term battery use be ever considered.

Canute’s design is extolling that not all battery suppliers quote the charge capacity of their products. It is appreciated that the amount of charge a battery can deliver is subject to conditions, but a good indicator is how long a battery will run a device under ideal conditions, which would seem to be an essential requirement.

Surely the designer should be extolling are that the unit be drawing? I would like to leave the unit on all the time but a PP3 per week seems a little steep.

However, I believe I’ve sussed it out. I borro...

Moodloop

Dear EPE,

I read with some concern the description of the Moodloop (Aug ’00). I have recently been doing some personal research into the effects of low frequency electric and magnetic fields on biological systems, and I have come across a wealth of published research papers which all clearly indicate that extremely weak, ultra-low frequency (ULF) magnetic fields have profound effects on cell growth and metabolism in most organisms and many researchers believe there is no proven evidence of human health risk from electrical and magnetic fields, although they continue to actively research the situation.

Nonetheless, we bring your attention to the attention of readers and have sent a copy to Andy Flind. Also relevant, perhaps, is Andy’s Magnetic Field Detector in this issue.

Our understanding of the information periodically sent to us by the National Radiological Protection Board (NRPB) is that there is no proven evidence of human health risk from electrical and magnetic fields, although they continue to actively research the situation.

Audrey Scoon, Bracknell, Berks, via the Net

Dear EPE,

After reading the letters from Bob Allan and Peter Gardner, prompting your reply in Readout July ’00, I thought too much of a coincidence not to send you a copy of an e-mail I’ll explain. Back in the mid-eighties when computing was new to the great unwashed, I did a fair amount of programing in Basic with a Commodore 64. Over a period of time I became proficient enough to do some programing that could be put to useful practical work, my daysmeter (I was, and still is, an LGV Driver). Anyway to get to my point quickly, after many years of doing other things in my spare time (getting a life and a wife and in 1999 a PC for her work), I gradually started messing around with computers again. My, how the world had moved on.

Confused by so much choice I messed my brain up with a little bit of this language and a little bit of that, getting nowhere fast. To re-orientate myself, I invested in a book I picked up in desperation, called Writing your First Computer Program, Your Shortcut to Success, published by IDG Books Worldwide (ISBN 076458531). In chapter four, it confirms Alan S. Raislrick’s e-mail referred to in your reply, namely that QBASIC is included on every CD-ROM with Windows 95 and 98.

Michael Moxon, via the Net

Thanks Michael for this useful further confirmation. We are much relieved to find that all PC users can have the benefit of using QBASIC; so much of the content you discuss is pertinent for QB (as well as PICs), such as the PIC interface for the PIC V-Scope in this issue, for example.

Dear EPE,

I have been following with interest the recent correspondence in your magazine regarding difficulty with parallel ports. Some while back I purchased the PICtutor CD to go alongside the EPE PIC Tutorial Board and the PIC Tutor Board. After many fruitless hours I could not get programs to download to the board, and moved on to pastures new.

However, after reading July’s Readout I tracked down a copy of Basic on my Windows 95 CD, and tried the troubleshooting method as suggested in the EPE Tutorial, with my oscilloscope connected to D1 and D0 of the PIC. This worked fine, and when I reconnected the board, magically I could download programs.

Chuffed to bits, I merely started working on the Tutorials, that lasted for three happy evenings, but next time when I came to use the board, yet again no joy. I tried reconfiguring the PIC, still with no joy. The PIC accepted the TUTCLR program but wouldn’t accept anything else.

However, I believe I’ve sussed it out. I borro...

TUTCLR program but wouldn’t accept anything else.

The basic safety provided by an isolating transformer is that its output windings are not connected to the mains earth. They are said to be “floating” with respect to it. In other words, if you touch a terminal of “floating” winding, you are not completing a circuit between it and the mains supply. You will recall that in order for current to flow, there must be a path between the positive and negative terminals of the current generator. You will only complete an electrical path across the secondary winding of an isolating transformer, in order that the equipment should not be directly connected to the electrical mains. Although you describe your isolating transformer, in order that it provides safety through isolating equipment from the mains supply.

Even more years ago, whilst working for a company which was involved in the manufacture of infra-red emitting diodes and integrated circuits, I first learned of the rectifying (diode) bridge and imagined that all power supplies used this device. Much later, whilst attending a previously mentioned training college, I learned about other types of diode and transformer rectifiers, such as the ones which you discuss. Why, if the rectifying bridge is such a good device, do other circuits exist, at all?

M.F. Hopkins, Barnes, London

Dear EPE,

I am writing as a result of glancing through Teach-In 2000 Part 10 (Aug ’00), covering transformers and rectifiers.

Years ago, whilst attending a TOPS course at a small London training college, my teacher mentioned in passing that a particular piece of electronic equipment should incorporate a 1:1 isolating transformer, in order that the equipment should not be connected directly to the electrical mains. Although you describe your isolating transformer, you do not say how it provides safety through isolating equipment from the mains supply.

The basic safety provided by an isolating transformer is that its output windings are not connected to the mains earth. They are said to be “floating” with respect to it. In other words, if you touch a terminal of “floating” winding, you are not completing a circuit between it and the mains supply. You will recall that in order for current to flow, there must be a path between the positive and negative terminals of the current generator. You will only complete an electrical path through the secondary winding of an isolating transformer, if you touch both its terminals simultaneously.

Expediency dictates what form of power supply rectification is used. The considerations include whether voltage or current is the most important (see the Demo software formulae), relative expense of diodes and bridges (especially on a commercial scale), and also space available on a p.c.b., to name but a few.

For more information on mains a.c. generation and supply, read Alan Winstanley’s interesting two-part article Power Generation from Pipelines to Pylons (Aug/Sep ‘99).

Dear EPE,

Following your instructions in EPE June ’00, I embarked on putting together one of the Canute Tide Predictors. I took the easy route and got assistance from my product manager at Maplin, including a pre-programmed chip. It has been many years since I carried out such a project and the predictor had an enthralling...
UTX Ultra-miniature Room Transmitter
At less than 1/2 the size of a postage stamp the UTX is the smallest room transmitter kit in the world! Incredible 10mm x 20mm including microphone, 3-12V operation. Range up to 500m. £13.95

MTX Micro-miniature Room Transmitter
Our best selling room transmitter kit. Just 17mm x 17mm including mic. Extremely sensitive. 3-12V operation. Range up to 1000m. £14.95

STX High-performance Room Transmitter
High-performance transmitter with buffered output for greater stability and range. Measures just 22mm x 22mm including mic. 6-12V operation. Range up to 1500m. £16.95

VTS500 High-power Room Transmitter
Our most powerful room transmitter with around 250mW of output power. Excellent range and penetration. Size 20mm x 40mm, 6-12V operation. Range up to 3000m. £17.95

VXT Voice-activated Room Transmitter
Triggers only when sounds are detected by on-board mic. Variable trigger sensitivity and on-time with LED trigger indicator. Very low standby current. Size 20mm x 67mm, 9V operation, range up to 1000m. £21.95

HVX400 Mains Powered Room Transmitter
Connects directly to 240V AC supply. Ideal for long-term monitoring. Size 30mm x 35mm, range up to 500m. £21.95

SCRX Subcarrier Scrambled Room Transmitter
To increase the security of the transmission the audio is subcarrier modulated. Receiver now requires the decoder module (SCDM) connected to allow monitoring. Size 20mm x 67mm, 9V operation, up to 1000m range. £24.95

SDCM Subcarrier Decoder for SCRX
Connects to headphone socket on receiver and provides decoded audio output to headphones. Size 32mm x 70mm, 9-12V operation. £27.95

UTLX Ultra-miniature Telephone Transmitter
Smallest kit available. Connects onto telephone line, switches on and off automatically as phone is used. All components are supplied complete with top grade components, PCB, full instructions, circuit diagrams and assembly details. £16.95

PTS7 Automatic Telephone Recording Interface
Connects between telephone line (anywhere) and normal cassette recorder. Automatically switches recorder on and off as phone is used. Both sides of any conversation recorded. 9V operation, size 20mm x 67mm. £21.95

CD400 Pocket Size Bug Detector/Locator
LED and piezo bleeper pulse slowly. Pulse rate and tone pitch increase as signal source is approached. Variable sensitivity allows pinpointing of signal source. 9V operation, size 45mm x 54mm. £34.95

CD600 Professional Bug Detector/Locator
Multicolour bargraph LED readout of signal strength with variable rate bleeper and variable sensitivity allows pinpointing of any signal source. When found, unit is switched into AUDIO CONFIRM mode to distinguish between bugging devices and legitimate signals such as pagers, cellphones etc. Size 70mm x 100mm. 9V operation. £59.95

QTX180 Crystal Controlled Room Transmitter
Narrow band FM crystal transmitter for ultimate in privacy. Output frequency 173.225 MHz. Designed for use with QRX180 receiver unit. Size 20mm x 67mm, 9V operation, range up to 1000m. £44.95

QXL180 Crystal Controlled Telephone Transmitter
Specifications as per QTX180 but connects onto telephone line to allow monitoring of both sides of conversations. £44.95

QTX180 Line Powered Crystal Telephone Transmitter
Connects onto telephone line, switches on and off as phone is used. Power is drawn from line. Output frequency 173.225 MHz. Designed for use with QRX180 receiver. Size 32mm x 37mm. Range up to 500m. £39.95

QXR180 Crystal Controlled FM Receiver
Specifically designed for use with any of the SUMA ‘O range kits. High sensitivity design. Complex RF front end section supplied as pre-built and aligned sub-assembly so no difficult setting up. Headphone output. PCB size 60mm x 75mm. 9V operation. £69.95

TK900 Signalling/Tracking Transmitter
Transmits a continuous stream of audio bleeps. Variable pitch and bleep rate. Ideal for signalling, alarm or basic tracking uses. High power output. Size 25mm x 63mm, 9-12V operation, up to 2000m range. £23.95

MBX-1 Hi-Fi Micro Broadcaster
Connects to headphone socket of CD player, Walkman or Hi-Fi and broadcasts your favourite music around house and garden up to 250m. Size 27mm x 60mm, 9V operation. £22.95

DLTX/RX Radio Remote Switch System
Two kits, transmitter sends a coded signal (256 selectable codes) when button pressed. Receiver detects signal, checks code and activates relay. Can be set to be momentary or toggle (on/off) operation. Range up to 100m, 9V operation on both units. TX 45mm x 45mm, RX 35mm x 90mm. £44.95

SEND 2 x 1ST CLASS STAMPS FOR OUR 2000 KIT CATALOGUE CONTAINING FULL DETAILS OF THESE AND OTHER KITS. A BUILD-UP SERVICE IS AVAILABLE ON ALL OF OUR KITS, DETAILS IN CATALOGUE. VISIT OUR WEBSITE: www.suma-designs.co.uk

TO ORDER:
Post, fax or telephone your order direct to our sales office. Payment can be made by Credit card (Visa or Mastercard), Postal Order, cash (please send registered) or cheques. Kits dispatched same day (subject to stock). All orders sent by recorded or registered post. Please add postage as follows:
ORDER UP TO £30.00: To UK £2.50. To EUROPE £5.50 All other £7.50
ORDERS OVER £30.00: To UK £3.15. To EUROPE £7.50. All others call.

Overseas customers please use credit card or send sterling cheque or bank draft.

TO OUR UK, EIRE, EUROPE AND REMAINING OVERSEAS DISTRIBUTORS:
Please note: Some of our part numbers are being unscrupulously used by other companies selling kits eg. MTX, VAT. DO NOT BE MISLED! These are NOT GENUINE SUMA KITS which are only available direct from us or our appointed distributors.

If you wish to collect kits direct from our office
PLEASE TELEPHONE

WEBSITE: www.suma-designs.co.uk

SUMA DESIGNS
Dept. EE, The Workshops, 95 Main Road, Baxterley, Warwickshire, CV9 2LE, U.K.
TEL/FAX: 01827 714476 (24 HOUR ORDERLINE)
email: sales@suma-designs.co.uk

Everyday Practical Electronics, October 2000
Many people have a sizeable amount of capital tied up in their deep-freeze. A long power cut or a failure of the freezer itself can lead to significant financial loss, not to mention the prospect of losing the delicious smoked trout from last summer’s fishing holiday.

There are also accidents. If the lead on the freezer is a little too short, someone catching their foot in it by chance may drag the plug from the socket without noticing.

Usually, the disaster is not discovered until later, when it’s too late to do anything about it. Similar remarks apply to the contents of a refrigerator, though it may be more a matter of disappointment than loss when somebody (who was it?) leaves the door ajar and the chilled lemonade warms up on a summer’s day.

This simple alarm project circuit sits in the freezer and simply waits for the temperature to rise above a preset limit. Then it turns on a loud buzzer, one that is loud enough to be heard with the freezer door shut.

It runs from a 9V battery pack and, since the circuit takes only 200µmA when not sounding, the battery should last about 100 days. However, there is no “flat battery” warning on this project, so test the battery once a month and replace it when the voltage starts to drop.

CIRCUIT DETAILS

The full circuit diagram for the Fridge/Freezer Alarm is shown in Fig.1. The circuit is based on a useful semiconductor device known as a single trip point temperature sensor, IC1.

This is the TC622 integrated circuit, which comes in two versions. The TC622VAT has a temperature range of -40°C to +125°C, with a precision of ±1°C. The slightly cheaper TC622EAT has a more limited range of -40°C to +85°C with the same precision. Either type is suitable for this project.

TRIP POINT

The principle of the TC622 is that its output at pin 1 is high when the temperature is below the trip point and falls sharply as the temperature rises above this. The i.c. has a built-in hysteresis of 2°C. This means that, if it is set for a trip point at say -18°C, its output does not rise again until the temperature has fallen below -20°C. This hysteresis is very important because, if the temperatures at which it falls and rises were both close to -18°C, the alarm would chatter like a magpie for as long as the temperature stayed near that level.

The trip point is set by connecting a resistor between the positive supply rail and pin 5 (TSET). The equation for calculating the value of the resistor is:

\[R_{\text{SET}} = 0.6 \times 2.1312 \]

In this equation, \(t \) is the absolute temperature in Kelvin. For example, to set the trip point to 6°C, add 273 to the temperature in degrees Celsius to obtain the equivalent in Kelvin:

\[t = 6 + 273 = 279K \]

\[R_{\text{SET}} = 0.6 \times 279^{1.312} = 97774 \Omega \]

A 97k6 0.1% resistor from the E96 series would be ideal. The nearest “standard” resistor from the E24 series is 100k, which would give a temperature trip point of around 9°C. Connecting a 4M7 resistor in parallel with 100k would produce 97k9 and a trip temperature just above 6°C.

TWO LEVELS

In this project, we have made the temperature switchable to two levels, 9°C for the refrigerator and –16°C for the freezer.

These are practicable levels that should not cause a false alarm every time some fresh unchilled food is put in the fridge or freezer. Incidentally, if you want to make a device that sounds the alarm when the temperature falls, use the output at pin 2. This works in the opposite sense to pin 1.

The next point to consider is the alarm. This is to be switched on when the output from pin 1 of IC1 falls to almost zero. A npn transistor, TR1, can be switched by a low-going input so we have used a BC558 and powered the sounder circuit with the current flowing from its collector (c).
An intermittent tone is always much more noticeable than a continuous tone so the next stage in the circuit is an astable based on a 7555 timer (IC2). The values of the resistors R4 and R5 and the capacitor C1 are chosen to give a frequency of just over 2Hz. This produces an “urgent” rate of beeping that is easily heard from outside the freezer.

The output at pin 3 of the timer IC2 goes to a MOSFET, TR2. This type of transistor was used for switching instead of a bipolar transistor in order to maximise the voltage drop across the warning device WD1. There is already a voltage drop of 0.6V across TR1, and a further drop of 0.6V across a bipolar TR2 would mean that there was only 7.8V across WD1. It would be only 4.8V if we used a 6V supply. Under-running WD1 reduces its loudness, an important consideration when it is inside a thick-walled enclosure.

CONSTRUCTION

The Fridge/Freezer Alarm can conveniently be run on a 9V supply, but you can run it on 6V or 12V if you prefer. Using a battery holder with four AA type cells or larger will mean that the battery needs renewing less often.

Once completed, the circuit board should be enclosed in a container but, if you are trying to keep costs down, this need not be a regular “enclosure”. A used plastic food container with a snap-on lid will do almost as well. It is just a matter of keeping the integrated circuits away from the frozen chops!

The circuit is built up on a small piece of stripboard, size 10 strips × 39 holes. The component layout and details of breaks required in the underside copper tracks are shown in Fig.2. Construction should commence by making the track cuts (15 off) and inserting the wire links (11 off) and the two solder pins.

Next, assemble the alarm circuit section, which is everything to the right of column 13 in Fig.2. The warning buzzer WD1 has two lugs for bolting it to the board, but it is easier to fix it in place using a double-sided adhesive pad. Temporarily connect its power-input point (A13) to the positive power supply. The buzzer should produce its note as a series of bleeps, about two per second.

Now assemble the remainder of the circuit. If you prefer at first to test it outside the freezer, temporarily wire a 10 kilohms (10k) resistor in series with R1 and switch to the Fridge setting. The total resistance of 110 kilohms gives a trip point of about 22°C, a more comfortable temperature for trials.

Finally, place the completed unit in the fridge or freezer with switch S1 switched to the appropriate resistor and no battery connected. Leave it for 15 minutes or more to cool. When you connect the battery, the warning buzzer should stay silent. Remove it from the fridge or freezer and very soon the bleeping should begin.
Anti-Tamper Loop Alarm – On Your Bike

The circuit diagram of Fig.1 was designed as an anti-tamper bike alarm using a screened phono to phono (RCA plug) audio lead as the loop wire. The heart of the circuit is the SR latch based around two NOR gates IC1a and IC1b. This latches high at pin 4 when Set goes high and latches low when Reset goes high.

The anti-tamper feature is implemented by using both the inner signal wire and the screen of the cable. The outer screen carries almost 5V via two 510 ohm resistors R1 and R2. The SR latch Set (S) terminal is pulled high by resistor R5. The inner wire is a loop between resistor R4 (in series with the Set terminal) and R3 to ground (0V). Under normal conditions the Set pin is grounded via the loop.

If the loop cable is completely cut (severing the screen and inner core) then the Set terminal is no longer pulled low via resistor R3 and is pulled high by R5 instead. This “sets” the latch and the alarm buzzer WD1 sounds until the alarm is turned off and on again.

No Short-cuts

If the would-be thief attempts to “hot wire” the loop by bridging it with his own cable before cutting the loop through the bike, he is probably only likely to bridge the outer screen by mistake and the alarm will still sound when the inner core is cut.

However, if he cuts through to the inner loop wire in order to try and bridge it then he is is likely to short the outer screen to the inner loop in which case resistors R1 and R2 are connected to R3 and R4. This forms a potential divider as shown in circuit Fig.2. The resistor values were chosen so that under these circumstances Set (VT) is pulled high to 0.887Vcc, equivalent to a logic high so the latch is set and the alarm sounds. The value of 0.887 is derived from standard potential divider theory:

\[V_T = \frac{R3}{R3 + \left(\frac{R4 + R5}{R1 + R2}\right)} \]

The circuit is powered from a 9V battery and armed through keyswitch S1. By placing a normally-closed microswitch (not shown) in series with resistor R4, the alarm can be made to sound when the lid of the circuit housing is removed. Consider gold-plated phono connectors for higher reliability.

(Footnote: in industry I once came across a simple commercial cycle alarm (a thyristor and sounder) which Nottingham Police later informed me was easily hotwired by the local cycle-stealing population. So well done for addressing these aspects comprehensively. ARW)

Alan Bradley, Belfast, Northern Ireland.

Fig.1. Circuit diagram for the Anti-Tamper Loop Alarm.

Fig.2. Equivalent circuit when inner core and outer screen are shorted together.
Doorbell Extension and Entry/Exit Indicator – On Call

Using piezo sounders together with an existing doorbell, the circuit of Fig.3 provides a doorbell extension to the garden or patio (for example) and in the author’s system the kitchen, porch and other locations too. Also, and using the same extension units, the circuit can provide an indication of whenever the front door is opened or closed, while other circuitry (optional) mutes the extension/s as darkness falls, thereby reducing the disturbance to neighbours whenever their windows are left open during the summer.

Operation

In Fig.3a, closing the doorbell pushbutton S1 operates the gong solenoid as normal together with relay RLA in the main unit, both devices being powered by the four 1.5V cells in the gong. Relay contacts RLA1 (Fig.3b) close which turns on transistor switches TR1 and TR2 and relay RLB. Capacitor C1 also charges up.

The relay contact RLB2 applies 9V to the remote piezo sounder unit WD1 (Fig.3c), announcing the presence of a caller. When the doorbell button is released, relay contact RLA1 reverts to its open state, disconnecting the base of transistor TR1 from the 9V supply. However, TR1 still conducts and relay RLB remains latched because TR1 base current is now drawn from capacitor C1. When C1 discharges (at a rate determined by potentiometer VR1, wired as a variable resistor) the entire circuit returns to its dormant state until next time. This means the piezo sounder operates for a preset period.

Refinements

Whenever the front door is opened or closed a permanent magnet attached to the door passes a reed relay (S2) and triggers it. The reed contacts briefly apply 9V to the collector (c) of transistor TR3 and the RC network C2/R6, so TR3 switches on momentarily as capacitor C2 quickly discharges via resistor R5. As a result the piezo sounders emit a short tone signifying the opening or closing of the door. The value of resistors R5 and R6 may be adjusted to alter the duration of the tone.

As an optional refinement, the light dependent resistor (l.d.r.) R7, together with R5 and TR4, allow a piezo sounder to emit its tone at full volume during daylight only. In the author’s system an l.d.r. associated with the corresponding sounder (e.g. in the kitchen) is arranged so that daylight from the kitchen window falls upon it and light from the kitchen lamp falls upon it as well; the sounder is enabled at night-time if someone is using the kitchen.

An l.d.r. in the porch is positioned to do the same thing with its associated sounder while the l.d.r. in the garden/patio area allows the sounder there to operate during daylight only. Many of the component values are flexible, and some experimentation may be necessary to achieve the desired result.

C. Embleton, Northallerton, N. Yorks.

MORE I/Us ON NEXT PAGE

WHY NOT SEND US YOUR CIRCUIT IDEA
Earn some extra cash and possibly a prize!
A circuit diagram for a simple Mini Photo Slave Flash trigger is shown in Fig. 4. It has evolved over more than thirty years from an original design published in October 1967 Practical Electronics (thanks for sending the fascinating reprint – ARW) to the miniature version presented today.

The circuit uses a TIL78 phototransistor (the original used a Mullard OCP71) which conducts when light from the main flash gun falls on it. A pulse is sent through the capacitor C1 which causes the thyristor CSR1 to conduct, thereby triggering the slave flash either through the sync lead or through the hot shoe. The thyristor should be rated 300V or more. (If the thyristor does not trigger the flash, try reversing the connections – ARW)

![Fig.4. Mini Photo Slave Flash circuit diagram.](image)

A miniature 12V “remote key fob” battery type L1028 powers the circuit, which is built on a tiny piece of stripboard 5 strips × 11 holes. A translucent 35mm film canister has proved ideal as a diffuser/housing for the circuit.

Syd Mercer,
Retford, Notts.

Colour TV Tester Add-On – Right Stripes

The circuit diagram shown in Fig. 5 is an add-on for my TV Test Pattern Generator (Ingenuity Unlimited Sept. ’99) to display vertical alternate black & white lines which help in setting up a TV’s width and horizontal linearity. Also, if this pattern is recorded on a well aligned VCR it can be used to check back tension during servicing.

The circuit consists of a quad Schmitt NAND gate. Its function is to remove/blank the 1MHz square wave clock, which produces the vertical lines, during the sync pulse and colour burst so they aren’t corrupted. A delay formed via the resistor R1, preset VR1 and capacitor C1 allows the length of clock blanking to be adjusted.

With an oscilloscope triggered from the line sync pulses, adjust the preset VR1 so that the 1MHz clock signal is removed at the output during both the sync pulse and colour burst. Alternatively, adjust for satisfactory sync/colour on a TV/monitor.

Preset VR2 is used to adjust the output level for 1V peak-to-peak or alternatively for correct contrast on a TV, and should be routed to the Red, Green and Blue inputs of the CXA1145P i.c. simultaneously by linking the bases of transistors TR2, TR3 and TR4 or the three sections on the Pattern selector switch S2.

Only two of the gates in the 74HC132 package are used and the remaining two gates should be disabled by grounding their inputs as shown at the bottom of the circuit diagram. Also, a decoupling capacitor of about 100nF should be located as close to the i.c. as possible to reduce interference on the output signal.

Lee Archer, Wigan, Lancs.
Our philosophy is simple

Don't just test it...

...Analyse it!

The new Peak Atlas Component Analyser, UK price £60 fully inclusive.
(Shown approx actual size)
To find out just what the Atlas is capable of, give us a call and we’ll send you our data pack.
Alternatively, see comprehensive data on our web site.
The "Atlas" Component Analyser from Peak Electronics is a pocket-sized semiconductor tester. On opening the box, first impressions were of a very neat and simple-to-operate piece of equipment. Pleasant in appearance, the contoured case fits comfortably into the hand and could easily be carried in a shirt pocket. It has just two control buttons marked “On-Test” and “Scroll-Off” plus a two-line sixteen-character LCD and it sports three leads coloured red, blue and green with matching test clips for connection to the component to be tested.

The small manual supplied is clear and easy to follow, and in addition to explaining what the unit can do is honest about its limitations, which is refreshing. Despite its simplicity the Atlas is surprisingly powerful, able to test a wide range of semiconductor devices from simple diodes right up to power MOSFETs and triacs.

INSIDE STORY

Before trying out the Atlas, a quick inspection was made of its construction. Removal of three self-tapping screws allows the back of the case to be removed, officially for battery replacement, but the p.c.b. can also be simply lifted out for examination. To enable it to fit into the slim case the board has two cut-outs to accommodate a small 12V battery and the LCD display, an intelligent type with COB (Chip-On-Board) controlling ICs.

The main circuit is implemented mainly with surface-mount components, some easily recognisable ones being a 78L05 voltage regulator, two 74HC4051 “one-of-eight” electronic switches and an LM324 quad op.amp. The main processing unit is a PIC16C73, one of the more powerful members of the PIC microcontroller family with 4K of program memory and up to five analogue-to-digital converters.

Of interest to users is the fact that if the three connection leads became damaged replacement would be a fairly simple matter since they are soldered to relatively large pads on the board. Changing the battery might be a bit fiddly but would be well within the capabilities of most EPE readers. The overall impression was of neat and tidy construction.

ON TRIAL

Following the physical inspection the unit was tried out on a wide variety of semiconductors. To use it, either two or all three test leads are connected to the device to be tested. They may be applied in any order, which makes connection rapid and simple. The “On-Test” button is then pressed and the unit displays "The Peak Atlas is analysing" for a second or two, following which the first data screen appears.

In the case of a bipolar transistor, for example, it may tell you that the device is an "NPN transistor", following which successive presses of the “Scroll-Off” button will bring up further screens, showing firstly which colour leads are connected to the emitter (e), the base (b) and the collector (c), then the current gain (Hfe), the collector test current used, the base-emitter voltage (Vbe) and the test current used to determine this. Further scrolling returns to the first screen so if the user wishes to see a particular screen again repeated pressing of the scroll button soon brings it back into view.
The actual testing is completed in one go at the start, so the test-
ed semiconductor may be disconnected whilst the various screens
are read. It can be turned off ready for the next test by holding the
“Scroll” button for a couple of seconds, or it will shut down automatical-
ly thirty seconds after the last button press, allowing ample time
to make notes of the data if required.

The unit was tried with a large range of components, old and
exotic types as well as standard modern components, and by and
large gave an excellent account of itself. Amongst the diodes test-
ed were germanium and Schottky types as well as various silicon
ones, plus diode combinations such as bridge rectifiers, and i.e.d.s
including two and three lead bi-colour types.

Germanium diodes have a recognisable low forward voltage, Schot-
tky's lower still. It recognises i.e.d.s from their higher forward
voltage drops (try three silicon diodes in series and it will tell you
that it has found an i.e.d.)! and bi-colours are determined from
their differing forward voltage drops.

Though it doesn’t actually tell you which diode is which
colour, it gives their forward voltages and
the manual gives the likely corre-
sponding colours. L.E.D.s, by the
way, flicker briefly as the test cur-
cent is applied, which shows
they are working and gives the
colour for clear-bodied types.

UP THE JUNCTION

Transistors of most varieties can be checked. Bipolar nnpns
and npnp of all kinds, including power types, will have their
polarity shown, leads identified, and gain figure displayed. Some
old germanium transistors, such as
OC44 and AC127, were tested
satisfactorily.

Darlington types will be clearly identi-
fied as such and their high gain can also be
measured and displayed. Special fea-
tures such as internal protection diodes and shunt resistors may
also be indicated on the i.c.d. screen. Enhancement mode
MOSFETs of both polarities and high and low power can be
checked as easily as bipolar transistors. At the time of testing a p-
type MOSFET was not available, so the internal ones in a CMOS
4007B i.c. were substituted for this and were checked out by the
unit with no problems.

A couple of types the unit cannot test are junction f.e.t.s and uni-
junction transistors, but these will at least be identified as two
diodes with a common anode or cathode, which of course are
from a practical point of view. At least it gives a clue as to which
lead is which.

BEING SENSITIVE

With thyristors and triacs the practical tests were slightly less
successful. To be fair the manual does state that only “sensitive or
low power” types can be tested, but in practice it was found that
most of the ones tried, including some normally classed as
“sensitive” produced an uninspiring “Faulty/Unknown
Component” message.

Rather sad this, because when it does recognise one the infor-
mation is just as clear as for transistors, with the gate, the cathode
and anode or the MT1 and MT2 connections clearly identified. It
seems likely that the problem is due to the high threshold voltages
of some of these devices, perhaps combined with the minimum
“holding” current required by some of them.

IN CONCLUSION

The verdict on the Atlas is that despite the limitation described
above, it is an incredibly useful and versatile little tester, well worth
the current asking price of £60 including postage and VAT. Many
readers will have large collections of old or unidentified semi-con-
ductors which could be easily put to use if analysed with this unit.

For those with poor memories (like the author!) it can save much
time searching through data sheets for device connection and
polarity data. A classic example came when a medium power pnp
transistor was required for a switching application during a design
session.
Everyday Practical Electronics are pleased to be able to offer all readers these

ELECTRONICS CD-ROMS

Electronic Projects is split into two main sections: Building Electronic Projects contains comprehensive information about the components, tools and techniques used in developing projects from initial concept through to final circuit board production. Extensive use is made of video presentations showing soldering and construction techniques. The second section contains a set of ten projects for students to build, ranging from simple sensor circuits through to power amplifiers. A shareware version of Matrix’s CADPACK schematic capture, circuit simulation and p.c.b. design software is included.

The projects on the CD-ROM are: Logic Probe; Light, Heat and Moisture Sensor; NE555 Timer; Egg Timer; Dice Machine; Bike Alarm; Stereo Mixer; Power Amplifier; Sound Activated Switch; Reaction Tester. Full parts lists, schematics and p.c.b. layouts are included on the CD-ROM.

NEW ELECTRONICS PROJECTS

Prices for each of the CD-ROMs above are:

- Hobbyist/Student ...£45 inc. VAT
- Institutional (Schools/HE/FE/Industry)..............£99 plus VAT
- Institutional 10 user (Network Licence)...............£199 plus VAT

(UK and EU customers add VAT at 17.5% to “plus VAT” prices)

ANALOGUE ELECTRONICS

Analogue Electronics is a complete learning resource for this most difficult branch of electronics. The CD-ROM includes a host of virtual laboratories, animations, diagrams, photographs and text as well as a SPICE electronic circuit simulator with over 50 pre-designed circuits.

Sections on the CD-ROM include: Fundamentals – Analog Signals (5 sections), Transistors (4 sections), Waveshaping Circuits (6 sections).

Op.Amps – 17 sections covering everything from Symbols and Signal Connections to Differentiators, Amplifiers – Single Stage Amplifiers (8 sections), Multi-stage Amplifiers (3 sections), Filters – Passive Filters (10 sections), Phase Shifting Networks (4 sections), Active Filters (6 sections).

Oscillators – 6 sections from Positive Feedback to Crystal Oscillators.

Systems – 12 sections from Audio Pre-Amplifiers to 8-Bit ADC plus a gallery showing representative p.c.b. photos.

DIGITAL ELECTRONICS

Digital Electronics builds on the knowledge of logic gates covered in Electronic Circuits & Components (opposite), and takes users through the subject of digital electronics up to the operation and architecture of microprocessors. The virtual laboratories allow users to operate many circuits on screen.

Covers binary and hexadecimal numbering systems, ASCII, basic logic gates and their operation, monostable action and circuits, and bistables – including JK and D-type flip-flops. Multiple gate circuits, equivalent logic functions and specialised logic functions. Introduces sequential logic including clocks and clock circuitry, counters, binary coded decimal and shift registers. A/D and D/A converters and their parameters, traffic light controllers, memories and microprocessors – architecture, bus systems and their arithmetic logic units.

FILTERS

Filters is a complete course in designing active and passive filters that makes use of highly interactive virtual laboratories and simulations to explain how filters are designed. It is split into five chapters: Revision which provides underpinning knowledge required for those who need to design filters, Filter Basics which is a course in terminology and filter characterization, important classes of filter, filter order, filter impedance and impedance matching, and effects of different filter types. Advanced Theory which covers the use of filter tables, mathematics behind filter design, and an explanation of the design of active filters. Passive Filter Design which includes an expert system and filter synthesis tool for the design of low-pass, high-pass, band-pass, and band-stop Bessel, Butterworth and Chebyshev ladder filters. Active Filter Design which includes an expert system and filter synthesis tool for the design of low-pass, high-pass, band-pass, and band-stop Bessel, Butterworth and Chebyshev op.amp filters.

DIGITAL WORKS 3.0

Digital Works Version 3.0 is a graphical design tool that enables you to construct digital logic circuits and analyze their behaviour. It is so simple to use that it will take you less than 10 minutes to make your first digital design. It is so powerful that you will never outgrow its capability.

- Software for simulating digital logic circuits
- Create your own macros – highly scalable
- Create your own circuits, components, and i.c.s
- Easy-to-use digital interface
- Animation brings circuits to life
- Vast library of logic macros and 74 series i.c.s with data sheets
- Powerful tool for designing and learning
Interested in programming PIC microcontrollers? Learn with PICtutor by John Becker

This highly acclaimed CD-ROM, together with the PICtutor experimental and development board, will teach you how to use PIC microcontrollers with special emphasis on the PIC16x84 devices. The board will also act as a development test bed and programmer for future projects as your programming skills develop. This interactive presentation uses the specially developed Virtual PIC Simulator to show exactly what is happening as you run, or step through, a program. In this way the CD provides the easiest and best ever introduction to the subject.

Nearly 40 Tutorials cover virtually every aspect of PIC programming in an easy to follow logical sequence.

HARDWARE

Whilst the CD-ROM can be used on its own, the physical demonstration provided by the PICtutor Development Kit, plus the ability to program and test your own PIC16x84s, really reinforces the lessons learned. The hardware will also be an invaluable development and programming tool for future work.

Two levels of PICtutor hardware are available – Standard and Deluxe. The Standard unit comes with a battery holder, a reduced number of switches and no displays. This version will allow users to complete 25 of the 39 Tutorials. The Deluxe Development Kit is supplied with a plug-top power supply (the Export Version has a battery holder), all switches for both PIC ports plus I.C.d. and 4-digit 7-segment I.d. displays. It allows users to program and control all functions and both ports of the PIC. All hardware is supplied fully built and tested and includes a PIC16F84.

PICtutor CD-ROM

Hobbyist/Student ..£45 inc. VAT
Institutional (Schools/HE/FE Industry) . .£99 plus VAT
Institutional 10 user (Network Licence) £199 plus VAT

(£19.95 inc. VAT)

Deluxe PICtutor Hardware

Electronic Components Photos

A high quality selection of over 200 JPG images of electronic components. This selection of high resolution photos can be used to enhance projects and presentations or to help with training and educational material. They are royalty free for use in commercial or personal printed projects, and can also be used royalty free in books, catalogues, magazine articles as well as worldwide web pages (subject to restrictions – see licence for full details).

Also contains a FREE 30-day evaluation of Paint Shop Pro 6 – Paint Shop Pro image editing tips and on-line help included!

Price £19.95 inc. VAT

Electronic Circuits & Components + The Parts Gallery

Provides an introduction to the principles and application of the most common types of electronic components and shows how they are used to form complete circuits. The virtual laboratories, worked examples and pre-designed circuits allow students to learn, experiment and check their understanding. Sections include: Fundamentals: units & multiples; electricity, electric circuits, alternating circuits. Passive Components: resistors, capacitors, inductors, transformers. Semiconductors: diodes, transistors, op.amps, logic gates. Passive Circuits: Active Circuits

The Parts Gallery will help students to recognise common electronic components and their corresponding symbols in circuit diagrams. Selections include: Components, Components Quiz, Symbols Quiz, Circuit Technology

Hobbyist/Student ...£34 inc VAT
Institutional (Schools/HE/FE/Industry) ...£89 plus VAT
Institutional 10 user (Network Licence)..£169 plus VAT

(£19.95 inc. VAT)

(CD-ROM ORDER FORM)

Please send me:

☐ Electronic Projects
☐ Analogue Electronics
☐ Digital Electronics
☐ Filters
☐ Digital Works 3.0
☐ PICtutor
☐ Electronic Circuits & Components + The Parts Gallery

Note: The software on each version is the same, only the licence for use varies.

HARDWARE

This CD-ROM contains a range of tried and tested analogue and digital circuit modules, together with the knowledge to use and interface them. Thus allowing anyone with a basic understanding of circuit symbols to design and build their own projects.

Essential information for anyone undertaking GCSE or “A” level electronics or technology and for hobbyists who want to get to grips with project design. Over seventy different Input, Processor and Output modules are illustrated and fully described, together with detailed information on construction, fault finding and components, including circuit symbols, pinouts, power supplies, decoupling etc.

Single User Version £19.95 inc. VAT
Multiple User Version £34 plus VAT

(£19.95 inc. VAT)

(Ordering)

Institutional, Multiple User and Deluxe Versions – overseas readers add £5 to the basic price of each order for airmail postage (do not add VAT unless you live in an EU country, then add 17½% VAT or provide your official VAT registration number).

Send your order to:
Direct Book Service
Allen House, East Borough, Wimborne
Dorset BH21 1PF

01202 881749. Fax: 01202 841692

Minimum system requirements for these CD-ROMs: PC with 486/166MHz, VGA+256 colours, CD-ROM drive, 32MB RAM, 10MB hard disk space. Windows 95/98, mouse, sound card, web browser.
Multiple Choice Mail

These days it’s quite common to use more than one Internet Service Provider, especially if you have to manage several domain names or web sites at the same time. Users often utilise more than one Internet account – whether a paid-for professional dial-up account or a free one – and also it is common to fetch mail from several different mailboxes. You might want to use multiple ISPs for various reasons, perhaps running one as a back-up for the other. You can usually FTP your files (e.g. a web site) to any server regardless of which dial-in service you choose, although there may be exceptions to this rule: some ISPs may demand that you use their own access number when FTPing to their server, other ISPs may insist that you route a minimum number of hours’ worth of calls per month through their own access number instead.

When running several ISPs, trying to manage E-mail can be quite a headache. With a little thought, however, you can streamline and refine your set-up to make the most of multiple ISP management. This month’s Net Work focuses on collecting and sending mail from multiple mailboxes using several ISPs.

As far as incoming E-mail is concerned, this is usually handled in one of two ways:

- through a “multiple address” mailbox in the form of <anyone@yourname.co.uk>. All your incoming mail is routed into this mailbox by your ISP.
- use separate POP3 mailboxes such as tom@yourname.co.uk, fred@yourname.co.uk, sales@anothername.com etc.

In the first method, your E-mail software (e.g. Microsoft Outlook Express 5, Eudora or Turnpike) can be used to fetch all the E-mail in one batch, and place it into an “incoming” folder or Inbox. Depending on how elaborate a system you want, you could then use sort rules and filters to re-route those incoming mails into more folders on your computer system. In Outlook Express 5.0, for example, you can right-click the Inbox icon and then create and name a New Folder. Then go Tools/Message Rules/Mail . . . and create new routing rules which will sort the mail from the inbox into the new folder. This takes a little bit of thinking about but is actually a quite a reasonable “plain English” approach to creating sort rules once you get used to it. You could also sort mail by sender, for example, so that mail from a particular person (e.g. the Boss) is routed to its own folder. The added benefit of this system (unlike the second method) is that you don’t need the intervention of the ISP to set up any more usernames, because your software handles the sorting. In the second system, mail can only be addressed to that individual user (tom, fred or sales) and is routed to that folder.

Incoming E-mail is usually handled by a POP3 mailserver, and the ISP will advise you of the appropriate POP3 address. Often it’s something like “pop3mail.yourisp.co.uk”.

Outlook Choice

When it comes to sending E-mail and accessing multiple ISP accounts, Outlook Express will offer you a choice: after finishing with the first ISP’s mail servers Outlook will prompt you to hang up and dial another ISP (which is a nuisance), or it will try to “use the existing connection” to search for the second ISP’s mail servers. If you allow it to use the existing connection, you will probably get an error message caused by Outlook’s failure to send outgoing mail.

This happens because the first ISP’s dial-up account is now being used to talk to another ISP’s outgoing mail server. A workaround is to ensure that the same SMTP server address is configured on all Accounts, then dial in using that corresponding account. In this example, I would dial in using ISP1, so the server addresses would be set as follows:

ISP 1 – smtp.mailISP1.co.uk and pop3.mailISP1.co.uk
ISP 2 – smtp.mailISP2.co.uk and pop3.mailISP2.co.uk

Then go to Tools/Options/Connections, and tick the box which says “Ask before switching dial-up connections”. If you set up Outlook Express in this way, when you dial through your regular ISP, the software will send all your E-mail through that SMTP server, then it will switch connections without complaint. You can therefore operate two ISPs in tandem without having to hang up and redial.

Of course, if you decide to dial in through your second ISP instead, then you’re back to square one, only worse: you wouldn’t be able to send any E-mail at all! You would have to point to the second ISP’s SMTP server. At least this system allows you to configure multiple ISPs and use Outlook Express to work with them without getting error messages or needing to redial. The last thing to check is under Options/Connection: Hang up after sending and receiving. You might want to disable this option if you intend to use your web browser.

Problems Addressed

Your outgoing mail is usually sent through an SMTP (Simple Mail Transfer Protocol) server. Your ISP will tell you its address, and obviously you must configure your E-mail software so that it sends mail to the correct server. At this point, however, things become messy if you are using multiple Internet Service Providers. I mentioned earlier that you can often use virtually any Internet connection in order to, say, connect to an FTP server or to collect E-mail from all your mailboxes. Your software will contact the mailserver address followed by the specific mailbox login and password to fetch any mail back onto your system. Outlook Express displays a bargraph showing what it’s doing: each server will be addressed in turn and incoming E-mail will be fetched from the POP server configured for that Account.

At the same time, outgoing mail will be sent to the corresponding SMTP server. The question is, what if you have another ISP as well? For example you might run a Freeserve account in tandem with your main dial-up account.

The important point here is that unlike incoming mail which can usually be checked using any connection, the outgoing mail server you configured must correspond with the ISP through which you connect to the Internet. So if you’ve connected through Demon Internet for example, you can usually fetch all your incoming E-mails from all your mailboxes (no matter which ISP provides them) without a problem. However, you can only use Demon’s SMTP mail server to send out your outgoing mail. You couldn’t use Demon’s dial-up service to send outgoing mail out through, say, Freeserve’s mail server. Your configuration should reflect this.

Imagine what would happen if you could use anyone’s outgoing mail server: the entire system would soon choke, because bulk unsolicited E-mails (spam and so forth) could be broadcast using any ISP’s mail server. By rights, if you connect through a specific ISP you shouldn’t have the privilege of using another ISP’s outgoing mail server.

Sometimes, however, unconfigured mail servers do allow open access accidentally (called open relaying), a problem I discussed in previous articles.
Learn The Easy Way!

Experimenting with PIC Microcontrollers

This third release in our series teaches how to programme and interface to the PIC16F84 and PIC16C711 microcontrollers, and consists of the book, an integrated suite of programmes to run on a PC, and a programmer/experimental module.

The book with its abundance of flow diagrams and circuit diagrams is the heart of the system, and the software is the brains. A text editor with word processing power is the key stone supporting the assembler, disassembler, simulator, and programming software. As the text is typed in the assembler works in the background testing each line so that errors are immediately highlighted. When the typing is done the simulator can be used to single step or run the programs. Boxes pop up showing the contents of registers and the result of any text written to a standard 2 line by 16 character display. If it works correctly plug the programmer/experimental module onto the end of your printer lead and test it using a real live PIC. All operations work directly from the assembler text in the editor.

The experiments are all performed using the programming/experimental module which is already wired with LEDs, push buttons, and an alphanumeric liquid crystal display. Flashing LEDs, text display, real time clock, period timer, beeps and music, including a rendition of Beethoven's Für Elise. Then there are two projects to work through; building a sine wave generator covering 0.2Hz to 20kHz in five ranges, and investigating measurement of the power taken by domestic appliances. In the space of 24 experiments, two projects and 56 exercises the system works through from absolute beginner to experienced engineer level.

Kit or Ready Built

The programming/experimental module can be purchased built, tested and ready to use, or in kit form. The ready built module verifies first at normal 5 volts then with ±10% volts applied, and uses the built in display to show programme messages. The kit version uses a simplified design which verifies only at normal 5 volts and where the display is dedicated to the test PIC (the status is indicated using 2 LEDs).

The kit consists of two parts, PIC3u-a contains the PCB, control PIC, 2 slide switches, software suite, and a booklet containing a full parts list and construction details. PIC3u-b contains all the other items to build the programmer/experimental module and includes a test PIC.

The system will also programme similar PICs (87C, 710, 71, 620, 621 etc.). The made up module is supplied with a test PIC fitted. Two PP3 batteries are also required, these are not supplied.

Assembler

The first book Experimenting with PC Computers with its kit is the easiest way ever to learn assembly language programming, simple circuit design and interfacing to a PC. If you have enough intelligence to understand the English language and you can operate a PC computer then you have all the necessary background knowledge. Flashing LEDs, digital to analogue converters, simple oscilloscopes, charging curves, temperature graphs and audio digitising.

C & C++

The second book Experimenting with C & C++ Programmes uses a similar approach. It teaches the user to programme by using C to drive the simple hardware circuits built using the materials supplied in the kit of parts. The experimental circuits build up to a storage oscilloscope using relatively simple C techniques to construct a programme that is by no means simple. When approached in this way C is only marginally more difficult than BASIC and infinitely more powerful. C programmers are always in demand. Ideal for absolute beginners and experienced programmers.

The Kits

The kits contain the prototyping board, lead assemblies, components, and programming software to do all the experiments. The 'made up' kits are supplied ready to start the first experiment. The 'unnamed' Kits require the prototyping board and leads to be assembled and soldered before they can start. The top up kit CP2t is for readers who have purchased a kit to go with the first book, and contains all the components and programming software but not the prototyping board or leads.

Hardware required

All three systems assume you have a PC (386 or better) and a printer lead.

Mail Order Form

Please make your cheque/PO payable to Brunning Software and send with this form to Brunning Software, 138 The Street, Little Clacton, Clacton-on-sea, Essex, CO16 9LS. Your order will be processed as soon as your cheque arrives. Despatch is usually the same day. Software supplied on 3.5" HD discs. The kits do not include the book.

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Book Experimenting with PCs (Maplin code NV68)</td>
<td>£23.99</td>
</tr>
<tr>
<td>Kit 1a 'made up' and ready to start (Not from Maplin)</td>
<td>£46.00</td>
</tr>
<tr>
<td>Kit 1a 'unnamed' needs assembling (Maplin code NV67)</td>
<td>£39.99</td>
</tr>
<tr>
<td>Book Experimenting with C & C++ (Maplin code NW47)</td>
<td>£24.99</td>
</tr>
<tr>
<td>Kit CP2a 'made up' and ready to start (Not from Maplin)</td>
<td>£46.00</td>
</tr>
<tr>
<td>Kit CP2a 'unnamed' needs assembling (Maplin code NW46)</td>
<td>£39.99</td>
</tr>
<tr>
<td>Kit CP2t 'top up' to add to kit 1 (Maplin code NW49)</td>
<td>£22.99</td>
</tr>
<tr>
<td>Book Experimenting with PIC Microcontrollers</td>
<td>£23.99</td>
</tr>
<tr>
<td>PIC Programmer/experimental module & software.</td>
<td>£74.00</td>
</tr>
<tr>
<td>Kit PIC3u-a: PCB, control PIC, switches & software.</td>
<td>£39.00</td>
</tr>
<tr>
<td>Kit PIC3u-b: all other items required to build module.</td>
<td>£25.00</td>
</tr>
</tbody>
</table>

UK postage free for orders above £20 otherwise add £3 per order. Prices include VAT when applicable.

Name:...
Address:...
Postcode:..
Date:...
Telephone:..

Mail order address: 138 The Street, Little Clacton, Clacton-on-sea, Essex, CO16 9LS. Tel 01255 862308.
A new way to buy EPE Back Issues – our wallet-sized CD-ROMs contain back issues from our EPE Online website plus bonus articles, all the relevant PIC software and web links. All this for just £12.45 including postage and packing.

VOL 1 CONTENTS

BACK ISSUES – November 1998 to June 1999 (all the projects, features, news, IUs etc. from all eight issues). Note: No advertisements or Free Gifts are included.

PIC PROJECT CODES – All the available codes for the PIC based projects published in issues from November 1998 to June 1999.

EPE ONLINE STORE – Books, PCBs, Subscriptions, etc.

VOL 2 CONTENTS

BACK ISSUES – July 1999 to December 1999 (all the projects, features, news, IUs, etc. from all six issues). Note: No advertisements or Free Gifts are included.

PIC PROJECT CODES – All the available codes for the PIC-based projects published in issues from July to December 1999.

EPE ONLINE STORE – Books, PCBs, Subscriptions, etc.

EXTRA ARTICLES – ON ALL VOLUMES

THE LIFE & WORKS OF KONRAD ZUSE – a brilliant pioneer in the evolution of computers. A bonus article on his life and work written by his eldest son, including many previously unpublished photographs.

BASIC SOLDERING GUIDE – Alan Winstanley’s internationally acclaimed fully illustrated guide.

UNDERSTANDING PASSIVE COMPONENTS – Introduction to the basic principles of passive components.

HOW TO USE INTELLIGENT L.C.Ds By Julian Ilett – An utterly practical guide to interfacing and programming intelligent liquid crystal display modules.

INTERGRAPH COMPUTER SYSTEMS 3D GRAPHICS – A chapter from Intergraph’s book that explains computer graphics technology in an interesting and understandable way with full colour graphics.

NOTE: This mini CD-ROM is suitable for use on any PC with a CD-ROM drive. It requires Adobe Acrobat Reader (available free from the Internet – www.adobe.com/acrobat)

Order on-line from www.epemag.com or by phone, fax, email or post.
Everyday Practical Electronics, October 2000
WHETHER ELECTRONICS IS YOUR HOBBY
OR YOUR LIVELIHOOD . . .
YOU NEED THE MODERN ELECTRONICS MANUAL
and the ELECTRONICS SERVICE MANUAL

THE MODERN ELECTRONICS MANUAL

The essential reference work for everyone studying electronics

- Over 900 pages
- In-depth theory
- Projects to build
- Detailed assembly instructions
- Full components checklists
- Extensive data tables
- Detailed supply information
- Easy-to-use format
- Clear and simple layout
- Comprehensive subject range
- Professionally written
- Regular Supplements
- Sturdy gold blocked ring-binder

SALE 40% OFF
Buy either Manual at 40% off regular price.
Or buy both and save even more.
DON’T MISS THIS!

EVERYTHING YOU NEED TO GET STARTED AND GO FURTHER IN ELECTRONICS!

The revised edition of the Modern Electronics Base Manual contains practical, easy-to-follow information on the following subjects:

CIRCUITS TO BUILD: There's nothing to beat the satisfaction of creating your own project. From basic principles, like soldering and making printed circuit boards, to circuit-building, the Modern Electronics Manual and its Supplements describe clearly, with appropriate diagrams, how to assemble radios, loudspeakers, amplifiers, car projects, computer interfaces, measuring instruments, workshop equipment, security systems, etc.

The Base Manual describes 13 projects including a Theremin and a Simple TENS Unit.

ESSENTIAL DATA: Extensive tables on diodes, transistors, thyristors and triacs, digital and linear i.c.s.

EXTENSIVE GLOSSARY: Should you come across a technical word, phrase or abbreviation you're not familiar with, simply turn to the glossary included in the Manual and you'll find a comprehensive definition in plain English.

The Manual also covers Safety and Suppliers.

The most comprehensive reference work ever produced at a price you can afford, the revised edition of THE MODERN ELECTRONICS MANUAL provides you with all the essential information you need.

THE MODERN ELECTRONICS MANUAL

Regular Supplements: Approximately 160-page Supplements of additional information which, if requested, are forwarded to you immediately on publication (four times a year). These are billed separately and can be discontinued at any time.

Presentation: Durable looseleaf system in large A4 format

Price of the Basic Work: £39.95 SALE PRICE £23.97 (to include a recent Supplement FREE)

Guarantee

Our 30 day money back guarantee gives you complete peace of mind. If you are not entirely happy with either Manual, for whatever reason, simply return it to us in good condition within 30 days and we will make a full refund of your payment – no small print and no questions asked.

(Overseas buyers do have to pay the overseas postage charge)

EVERYTHING YOU NEED TO KNOW TO GET STARTED IN REPAIRING AND SERVICING ELECTRONIC EQUIPMENT

SAFETY: Be knowledgeable about Safety Regulations, Electrical Safety and First Aid.

UNDERPINNING KNOWLEDGE: Specific sections enable you to understand Electrical and Electronic Principles, Active and Passive Components, Circuit Diagrams, Circuit Measurements, Radio, Computers, Valves and manufacturers' Data, etc.

PRACTICAL SKILLS: Learn how to identify Electronic Components, Avoid Static Hazards, Carry Out Soldering and Wiring. Remove and Replace Components.

TEST EQUIPMENT: How to Choose and Use Test Equipment, Assemble a Toolkit, Set Up a Workshop, and Get the Most from Your Multimeter and Oscilloscope, etc.

SERVICING TECHNIQUES: The regular Supplements include vital guidelines on how to Service Audio Amplifiers, Radio Receivers, TV Receivers, Cassette Recorders, Video Recorders, Personal Computers, etc.

TECHNICAL NOTES: Commencing with the IBM PC, this section and the regular Supplements deal with a very wide range of specific types of equipment – radios, TVs, cassette recorders, amplifiers, video recorders etc.

REFERENCE DATA: Detailing vital parameters for Diodes, Small-Signal Transistors, Power Transistors, Thyristors, Triacs and Field Effect Transistors. Supplements include Operational Amplifiers, Logic Circuits, Optoelectronic Devices, etc.

The essential work for servicing and repairing electronic equipment

- Around 900 pages
- Fundamental principles
- Troubleshooting techniques
- Servicing techniques
- Choosing and using test equipment
- Reference data
- Easy-to-use format
- Clear and simple layout
- Vital safety precautions
- Professionally written
- Regular Supplements
- Sturdy gold blocked ring-binder

ELECTRONICS SERVICE MANUAL

Basic Work: Contains around 900 pages of information. Edited by Mike Tooley BA

Regular Supplements: Approximately 160-page Supplements of additional information which, if requested, are forwarded to you immediately on publication (four times a year). These are billed separately and can be discontinued at any time.

Presentation: Durable looseleaf system in large A4 format

Price of the Basic Work: £39.95 SALE PRICE £23.97 (to include a recent Supplement FREE)

REGULAR SUPPLEMENTS

Unlike a book or encyclopedia, these Manuals are living works – continuously extended with new material. If requested, Supplements are sent to you approximately every three months. Each Supplement contains around 160 pages – all for only £23.50+£2.50 p&p. You can, of course, return any Supplement (within ten days) which you feel is superfluous to your needs. You can also purchase a range of past Supplements to extend your Base Manual on subjects of particular interest to you.

RESPONDING TO YOUR NEEDS

We are able to provide you with the most important and popular, up to date, features in our Supplements. Our unique system is augmented by readers’ requests for new information.

You can also contact the editors directly in writing if you have a specific technical request or query relating to the Manuals.

ORDER FORM

Simply complete and return the order form with your payment to the following address:

We offer a 30 day MONEY BACK GUARANTEE – if you are not happy with either Manual simply return it to us in good condition within 30 days for a full refund.

Overseas buyers do have to pay the overseas postage – see below.

POSTAGE CHARGES

<table>
<thead>
<tr>
<th>Postal Region</th>
<th>Price PER MANUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK Islands & Eire</td>
<td>£5.50 each</td>
</tr>
<tr>
<td>USA & Canada</td>
<td>£25 each</td>
</tr>
<tr>
<td>Rest of World</td>
<td>£29 each</td>
</tr>
<tr>
<td>Mainland UK</td>
<td>FREE</td>
</tr>
<tr>
<td>Scottish Highlands</td>
<td>FREE</td>
</tr>
<tr>
<td>Europe (EU)</td>
<td>£20 each</td>
</tr>
<tr>
<td>Europe (Non-EU)</td>
<td>£26 each</td>
</tr>
<tr>
<td>Europe (Non-EU)</td>
<td>$33 each</td>
</tr>
<tr>
<td>Far East & Australasia</td>
<td>$35 each</td>
</tr>
<tr>
<td>Rest of World</td>
<td>£45 each</td>
</tr>
</tbody>
</table>

Please allow four working days for UK delivery.

NOTE: Surface mail can take over 10 weeks to some parts of the world. Each Manual weighs about 4kg when packed.

PLEASE send me

☐ THE MODERN ELECTRONICS MANUAL plus a FREE SUPPLEMENT

☐ ELECTRONICS SERVICE MANUAL plus a FREE SUPPLEMENT

I enclose payment of £23.97 (for one Manual) or £39.94 for both Manuals (saving another £8 by ordering both together) plus postage if applicable.

I also require the appropriate Supplements four times a year. These are billed separately and can be discontinued at any time. (Please delete if not required.)

Should I decide not to keep the Manuals I will return them to you within 30 days for a full refund.

FULL NAME (PLEASE PRINT) ____________________________

ADDRESS __

ADDRESS __

___ POSTCODE __________

SIGNATURE ____________________________

☐ I enclose cheque/PO payable to Wimborne Publishing Ltd.

☐ Please charge my Visa/Mastercard

Card No. ____________________________ Card Exp. Date __________

Note: Please allow four working days for UK delivery.

Order Form

Mainland UK: £23.97 (including postage)

Scottish Highlands: £26.50

UK Islands: £27.50

Europe (EU): £30.50

Europe (Non-EU): £34.50

USA: £45.50

Far East & Australasia: £48.50

Rest of World: £52.50

International Air: £120.00

Surface Mail: £80.00

Please allow four working days for UK delivery.

Note: Surface mail can take over 10 weeks to some parts of the world. Each Manual weighs about 4kg when packed.

Postage Charges

<table>
<thead>
<tr>
<th>Postal Region</th>
<th>Price PER MANUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainland UK</td>
<td>FREE</td>
</tr>
<tr>
<td>Scottish Highlands</td>
<td>FREE</td>
</tr>
<tr>
<td>Europe (EU)</td>
<td>£20 each</td>
</tr>
<tr>
<td>Europe (Non-EU)</td>
<td>£26 each</td>
</tr>
<tr>
<td>USA & Canada</td>
<td>£33 each</td>
</tr>
<tr>
<td>Rest of World</td>
<td>£45 each</td>
</tr>
</tbody>
</table>
CROCCOLED CLIPS, Small size, 10 each red and black. Order Ref: 116.

30A PANEL MOUNTING TOGGLE SWITCH. Double pole. Order Ref: 166.

HIGH POWER 3in. SPEAKER (11W 8ohm). Order Ref: 2464.

MEDIUM WAVE PERMEABILITY TUNER. It’s almost a complete radio with circuit. Order Ref: 2.5P16.

HEATING ELEMENT. Mains voltage 100W, brass encased. Order Ref: 8.

MAINS MOTOR with gearbox giving 1 rev per 24 hours. Order Ref: 89.

CERAMIC WAVE CHANGE SWITCH. 12-pole, 3- way with /in. spindle. Order Ref: 303.

REVERSING SWITCH. 20A double pole or 40A single pole. Order Ref: 343.

PAXOLIN PANEL. Approximately 12in. x 12in. Order Ref: 116.

CLOCKWORK MOTOR. Suitable for up to 6 /in. diameter. Pack of 2. Order Ref: D52.

PHONE EXTENSION WIRE. 12 assorted sizes vary between 6mm and 1.6mm. Price £1. Order Ref: 128.

HIT-POT NUMERATOR TUBE. Hvac ref XN3. Order Ref: 865.

5K POT, standard size with DP switch, good for 1k ohm, centre tapped. Order Ref: 233SR.

HIGH CURRENT RELAY. 12V D.C. or 24V A.C., operates changeover contacts. Order Ref: 1026.

2-CORE CURLY LEAD. 5A, 2m. Order Ref: 846.

3 CHANGEOVER RELAY. 6V A.C., 3V D.C. Order Ref: 1004.

COMPONENT MOUNTING PANEL. Heavy Paxolin 10in. x 2in., 32 pairs of brass pillars for solid- izing mounting components. Order Ref: 7RC26.

PEA LAMPS, only 4mm but 14V at 0.04A, wire ended, pack of 4. Order Ref: 7RC28.

HIGH AMP THYRISTOR, normal 2 contacts from top, easy to solder on. Order Ref: 11R24.

13A PLUG, fully legal with insulated legs. Order Ref: GR10.

OPTO SWITCH on p.c.b. size 2in x 1in., pack of 2. Order Ref: GR2.

COMPONENT MOUNTING PANEL, heavy Paxolin 10in.x 2in., 32 pairs of brass pillars for solid- izing mounting components. Order Ref: 7RC26.

1MA PANEL METER. Approximately 80mm x 65mm, front engraved 0-100. Price £1.50 each. Order Ref: 116R2.

24V D.C. MOTOR WITH GEARBOX. Size 50mm long, 30mm diameter. Very powerful, operates off any volt- age between 6 and 24 D.C. Speed at 6V is 200 rpm, speed controller available. Special price £2. Order Ref: 3P10.

DAY/NIGHT RELAYS. Prices include base and delivery included. Order Ref: 12.5P3.

20MM x 6MM x 9IN. PHILIPS MONITOR. £14 making it a terrific bargain. Order Ref: 18P81.

AGAIN by Challenger, this is 8in. diameter. Order Ref: 7P16L.

This could control up to 10A of lighting from the mains. Order Ref: 1026.

POWERFUL MOTOR. Pack of 2. Order Ref: 257SL.

SOLAR KITS. To make an old fashioned gram-ophone which will operate in sunlight or under a light bulb. Normal price £7.50, reduced to £6. Order Ref: 3P27SL.

A SIMILAR SOLAR KIT. This one makes a mono- phone, again £6. Order Ref: 7P18L.

THIS OFFER IS OF SPECIAL INTEREST TO ANYBODY WHO WANTS HIGH QUALITY AMPLI- FICATION. It is the famous Mullard Unilex, supplied in 4 modules with handbook. Normal price £8 for the 4 modules, reduced to £6. Order Ref: B84BL.

MOST USEFUL, MINI TRANSFORMER. This is a 12V-24V 35W rated, with mounting legs so can stand directly on base panel, price £2.50. Order Ref: 2.5P15.

PROJECT BOX BAGAIN. Conventional plastic construction, is colour and size approxi- mately 250mm high, 150mm wide, and 70mm deep. Divides into 2 halves, held together by screws and the two sections can be used for automatic switching of components or boards by self-tapping screws. The box itself is not drilled at all. It has ventilators in the top and bottom, but these are quite a decoration and give the box a pleasing look. Price £1. Order Ref: 3P22.

OVEN THERMOSTAT with knob calibrated so it can be set to cut it off at any temperature up to 600 degrees /C. Price £3. Order Ref: 3P22.

EMERGENCY LIGHT- ING. Has internal NiCad batteries and a fluores- cent tube. The lamp keeps the batteries charged and switches on the tube immediately if there is a break. Price £1 each. Order Ref: 3P22B.

MAINS INPUT SOCKET. Takes normal flat pin mains plug, 2 for £1 Order Ref: 1082.

12V 40A RELAY RELAY. With heat sink cou- pled if used on full current, 2 for £1. Order Ref: 1070.

ENGINEERS BENCH PANEL. This has 2 x 12A mains sockets which are switched and illuminated, thus saving you having to keep pulling out the plugs. Nicely cased, only 2 £ Order Ref: 2P461.
Constructional Project

EPE MOODLOOP FIELD STRENGTH INDICATOR

ANDY FLIND

Check your “loop” is working. Will also sniff out unwanted sources of high levels of 50Hz field from mains-powered equipment.

Apart from the beneficial effects that may be experienced, there is no quick way to ascertain whether the EPE Moodloop (Aug. ’00) project is actually working, let alone check that it is working correctly. Various output arrangements can be used with it; the prototype used two loops constructed with a single length of 15-way ribbon cable which were connected in parallel to produce the required impedance of about 10 ohms.

If one of these loops were to fail the field strength would obviously drop, but there would be no immediate indication of this to the user. Since plug and socket connections are used and the cable is fairly long and easy to damage this is quite a likely occurrence so a means of checking the field strength is clearly needed.

This difficulty was spotted during the original “loop” design and consideration was given to the possibility of fitting some form of i.e.d. indication of the output current, but the various disadvantages of adding this to the circuit led to the idea being dropped at the time. However, indication is definitely required and this little project should fill that need.

COMPASS READING

To begin with, it is not strictly necessary to build an electronic indicator at all, since the field can be checked with nothing more technical than a compass! The method is to measure and note the field strength of the EPE Moodloop during correct operation so that any subsequent changes, indicating possible fault conditions, can be seen.

To do this it should be ensured that the Moodloop’s output voltage and the impedance of the output inductive loop connected to it are both correct so that it is reasonably certain that the output current and hence field strength are as they should be. A section of the output loop should then be positioned in a North-South direction with a compass positioned above it as shown in Fig.1.

If the lowest output frequency is selected, the compass needle will deflect East and West in time with the generated magnetic field. In all probability it will swing much too far and may even start to rotate, a good example of a simple brushless electric motor!

The trick is to place something of suitable thickness between the cable and the compass, such as a paperback book, so that the compass deflects to about fifteen or twenty degrees in either direction. This setup may then be repeated at any time in the future when any change in the field strength should show up as a change in deflection. A fluid-damped compass is preferable for this exercise as a non-damped one will probably be too “lively” to be read easily.

FIELD STRENGTH INDICATOR

However, that’s a cheapskate’s solution! Readers of EPE can apply their knowledge to construct a much better indicator, which will operate at higher frequencies and in any position. It may also be used to locate and indicate other sources of magnetic field, particularly those at 50Hz which are considered by some to be a health hazard.

A block diagram for the Field Strength Indicator is shown in Fig.2. It uses an inexpensive linear Hall Effect sensor to detect the field, an a.c. coupled amplifier to give a voltage gain of about 270 over a bandwidth from 0-5Hz to 100Hz, and an i.e.d. bargraph display to indicate the intensity and frequency of the sensed field. A.C. coupling is used to eliminate the effects of standing fields such as those of the earth and any permanent magnets in the vicinity of the unit, and also the effects of temperature which causes appreciable output voltage drift with most Hall devices.

The bargraph display output is configured as “dot mode” where only one segment is illuminated at any time and is arranged so that this is around the centre and deflects to the left for one polarity of field and to the right for the other. This means that the overall width of deflection indicates field strength and the rate at which it moves from side to side indicates frequency, for low frequencies at least. At higher frequencies it becomes more of a...
blur, but with practice it is possible to recognise most of the Moodloop’s frequency range and fifty Hertz fields are usually fairly obvious.

CIRCUIT DETAILS

The full circuit diagram of the EPE Moodloop Field Strength Indicator project is shown in Fig.3. The Hall device IC1 is a UGN3503U which is inexpensive, robust and widely available. Unless exposed to extremely strong fields the output is about half the supply voltage so this is used to set the working point for IC2a, one half of an AD8532 dual op amp. The AD8532 is intended for low voltage operation and has rail-to-rail outputs which makes it ideal for this application.

Configured as a non-inverting amplifier, IC2a produces a voltage gain at the working frequency of about 27. The d.c. gain is unity, the low-frequency roll-off being set by the value of capacitor C1. At switch-on, the large value of this capacitor leads to a fairly long settling time which diode D1 reduces slightly. IC2b is used as an inverting amplifier with a voltage gain of ten.

The output signal from IC2a is a.c. coupled through capacitors C3 and C4, which are connected back-to-back so that swings of either polarity may be accommodated, to IC1b inverting input pin 6. These two capacitors also have some effect in setting the low frequency roll-off point. Capacitors C1, C3 and C4 are tantalum bead types, chosen for their low leakage. The high frequency roll-off is set by capacitors C2 and C5 to about 100Hz.

The quiescent output voltage, or working point, of IC2b is set by resistors R4 and R5 to half the supply or about 2.5V. The overall voltage gain of these two stages is approximately 270 over a bandwidth extending from 0.5Hz to about 100Hz which is adequate to cover the range of alternating magnetic fields it is intended to detect.

ON THE DISPLAY

The output signal from IC2b is applied to the input of IC3, a linear i.e.d. bargraph driver used in “dot” mode. The input range of this is set to about 1V overall by the resistors network R8 to R11 with an adjustment of the centre point from about 2V to 3V made possible by preset VR1. When calculating the values for these resistors the effect of the internal resistor chain between “div. high” and “div. low” in IC3 has to be taken into account, this has a value of about 10 kilohms (10k).

Although IC3’s internal 1-V voltage reference is not used in this design the current drawn from it sets the output currents to the i.e.d.s D2 to D11 in the bargraph display. These are about ten times the current drawn from the reference, so a value of 1-2 kilohms (1k2) for resistor R12 sets the i.e.d. current to about 10mA. Preset potentiometer VR1 is used to adjust the bargraph so that the quiescent display centres around the two middle i.e.d.s.

The voltage regulator IC4 is an LP2950 which is better suited to battery operation than the standard 78L05 type as it has a much smaller quiescent current and can operate with an input to output voltage difference of just 100mV. The usual decoupling capacitors C6 to C9 are included to ensure stability.

CONSTRUCTION

The Moodloop Field Strength Indicator is constructed on a piece of 0-1 inch matrix stripboard having 28 strips of 36 holes. The component layout and the copper side, showing breaks, are shown in Fig.4.

Following this there are 27 links (the lowest link on the board “earths” the strip adjacent to the one carrying the input signal), which is not as bad as it sounds since nine of them are the angled ones to the right of the display and bridge just one hole each. These connect all the bargraph i.e.d. anodes (a) to the battery positive supply.

After this, the remaining components can be fitted in order of physical height, diode D1 followed by the resistors, ceramic capacitors and the three tantalum bead capacitors C1, C3 and C4. Care should be taken to ensure that these are fitted the right way round, as their polarity markings are sometimes difficult to read. Capacitors C6 and C9 are fitted horizontally to obtain a low profile.

Fig.3. Full circuit diagram for the EPE Moodloop Field Strength Indicator.

Fig.5. Pinout connection details for the UGN3503U Hall Effect sensor.
Resistors
R1 39k
R2, R6 1M (2 off)
R3 100k
R4, R5, R8, R11 10k (4 off)
R7 22k
R9, R10 4k7 (2 off)
R12 1k2
All 0·6W 1% metal film.

Potentiometer
VR1 10k 22-turn cermet preset (see text)

Capacitors
C1, C3, C4 22µF tantalum bead, 16V (3 off)
C2, C5 470p ceramic (2 off)
C6 100µF radial elect. 10V
C7, C8 100n ceramic (2 off)
C9 220µF radial elect. 16V

Semiconductors
D1 1N4148 silicon diode.
D2 to D11 10-segment i.e.d. bargraph array, red
IC1 UGN3503U linear Hall Effect sensor
IC2 AD8532 dual op.amp
IC3 LM3914 linear bargraph display driver
IC4 LP2950 micropower 5V positive regulator

Miscellaneous
S1 sub-min. changeover slide switch
Stripboard, 0·1 inch matrix, size 28 strips x 36 holes; handheld case, (165mm x 80mm x 34mm), with battery compartment; 8-pin d.i.l. socket; 18-pin d.i.l. socket; 20-pin d.i.l. socket; PP3 type battery connector; multistrand connecting wire; solder pins; solder etc.; iron nail, approx 5mm dia. (see text).

Fig.4. Stripboard component layout, details of breaks required in the underside copper tracks and wiring to the on/off switch and battery connector.
Once the wiring is completed, the circuit board is flipped-over to rest on the plastic tubular supports glued inside the case lid. These supports should allow the bargraph to fit flush in the display window cutout.

The Hall Effect sensor IC1 should be temporarily connected next. Provided there are no strong magnets close by, its output should be about 2.5V. This can be conveniently measured at pin 3 of the socket for IC2. The current drain will now have risen to about 10mA.

Next, IC2 can be inserted and the circuit powered again. It will raise the drain to about 11mA. About 15 seconds should be allowed for the circuit to settle, after which the voltages at pin 1 and pin 7 should both be about 2.5V. The voltage at pin 7 should also appear at pin 5 of the socket for IC3, and moving a magnet close to the sensor should result in visible fluctuations.

Finally, IC3 and the bargraph should be inserted. The bargraph in the prototype has a small bevel on one corner which denotes bottom right, but if there are any doubts it may be advisable to check polarity of this component.

The circuit board should now be powered again and allowed time to settle thoroughly, after which preset VR1 should be adjusted so that the two centre segments of the bargraph are flickering, due to circuit noise, with about equal intensity. The total operating drain of the complete circuit will be about 30mA.

SENSOR

The Hall Effect sensor IC1 should be temporarily connected next. Provided there are no strong magnets close by, its output should be about 2.5V. This can be conveniently measured at pin 3 of the socket for IC2. The current drain will now have risen to about 10mA.

Next, IC2 can be inserted and the circuit powered again. It will raise the drain to about 11mA. About 15 seconds should be allowed for the circuit to settle, after which the voltages at pin 1 and pin 7 should both be about 2.5V. The voltage at pin 7 should also appear at pin 5 of the socket for IC3, and moving a magnet close to the sensor should result in visible fluctuations.

Finally, IC3 and the bargraph should be inserted. The bargraph in the prototype has a small bevel on one corner which denotes bottom right, but if there are any doubts it may be advisable to check polarity of this component.

The circuit board should now be powered again and allowed time to settle thoroughly, after which preset VR1 should be adjusted so that the two centre segments of the bargraph are flickering, due to circuit noise, with about equal intensity. The total operating drain of the complete circuit will be about 30mA.

SENSORS

The method of fitting the Hall Effect sensor (IC1) to the board can be seen in Fig.4, whilst details of its connections are shown in Fig.5. The prototype uses solder pins for external connections and three more of these were added for securing the sensor and connected to their points on the board with short lengths of wire.

Originally it was thought that the inexpensive UGN3503 sensor would not be sensitive enough for this application, but the inclusion of a short length of soft iron to either side of it concentrates the magnetic field passing through it which produces a huge increase in sensitivity. These pieces of soft iron, about 20mm in length and 5mm diameter, were cut from a large nail, about 120mm long. The ends were hand filed as flat and square as possible, and they were then pressed tightly against the sensor and glued in place. This simple notion made this project possible and may well find many other applications using this type of sensor.

CASING UP

The prototype was constructed as a self-contained handheld unit in a small plastic box, 145mm × 80mm × 34mm which has a separate compartment for a PP3 battery. This allows it to be used for checking other sources of alternating magnetic field, in particular sniffing out high levels of 50Hz field from mains-powered equipment using transformers.

The circuit board is shaped to fit neatly into the circuit compartment in the case and rests on five pillars cut from some old plastic tubing and glued into place. These are just high enough to bring the top of the bargraph flush with the top of the case when the board is in position. Some polyurethane foam (of the stiffer type) presses it firmly into place when the case is screwed together. A small hole was drilled to allow external access to the multturn preset VR1, but in practice this has not required any further adjustment.

IN USE

When switched on the unit takes about twelve seconds to settle. Initially the display remains ‘off’ for a couple of seconds, then the light travels across from left to right, then slowly settles back to the centre two segments. It looks deceptively like a sophisticated self-test routine! It is sensitive enough to respond to the earth’s field if rotated rapidly relative to this.

Using it to check the Moodloop is similar to the method described for a compass, except that it doesn’t have to be aligned North to South. It can be simply placed over a section of the loop with a spacer such as a paperback book such that the moving light just about reaches the ends of the display.

Subsequent placement in the same position will reveal any changes in field strength. The speed at which the light travels from end to end will clearly indicate the frequency being used, right up to the highest rate.

The unit can be operated from any supply between 6V and 15V. An alternative to the handheld construction described would be to fit it into the Moodloop project’s case and power it directly from the 13V supply.

If a longer wire is used to connect one of the Moodloop’s p.c.b. outputs to its socket, this could be given a turn or two close to the sensor, which could easily be physically placed to obtain full bargraph deflection for normal output. This would then indicate output current for any load connected to the Moodloop.

There is a slight chance that the 5V regulator IC4 might run slightly hot if this is done, since with a 13V supply and a 30mA output current it would be dissipating around 240mW. This could easily be cured with the inclusion of a suitable resistor however, about 100 ohms to 150 ohms should be suitable. This would give the unit an attractive built in monitoring display.
INTRODUCING ROBOTICS WITH LEGO MINDSTORMS by Robert Penfold
This book explains basic robotics principles and introduces readers to the Lego MINDSTORMS construction and programming environment. It covers the fundamentals of robotics, including sensors, actuators, and programming languages, and provides step-by-step instructions for building and programming a variety of robots.

BASIC RADIO PRINCIPLES AND TECHNOLOGY by Ian Poole
This book covers the basics of radio technology, including the principles of signal transmission and reception, as well as the construction and operation of radio receivers and transmitters. It is aimed at readers with a basic knowledge of electronics.

PROJECTS FOR RADIO AMATEURS AND S.W.L.'S. by R. A. Penfold
This book is aimed at radio enthusiasts and shortwave listeners, providing detailed descriptions of a range of radio projects, including receivers, transmitters, and antennas. It is suitable for readers with a basic knowledge of electronics.

AN INTRODUCTION TO AMATEUR RADIO by Ian Poole
This book is an introduction to the world of amateur radio, covering the history of radio, the basics of radio technology, and the operation of amateur radio stations. It is suitable for beginners and experienced radio operators alike.

INTRODUCING ROBOTICS WITH LEGO MINDSTORMS, by Robert Penfold
This book provides a comprehensive introduction to robotics, using the Lego Mindstorms platform. It covers the fundamentals of robotics, including sensors, actuators, and programming languages, and provides step-by-step instructions for building and programming a variety of robots.

BASIC RADIO PRINCIPLES AND TECHNOLOGY, by Ian Poole
This book covers the basics of radio technology, including the principles of signal transmission and reception, as well as the construction and operation of radio receivers and transmitters. It is aimed at readers with a basic knowledge of electronics.

PROJECTS FOR RADIO AMATEURS AND S.W.L.'S., by R. A. Penfold
This book is aimed at radio enthusiasts and shortwave listeners, providing detailed descriptions of a range of radio projects, including receivers, transmitters, and antennas. It is suitable for readers with a basic knowledge of electronics.

AN INTRODUCTION TO AMATEUR RADIO, by Ian Poole
This book is an introduction to the world of amateur radio, covering the history of radio, the basics of radio technology, and the operation of amateur radio stations. It is suitable for beginners and experienced radio operators alike.
DIGITAL ELECTRONICS – A PRACTICAL APPROACH

 With FREE Software: Number One Systems – EASY-PC Professional XM and Pulsar (Limited Functionality)

 Richard Monk

 Covers binary arithmetic, Boolean algebra and logic gates, combination logic, sequential logic including the design and construction of asynchronous and synchronous circuits and register circuits. Together with a considerable practical content plus the additional attraction of its close association with computer aided design including the EASY-PC software.

 There is a 'blow-by-blow' guide to the use of EASY-PC Professional XM (a schematic drawing and printed circuit board design computer package). The guide also conducts the reader through the use of Pulsar simulation using Pulsar software. Chapters on p.c.b. physics and p.c.b. production techniques make the book unique, and with its host of project ideas, it continues to be the integrative assignment and common skills components required by BTEC and the key skills demanded by GNVQ. The principal aim of the book is to provide a straightforward approach to the understanding of digital electronics.

 With FREE Software: Number One Systems – EASY-PC – Excellent value

 Order code PC130 £8.95

 DIGITAL GATES AND FLIP-FLOPS

 Ian R. Sinclair

 This book, intended for enthusiasts, students and technicians, seeks to establish a firm foundation in digital electronics by treating the topics of gates and flip-flops thoroughly and from the beginning. Topics such as Boolean algebra and Karnaugh mapping are explained, demonstrated and used extensively, and more attention is paid to the subject of asynchronous counters than to the simple but less important ripple counters.

 No background other than a basic knowledge of electronics is assumed, and the more theoretical topics are explained from the beginning. The book concludes with an explanation of microprocessor techniques as applied to digital logic.

 Order code PC628 £8.95

 Music, Audio and Video

 AN INTRODUCTION TO LOUDSPEAKERS AND ENCLOSURE DESIGN

 V. Capel

 This book explores the various features, good points and snags of the principal types of loudspeaker and enclosure. So that the reader can understand the principles underlying their design and operation, the different types and what they are used for are fully described. The importance of the factors which influence the performance are explained in detail. Design details and diagrams are provided for the construction of a range of purpose-built cabinets.

 Order code BPM6 £3.99

 ELECTRONIC MUSIC AND MIDI PROJECTS

 R. A. Penfold

 Whether you wish to save money, build your own audio gear, or experiment with your own soundtracks, this book contains a range of commercial audio equipment projects specially designed for synthesizer enthusiasts. All the projects are easy to construct, and most are suitable for the newcomers to project construction, as they are assembled on stripboard.

 There are faders, wipers and effects units which will add sparkle and originality to your video recordings, an audio mixer and noise reducer to enhance your soundtracks and a basic computer control interface. Also, there's a useful selection of audio production techniques to get you started.

 Order code PC116 £9.95

 COMPUTER AND MUSIC – AN INTRODUCTION

 R. A. Penfold

 Computers are playing an increasingly important part in the world of music, and the days when computerised music was strictly for the musical few are long gone.

 If you are more used to the black and white keys of a synthesizer than the QWERTY keyboard of a computer, then don't dare to miss this one!

 This book will help you to choose the right components for your system to suit your personal needs, and equip you to exploit that system fully.

 Order code PC115 £9.95

 HIGH POWER AUDIO AMPLIFIER CONSTRUCTION

 R. A. Penfold

 This book will help you learn the basics of computing, running applications programs, wiring up a MIDI system and using the system to good effect. It's all about everything you need to know about hardware and programs, with no previous knowledge of computing needed or assumed. This book contains a set of lab experiments for the virtual microcomputer that let you recreate the experiences of early computer pioneers. If you're the slightest bit interested in the inner workings of computers, then don't dare to miss this one!

 Order code PCB77 £3.99

 "Bebop To The Boolean Boogie" by Clive "Max" Maxfield

 Specially imported by EPE – Excellent value

 An Unconventional Guide to Computers

 This follow-on to Bebop to the Boolean Boogie is a multimedia extravaganza of information about how computers work. It picks up where "Bebop I" left off, guiding you through the fascinating world of computer design. It will help you to choose the right components for your system to suit your personal needs, and equip you to exploit that system fully.

 Order code PC199 £29.95

 "Bebop Bytes Back" by Clive "Max" Maxfield and Alvin Brown

 Specially imported by EPE – Excellent value

 An Unconventional Guide To Computers

 This follow-on to Bebop to the Boolean Boogie is a multimedia extravaganza of information about how computers work. It picks up where "Bebop I" left off, guiding you through the fascinating world of computer design. It will help you to choose the right components for your system to suit your personal needs, and equip you to exploit that system fully.

 Order code PC199 £29.95
Circuits, Data and Design

PRACTICAL ELECTRONIC FILTERS
Owen Bishop
This book deals with the subject in a non-mathematical way. It reviews the main types of filter, explaining in simple terms what each type works. From this it is used.

The book also presents a dozen filter-based projects with applications in and around the home or in the consumer/industrial electronics. These include a number of audio projects such as a rhythm sequencer and a multi-voiced electronic organ.

Concluding the book is a practical step-by-step guide to designing simple filters for a wide range of purposes, with circuit diagrams and worked examples.

98 pages Order code BP37
£4.99

ELECTRONIC HOBBYISTS DATA BOOK
R. A. Penfold
This book is intended to give you everything you are ever likely to want to know about hobby electronics, but did not know where to ask or refer. Comprehensive contents pages make it easy to quickly locate the data you require.

The subjects covered include: Common circuits, and related data (including helpful graphs and tables of values); Colour codes for resistors, capacitors and inductors; Pinout details for a wide range of CMOS and TTL devices, plus basic data on the various logic families; Pinout details and basic data for a wide range of operational amplifiers, Data and leadout information for a wide range of transistors, FETs, power FETs, tranzistors, diodes, etc; General data including MIDI message coding, radio data, ASCII/Hexadecimal, decimal ratios, etc.

242 pages Order code BP70 £5.95

50 SIMPLE LED CIRCUITS
R. A. Penfold
Contains 50 interesting and useful circuits and applications, covering many different branches of electronics, using a wide range of readily available components – the light-emitting diode (LED). Also included are 3 circuits for the 707 common anode display.

64 pages Temporarily out of print BOOK 2 50 more i.e. circuits.
50 pages Order code BP77 £2.99

A BEGINNER’S GUIDE TO TTL DIGITAL ICs
R. A. Penfold
This book first covers the basics of simple logic circuits in general, and then progresses to specific TTL logic integrated circuits. The devices covered include gates, oscillators, timers, inverters, flipflops, dividers, and decoder circuits. Some practical circuits are used to illustrate the use of TTL devices in the real world.

142 pages Order code BP39 £4.95

HOW TO USE OPAMPS
E. A. Park
This book has been written as a designer’s guide covering many operational amplifiers, serving both as a second mortgage. It provides a complete introduction to the practical side of this fascinating hobby, including the following topics:

Component identification, and buying the right parts; resistor colour codes, capacitor value markings, etc.

160 pages Order code BP28 £3.99

CIRCUIT SOURCE BOOK 1
A. Penfold
Written to help you create and experiment with your own electronic designs by combining and using the various standard “building block” circuits provided. Where applicable, advice on how to alter the circuit parameters is provided.

The circuits covered are mainly concerned with signal generation, power supplies, and digital electronics.

The topics covered in this book include: 555 oscillators; sinewave oscillators; function generators; CMOS oscillators; voltage controlled oscillators; radio frequency oscillators, 555 monostables; CMOS monostables; TTL monostables; precision long timers; power supply and regulator circuits; negative supply generators and voltage boosters; digital dividers; decoders; etc; counters and display drivers; D/A and A/D converters; opto-sensors, flipflops, noise generators, tone decoders, etc.

Over 170 circuits are provided, which it is hoped will be useful to all those involved in circuit design and application, be they professionals, students or hobbyists.

192 pages Order code BP27 £4.99

ELECTRONIC PROJECTS FOR EXPERIMENTERS
R. A. Penfold
Many electronic hobbyists who have been pursuing this hobby for a number of years seem to suffer from the dreaded “seem all before syndrome”. This book is fairly and squarely aimed at sufferers of this complaint, plus anything else that you like to try, or think of trying, on your interest value alone.

The subjects covered include:- Magnetic field detector, Basic Hall effect compass, Hall effect audio isolator, Voice scrambler/descrambler, Bal detector, Bal style echo loca-
tion, Noise cancelling, LED strobeoscope, Infra-red “torch”, Electronic breathes detector, Class D power amplifier, Strain gauge amplifier, Super hearing aid.

138 pages Order code BP71 £4.95

PRACTICAL FIBRE-OPTIC PROJECTS
R. A. Penfold
While fibre-optic cables may have potential advantages over ordinary electrical cables, for the electronics enthusiast it is probably the novelty value that makes them worthy of exploitation. Fibre-optic cables provide an innovative interesting alternative to electrical cables, but in most cases they also represent a practical approach to the problem. This book provides a number of tried and tested circuits for projects that utilize fibre-optic cables.

The projects include:- Simple audio links, P.M. audio link, PWDM audio links, Simple links, Seu.W. d.c. link, PWDM, motor speed control, RS232C data links, MIDI links, Loop alarms, R.P.M. meter.

All the components used in these designs are readily available, none of them require the constructor to take out a second mortgage.

132 pages Order code BP74 £4.95

ELECTRONIC PROJECT BUILDING FOR BEGINNERS
R. A. Penfold
This book is for complete beginners to electronic project building. It provides a complete introduction to the practical side of this fascinating hobby, including the following topics:

Component identification, and buying the right parts; resistor colour codes, capacitor value markings, etc.

advice on buying the right tools for the job; soldering; making easy work of the hard wiring; construction meth-
ods, including stripboard, custom printed circuit boards, plain matrix boards, surface mount boards and wire-wrap-
ning; finishing off; and adding panel labels; getting “prob-
tem” projects to work, including simple methods of fault-
finding.

If in fact everything you need to know in order to get start-
ed in this absorbing and creative hobby.

135 pages Order code BP392 £4.95

A BEGINNER’S GUIDE TO MODERN ELECTRONIC COMPONENTS
R. A. Penfold
The purpose of this book is to provide practical infor-
mation to help the reader sort out the bewildering array of components currently on offer. An advanced knowledge of the theory of electronics is not needed, and this book is not intended to be a course in elec-
tronic theory. The main aim is to explain the differences between components of the same basic type (e.g. car-
bon, carbon film, metal film, and wire-wound resistors) so that the right component for a given application can be selected. A wide range of components are included, with the emphasis firmly on those components that are used in a great deal of projects in the home constructor.

166 pages Order code BP285 £4.99

HOW TO USE OSCILLOSCOPES AND OTHER TEST EQUIPMENT
R. A. Penfold
This book explains the basic function of an oscilloscope, gives a detailed explanation of all the standard controls, and provides advice on buying. A separate chapter deals with using an oscilloscope for fault finding on linear and logic circuits, plenty of example waveforms help to illustrate the control functions, the effects of various fault conditions. The function and use of various other pieces of test equipment are also covered, includ-
ing signal generators, logic probes, logic pul- sers, and crystal calibrators.

104 pages Order code BP267 £3.50

BOOK ORDERING DETAILS
Our postage price is the same no matter how many books you order, just add £1.50 to your total order for postage and packing (overseas readers add £3 for countries in the EEC, or add £6 for all countries outside the EEC, surface mail postage) and send a PO, cheque, international money order (£ sterling only) made payable to DIRECT BOOK Service or credit card details, Visa or Mastercard – minimum credit card order is £5 – to

DIRECT BOOK SERVICE, ALLEN HOUSE, EAST BOROUGH, WIMBORNE, DORSET BH2 1PF
Books are normally sent within seven days of receipt of order, but please allow 28 days for delivery (more for overseas orders). Please check price and availability (see latest Everyday Practical Electronics before ordering from old lists).

For a further selection of books see the next two issues of EPE.

DIRECT BOOK SERVICE IS A DIVISION OF WIMBORNE PUBLISHING LTD. Tel 01202 881749
Fax 01202 841692. E-mail:dbss@epmag.wimborne.co.uk

BOOK ORDER FORM
Full name: ...
Address: ...
Post code: ... Telephone No: ...
Signature: ...
I enclose cheque/PO payable to DIRECT BOOK SERVICE for £ ...
Please charge my Visa/Mastercard £ Card expiry date

Card Number ..
Please send book order codes: ..

For more information, please contact us on 01202 881749 or visit our website at www.epmag.wimborne.co.uk
Printed circuit boards for most recent EPE constructive projects are available from the PCB Service, see list. These are fabricated in glass fibre, and are fully drilled and routed taped. All prices include VAT and postage and packing. Add £1 per board for airmail outside of Europe. Remittances should be sent to The PCB Service, Everyday Practical Electronics, Wimborne, Dorset BH21 1FP. Tel: 01202 881749; Fax 01202 841692; E-mail: orders@epemag.wimborne.co.uk. Cheques should be crossed and made payable to Everyday Practical Electronics (Payment in £ sterling only).

NOTE: While 95% of our boards are held in stock and are dispatched within 28 days of receipt of order, please allow a maximum of 28 days for delivery – overseas readers allow extra if ordered by surface mail.

Back numbers or photostats of articles are available if required – see the Back Issues page for details. Please check price and availability in the latest issue. Boards can only be supplied on a payment with order basis.

PCB SERVICE

G6F

Disco Lights Flasher
Surface Thermometer
Kissometer

G6F

Electronic Thermostat – T-Stat
IR Remote Control – Transmitter
Lightbulb Saver

G6F

EPE Mood Changer
Stereo Tone Control plus 20W Stereo Amplifier
Security Auto-Light

G6F

Lighting-Up Reminder
A.M./F.M. Radio Remote Control
PIC Toolkit Mk2

G6F

L.E.D. Stroboscope (Multi-project PCB)
Intruder Deterrent
L.E.D. Strobeoscope (Multi-project PCB)

G6F

PROJECT TITLE
Order Code
Cost

Ultrasonic Paddle Finder
A-Channel Analogue Data Logger
Butter Amplifier (Oscillators Pt 2)
Magnetic Field Detector
Sound Activated Switch
Freezer Alarm (Multi-project PCB)
Chill Guard
Variable Dual Power Supply
MRC Power supply
Interior Lamp Delay
Main Cable Locator (Multi-project PCB)
Webalarm
Demister One-Shot
Unimonous Stophatch – Part 1
Unimonous Stophatch – Part 2
Serial Port Converter
Laptop Guard
Scratch Blanker
Flashbox Sneakman (Multi-project PCB)

Video Cleaner
Find It
Tec-It 2000 – Part 4
High Performance
Regenerative Receiver
EPE Icebreaker – PCB257, programmed
PIC16F877 and floppy disc
Parking Warning System
Micro-PCScope
Garage Link
Transmitter
Receiver
Set

Versatile Micro-Audio Preamplifier
FM Light Checker
Multi-Channel Transmitter System
Transmitter
Receiver
Interface

Canute Tide Predictor
PIC-Ten Frequency Generator/Counter
EPE Moodlock
Dot Game Indicator
Handy-App
Active Ferme Loop Kernal
Remote Control IR Decoder Software only

PIC Dual-Channel Virtual Scope

Order Code Project Quantity Price

Minimum order for credit cards £5

Signature....................................... Card Exp. Date................
Address ...
..

Everyday Practical Electronics
MasterCard or Visa No.
Current Cover Date);
EPE Teach-In 2000

EPE SOFTWARE

Software programs for EPE projects marked with an asterisk * are available on 3.5 inch PC-compatible disks or free from our Internet site. Six disks are available: PIC Tutorial (Mar-May '98 issues); PIC Toolkit Mk2 (May-Jun '99 issues); EPE Disk 1 (Apr '95-Dec '98 issues); EPE Disk 2 (Jan-Dec '99); EPE Disk 3 (Jan '00 issue to current cover date); EPE Teach-In 2000. The disks are obtainable from the EPE PCB Service at £3.00 each (UK) to cover our admin costs (the software itself is free). Overseas (each): £3.50 surface mail, £4.95 each airmail. All files can be downloaded free from our Internet FTP site: ftp://ftp.epemag.wimborne.co.uk.

EPE PRINTED CIRCUIT BOARD SERVICE

Order Code Project Quantity Price

Name ..
Address ..

I enclose payment of £............. (cheque/P.O in £ sterling only) to: Everyday Practical Electronics, Wimborne, Dorset BH21 1FP.

Signature....................................... Card Exp. Date,..

NOTE: You can also order p.c.b.s by phone, Fax, E-mail or via our Internet site on a secure server: http://www.epemag.wimborne.co.uk.

Price

8.93
£4.44
£7.82
£6.78
£8.86
£6.96
£6.77
£6.53
£3.00
£6.53
£229
£5.08
£6.63
£4.20
£5.32
£6.81
£3.52
£6.81
£3.00
£8.32
£7.78
£9.51
£7.10
£5.15
£3.00
£5.15
£3.00
£6.77
£3.00
£6.77
£8.32
£6.77
£3.00
£4.44
£6.96
In today's world you need qualifications to obtain and keep employment. Our open learning courses make obtaining those qualifications as convenient as possible.

Choose from our dozens of SQA accredited units, either singly to employment or as a group to obtain a Higher National Certificate.

- **Learn at your own pace in your own home**
- **Support from professional engineers via phone, FAX and the Internet**
- **Courses from Introductory Bridging Modules to HNC Electronics**
- **Units from Programable Logic Controllers to Engineering Computing**

DON'T DELAY — we are waiting to hear from you.

Contact Laura Murdoch, Open Learning Co-ordinator

01698 283100 Ext. 214

E-mail: lmurdoch@bell.ac.uk

Web: http://floti.bell.ac.uk/openlearning

Member of the British Association for Open Learning

Preview Centre for FT Knowledge

All Kits Built on Tripad PCB

Solids State Kits P&P £3 UK

Worldwide P&P £10.

Payment Cheques Sterling

Send for Free Catalogue Ready Built Kits £5 Extra

Kitmaster Radio Valve Kits

K1 – Valve Radio Power Supply Unit

Ideal PSU for most of our Valve Kits

£20.00

K2 – Valve Radio Power Supply Unit

Similar to Kit 1 but offers higher voltage output on H.T. side

£22.00

K3 – Two Valve Regen Radio

Works on K1 but offers higher voltage output on H.T. side

£22.00

K4 – One Valve Amplifier

Uses the EL84 Valve still made today. Ideal Starter Kit

£12.00

K5 – Battery One Valve Novelty Kit

Runs on 26 volts. Ideal Experimental Valve Project. Also solid state unit incorporated to give speaker volume

£15.00

K6 – One Valve Regen Radio

Comes with crystal earpiece. MW/SW

£25.00

K7 – Two Valve Amplifier

Good valve, runs on 36 volts. Ideal Experimental Valve and solid state incorporated to give speaker volume

£27.50

K8 – Crystal Set One Valve

Experimental valve – solid state with speaker

£18.00

K9 – One Valve MW Radio, Not Regen

Solid state incorporated, good volume with speaker supplied. Works very well

£22.50

K10 – Modern Two Valve Radio with Solid State

This radio uses two valves still produced today and there are no coils to wind. It operates on medium wave and has no regeneration problems

£28.50

K11 – Two Valve SW Receiver

Uses the ECC83 valve. Good voice, runs on 14MHz

£24.50

K12 – Two Valve Amplified Crystal Set Radio

Similar to the K10 project but with more amplification.

£26.50

K13 – Two Valve Regen Radio, MW & SW

Uses the EF91 valve as a detector and the EL84 for audio amplification. This is ideal if you are into experimenting with crystal sets and you require lots of volume

£24.00

K14 – Three Valve MW & SW and with RF Stage Added Which Gives More Selectivity

Also comes with interchangeable coil former. Also uses 2 EF91 valves and the EL84 for audio. Also comes with Regen Radio. Good value, runs on 14MHz

£30.00

K15 – Three Valve MW & SW, Another Different Type of Regen Radio

This is a highly sophisticated electronic circuit with 14MHz. Also with added R.F. stage. This circuit uses the EL84 for audio with a popular EF91 valve for the detector and the EF91 for the R.F. stage. This makes for a superior regen radio

£32.00

Distance Learning Courses In:

- **Analogue and Digital Electronics, Fibre Optics, Fault Diagnosis, Mechanics, Mathematics and Programable Logic Controllers leading to a BTEC Professional Development Certificate.**

- **Suitable for beginners and those wishing to update their knowledge and practical skills.**

- **Courses are very practical and delivered as self contained kits.**

- **No travelling or college attendance.**

- **Learning is at your own pace.**

- **Each course can stand alone or be part of a modular study programme.**

- **Tutor supported and BTEC certified.**

For information contact:

NCT Ltd., P.O. Box 11

Wendover, Bucks HP22 6XA

Telephone 01296 624270; Fax 01296 625299

Web: http://www.nct.ltd.uk
If you want your advertisements to be seen by the largest readership at the most economical price our classified and semi-display pages offer the best value. The prepaid rate for semi-display space is £6 (+VAT) per single column centimetre (minimum 2.5cm). The prepaid rate for classified adverts is 30p (+VAT) per word (minimum 12 words).

For rates and information on display and classified advertising please contact our Advertisement Manager, Peter Mew as above.

0ED. Phone/Fax (01255) 861161.

Everyday Practical Electronics reaches twice as many UK readers as any other UK monthly hobby electronics magazine, our audited sales figures prove it. We have been the leading independent monthly magazine in this market for the last fifteen years.

MISCELLANEOUS

LOUDSPEAKER CABINETS FOR SALE

These are brand new ex-Rogers HI-FI models, sold at a fraction of cost. Save money by building your own. Bookshelf, stand-mounted or floor-standing. Real veneer and vinyl finishes in black, walnut, rosewood and other colours.

Prices from £19 pair to £149 pair
Drive units, ports, gold-plated terminal cards, etc., all available. Carry extra or collect
For further details, please call:
AVANTI AUDIO
TEL: 01344 638830

PRINTED CIRCUIT BOARDS – QUICK SERVICE. Prototype and production artwork raised from magazines or draft designs at low cost. PCBs designed from schematics. Production assembly, wiring and software programming. For details contact Patrick at Agar Circuits, Unit 5, East Belfast Enterprise Park, 308 Albertbridge Road, Belfast, BT5 4GX.
Phone 028 9073 8897, Fax 028 9073 1802.
E-mail: agar@argent.co.uk.

SIR-KIT ELECTRONICS, 52 Severn Road, Clacton, CO15 3RB

PROTOTYPE PRINTED CIRCUIT BOARDS one-offs and quantities, for details send s.a.e. to B. M. Ansbro, 38 Poyings Drive, Hove, Sussex BN3 8GR, or phone Brighton 883871, Mobile 07949 593039.

VALVE ENTHUSIASTS: Capacitors and other parts in stock.

For free advice/lists please ring, Geoff Davies (Radio), Tel. 01788 574774.

FREE PROTOTYPE PRINTED CIRCUIT BOARDS! Free prototype p.c.b. with quantity orders. Call Patrick on 028 9073 8897 for details. Agar Circuits, Unit 5, East Belfast Enterprise Park, 308 Albertbridge Road, Belfast BT5 4GX.

DETECT ATMOSPHERIC ACTIVITY.

On-line readers! Try the EPE Chat Zone – a virtual real-time Internet “discussion board” in a simple to use web-based forum!
http://www.epemag.wimborne.co.uk/wwboard
Or buy EPE Online: www.epemag.com
Everyday Practical Electronics, October 2000

TRAIN TODAY FOR A BETTER FUTURE

Now you can get the skills and qualifications you need for career success with an ICS Home Study Course. Learn in the comfort of your own home at the pace and times that suit you and in your spare time. Over the past 100 years ICS have helped nearly 10 million people to progress in their careers. ICS are the world's largest, most experienced home study college. Enjoy the comfort of your own home at the pace and times that suit you. Over the past 100 years ICS have helped nearly 10 million people to progress in their careers. ICS is the world's largest, most experienced home study college.

FREephone 0500 581 557

[Contact Us Now For a Free brochure](tel:01274 863434)

Professional 88-108MHz FM Broadcasting Kits

<table>
<thead>
<tr>
<th>All Our Kits Include</th>
<th>Detailed Instructions with Schematics</th>
<th>High Quality Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our Product Range:</td>
<td>Transmit FM創業 from 0.005W to 35W</td>
<td>FM Stereo Coders</td>
</tr>
<tr>
<td>Transmitters for 0.005W to 35W</td>
<td>FM Stereo Coders</td>
<td>Audio Controller Limiters</td>
</tr>
<tr>
<td>FM Stereo Coders</td>
<td>Audio Controller Limiters</td>
<td>Antennas</td>
</tr>
</tbody>
</table>
| FM Stereo Coders | Audio Controller Limiters | Car Radios

Contact Us Now For A Free Brochure

Tel 01274 863434 Fax 01274 428665

Visit Our Website at www.veronica.co.uk

COVERT VIDEO RECORDERS

Black and White Pin Hole Board Cameras with Audio. Cameras in P.R., Radios, Clocks, Briefcases etc. Transmitting Cameras with Receiver (Wireless). Order from above as colour. Audio Surveillance Kits and Ready Built Units, Bug Detector etc.

A.L. ELECTRONICS

Please phone 0181 203 6008 for free catalogue.

Fax 0181 201 5395

E-mail: surveillance@btclick.com www.uspy.com

ECLECTIC SURPLUS CLEARANCE SALE

SCOOPE PURCHASE:

FLIuche HAND HELD DIGITAL MULTIMETER, MODEL 8024B

Cancelled order 1950 AC/DC 2 amp AC/DC Resistance 20Megohm plus Siemens range. Also mains regulated to ±0.05% of reading. Includes volt/ohm/milliammeter, diode test function, built-in transistor test socket and relay outputs. Complete with instructions, wall mounting bracket and mains lead. Offered at a fraction of original price: £47.50, £50.95 incl. p&p & VAT.

THE ELECTRONICS SURPLUS TRADER

– This is a listing of new first class components and electronic items at below trade prices. Includes manufacturers’ surplus and overstocks. Also obsolete semiconductors, valves and high voltage caps and components. Send two first class stamps for large catalogue.

(Dept E) CHEVET SUPPLIES LTD

175 Dickson Road, BLACKPOOL FY1 2EU

Tel: (01253) 751856, Fax: (01253) 320279

E-mail: chevet@globalnet.co.uk

Telephone Orders Accepted Callers welcome Tues, Thurs, Fri and Sat.

ELECTRONICS SUPPLIES CLEARANCE SALE

DIGITAL TEST METER

Built-in transistor test socket and diode test position. DC volts 200mV to 1000V. AC volts 200V to 750V DC current 20mA to 1A. Resistance 200 ohms to 2000k ohms.

£6.99 incl. VAT

N. R. BARDWELL LTD (EPE)

VARIABLE VOLTAGE TRANSFORMERS

INPUT 200/230/240V AC SIGNAL OUTPUT 0/20-2V DC PANEL MOUNTING

<table>
<thead>
<tr>
<th>0-2VCA 2 amp max</th>
<th>23.00</th>
<th>£10.00 incl. VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-20kV 5 amp max</td>
<td>45.25</td>
<td>(£45.84 incl. VAT)</td>
</tr>
<tr>
<td>0-20kV 10 amp max</td>
<td>55.00</td>
<td>(£56.30 incl. VAT)</td>
</tr>
<tr>
<td>0-20kV 20 amp max</td>
<td>85.50</td>
<td>(£87.00 incl. VAT)</td>
</tr>
<tr>
<td>0-20kV 30 amp max</td>
<td>111.63</td>
<td>(£113.13 incl. VAT)</td>
</tr>
</tbody>
</table>

8 KV ISOLATION TRANSFORMER

As New: DC Equipment. Army project. Low noise Suspension. Ultra Isolation Transformer with nominal covers and knock-out plates. Prime, 2021 model. 1600VA, Secondary 127V/240V 500Vac, 500Vac, 120Vac, 500Vac. £147.50 plus VAT. 250VA 240V 500Vac. £84.85 plus VAT. 750VA 240V 500Vac. £195.00 plus VAT. Or as required. Calibrated for K-type thermocouple. Peak hold facility. Supplied and overstocks. Also obsolete semiconductors, valves and high voltage caps and components. Send two first class stamps for large catalogue.

FREEPHONE 0500 581 557

Data: We write to International Correspondence Schools, FREEPOST 888, 8 Plaistow, Cippenham, Slough, Berks. RE 7839 Q6 or Balfour House, London SW2 7SR.

Please send me your Free Catalogue.

80 Asstd capacitors electrolytic£1.00

30 BC559 Transistors£1.00

25 BC557 Transistors£1.00

30 BC549 Transistors£1.00

20 BC182L Transistors£1.00

50 Axial l.e.d.s, 2mcd red Diode Package . £1.00

12 Assorted 7-segment Displays£1.00

Our Kits Are Also Available

RF Power Amps
Antennas
Audio Compressor Limiters
Transmitters from 0.05W to 35W

Prices include VAT. Postage £1.65. 44p stamp for Lists

Clydeway Skypark, Glasgow, G3 8BR. Tel: 0500 581 557 or Tel/Fax: Dublin 285 2533.

CCOOVEVVVEEETTT VVIIDDEEOO CCAAMMEERRAASS

(getResources and services. If you would prefer not to hear from such organisations please tick box

Contact Us Now For A Free brochure

Tel 01274 863434 Fax 01274 428665 info@veronica.co.uk

Unit 5A Sondeside Rd Cumberley BRADFORD BD13 1AA
Watch Slides on TV. Make videos of your slides. Digitise your slides (using a video capture card) "Liegangdiy" automatic slide viewer with built in high quality colour TV camera. It has a composite video output to a composite video (SART & BNC adaptors are available). They are in very good condition with few signs of use. £91.91 + VAT = £108.00
Board cameras all with 512 x 852 pixels 5-9mm 1/3 inch sensor and composite video out. All need to be housed in your own enclosure and have fragile exposed surface mount parts. They all require a power supply of between 10V and 12V DC 150mA. 4MMR size 60 x 26 x 27mm with 7 infra red LEDs (gives the same illumination as a small torch but is not visible to the human eye) £37.00 + VAT = £44.13. 40MC size 39 x 38 x 27mm for C mount lens these give a much sharper image than with the smaller lenses £32.00 + VAT = £37.60 Economical C mount lenses all fixed focus & fixed iris £25.00 + VAT = £25.30
Better quality C Mount lenses £161.81m (F6 30 x 24 degrees viewing angle £26.43 + VAT = £31.06 VWL813m F8 13 x 13 degrees viewing angle £77.45 + VAT = £91.00 1000 surface mount REd diodes £15.01 £100 1 of 1 value £1.00 + VAT £1000 of 1 value £5.00 + VAT 866 battery pack originally intended to be used with mobile telephone it contains 10 1.6Ah sub C batteries (42 x 22 dia. the size usually used in cordless screw drivers etc.) the pack is new and unused and can be broken open quite easily £7.46 + VAT = £8.77
Please add £1.66 + vat = £1.95 postage & packing per order
JPG Electronics 276-278 Chatsworth Road, Chesterfield, S40 2BH. Tel 01246 211202 Fax 01246 550959 Mastercard/Visa/Switch Calls welcome 9.30 a.m. to 5.30 p.m. Monday to Saturday

SHERWOOD ELECTRONICS

FREE COMPONENTS
Buy 10 x £1 Special Packs and choose another one FREE

SP1 15 x 9mm Red LEDs SP131 2 x TL071 Op.Amps
SP2 12 x 5mm Green LEDs SP133 20 x 1W4004 diodes
SP5 15 x 5mm Yellow LEDs SP134 15 x 1W4007 diodes
SP6 15 x 3mm Red LEDs SP135 6 x 5W slide switches
SP7 12 x 3mm Green LEDs SP136 3 x BPY65 transistors
SP10 100 x 1 value £1.00 + VAT 1000 of 1 value £5.00 + VAT
SP11 30 x 1W4001 diodes SP137 4 x W05S 1A bridge rectifiers
SP12 30 x 1W4002 diodes SP138 20 x 2.2W6 radial elect. caps.
SP18 20 x BC162 transistors SP139 3 x W04 1.5A bridge rectifiers
SP20 20 x BC213 transistors SP140 2 x CMOS 4017
SP21 20 x BC212 transistors SP141 5 Pairs mini, crocodile clips
SP23 4 x CMOS 4013 SP145 6 x ZX3203 transistors
SP24 4 x 555 56m inics SP146 10 x 2N3704 transistors
SP25 4 x 741 Op Amps SP147 5 x Stripboard 9 strips x 25 holes
SP26 4 x CMOS 4011 SP151 4 x 8mm Red LEDs
SP28 8 x OA90 diodes SP152 4 x 8mm Green LEDs
SP35 20 x 1W4004 diodes SP153 4 x 8mm Yellow LEDs
SP36 25 x 1022Y radial elect. caps. SP154 15 x BC548 transistors
SP37 10 x 1022V radial elect. caps. SP156 3 x Stripboard, 14 strips x 27 holes
SP39 10 x 4701W6V elect. caps. SP158 10 x 2N3904 transistors
SP40 15 x BC237 transistors SP161 10 x 2N3906 transistors
SP41 20 x Mixed transistors SP165 2 x LF351 Op.Amps
SP42 200 x Mixed 0.25W C.F. resistors SP167 6 x BC107 transistors
SP47 5 x Min. PB switches SP168 6 x BC108 transistors
SP103 20 x 8-pin DIL sockets SP175 20 x 1W4995 radial elect. caps.
SP104 20 x 9-pin DIL sockets SP177 10 x 1A20mm quick blow fuses
SP105 15 x 14-pin DIL sockets SP182 20 x 4.7W39W radial elect. caps.
SP106 4 x 74LS00 SP183 20 x BCD547 transistors
SP107 15 x BC557 transistors SP184 15 x BC239 transistors
SP110 3 x CMOS 4007 SP192 3 x CMOS 4023
SP112 2 x CMOS 4047 SP193 3 x CMOS 4066
SP114 5 x 10mm Red LEDs SP195 10 x 4701W6V radial elect. caps.
SP116 3 x 10mm Green LEDs SP196 8 x 4004 diodes
SP118 2 x 1N914 diodes SP213 20 x BC213 transistors
SP123 3 x 5mm Red LEDs SP219 10 x 100mm Yellow LEDs
SP124 3 x 5mm Yellow LEDs SP220 17 x 20 pin DIL sockets
SP125 4 x Assorted ceramic disc caps SP223 5 x 4W3999 transistors
SP130 100 x Mixed 0.9W C.F. resistors

 RESISTOR PACKS – C.Film
RP5 9 value each, total results 0.25W £2.85
RP7 10 value each total results 0.35W £4.10
RP1O 1000 value popular 0.25W £5.55
RP12 5 value each total results 0.35W £2.85
RP16 10 value each total results 0.35W £6.45
RP11 1000 value popular 0.35W £8.15

illions of quality components at lowest ever prices!
Plus anything from bankruptcy – theft recovery – frustrated orders – over productions etc. Send 54p stamped self-addressed label or envelope for clearance lists.

Brain J Reed
6 Queensmead Avenue, East Ewell, Epsom, Surrey KT17 3EQ
Tel: 07777 945286 or 0208 393 9055
Mail Order UK only.

Lists are updated and only 40 are sent out every 2 weeks. This normally ensures that orders can be fulfilled where only a few thousands of an item is available. (Payment is returned if sold out. I do not deal in credit notes.)

ADVERTISERS INDEX

A.L. ELECTRONICS .. 791
ANTEX .. 745
N. R. BARDWELL ... 791
BELL COLLEGE ... 789
B.K. ELECTRONICS ... Cover (iii)/749
BRIAN J. REED .. 792
BRUNNING SOFTWARE 775
BULL ELECTRICAL .. Cover (ii)
CHEVET SUPPLIES .. 791
CRICKLEWOOD ELECTRONICS 718
CROWNHILL ASSOCIATES 760
DAVID JOHNS .. 789
DISPLAY ELECTRONICS 714
ECONOMICS (EDUCATION) 718
EPT EDUCATIONAL SOFTWARE Cover (iv)
ESR ELECTRONIC COMPONENTS 722
FOREST ELECTRONIC DEVELOPMENTS 751
GREENWED .. 743
ICS .. 780
J & N FACTORS .. 792
JPG ELECTRONICS ... 791
MAGENTA ELECTRONICS 720/721/749
MICROCHIP ... 729
MILFORD INSTRUMENTS 733
NATIONAL COLLEGE OF TECHNOLOGY 789
PEAK ELECTRONIC DESIGN 769
PIDC TECHNOLOGY .. 717
QUASAR ELECTRONICS 716
RESEARCH INSTRUMENTS 765
SERVICE TRADING CO 791
SHERWOOD ELECTRONICS 792
SKY ELECTRONICS 743
SQUIRES ... 718
STEWART OF READING 735
SUMA DESIGNS .. 763
TELNET .. 719
VERONICA KITS ... 791

ADVERTISER MANAGER: PETER J. MEW
ADVERTISING OFFICES: EVERYDAY PRACTICAL ELECTRONICS, ADVERTISEMENTS, MILL DECE, MILL LANE, THORPE-LE-Soken, ESSEX CO16 3GD.
Phone/Fax: (01255) 861161

For Editorial address and phone numbers see page 723

Published on approximately the first Friday of each month by Wimborne Publishing Ltd., Allen House, East Borough, Wimborne, Dorset BH21 1PF. Printed in England by Apple Web Offset Ltd., Warrington. W41 1BB. ISDN: 44 (19) 578 7550. Distributed by COMAG Magazine Marketing, Timesaver, West Drayton, UB7 7QL. Subscriptions in the USA and Canada only are payable to "Everyday Practical Electronics", Subs Dept, Allen House, East Borough, Wimborne, Dorset BH21 1PF. ISDN: 44 (19) 578 7550. Everyday Practical Electronics is subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised copy or by way of Trade or affixed to or in part of any publication or advertising, literary or pictorial matter whatsoever.