WARNING!

The materials and works contained within EPE Online — which are made available by Wimborne Publishing Ltd and Maxfield & Montrose Interactive Inc — are copyrighted. You are permitted to make a backup copy of the downloaded file and one (1) hard copy of such materials and works for your personal use. International copyright laws, however, prohibit any further copying or reproduction of such materials and works, or any republication of any kind.

Maxfield & Montrose Interactive Inc and Wimborne Publishing Ltd have used their best efforts in preparing these materials and works. However, Maxfield & Montrose Interactive Inc and Wimborne Publishing Ltd make no warranties of any kind, expressed or implied, with regard to the documentation or data contained herein, and specifically disclaim, without limitation, any implied warranties of merchantability and fitness for a particular purpose.

Because of possible variances in the quality and condition of materials and workmanship used by readers, EPE Online, its publishers and agents disclaim any responsibility for the safe and proper functioning of reader-constructed projects based on or from information published in these materials and works. In no event shall Maxfield & Montrose Interactive Inc or Wimborne Publishing Ltd be responsible or liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or any other damages in connection with or arising out of furnishing, performance, or use of these materials and works.
Projects and Circuits

STEREO/SURROUND SOUND AMPLIFIER 472
by Max Horsey and Tom Webb
An easy to build design whose effect, considering its inexpensive cost, is convincing!

INGENUITY UNLIMITED hosted by Alan Winstanley 482
Zener Diode Tester; Cupboard Door Monitor

PIC TO PRINTER INTERFACE by John Becker 484
How to use dot-matrix printers as data loggers with PIC microcontrollers

PERPETUAL PROJECTS – SOLAR-POWERED POWER SUPPLY AND VOLTAGE REGULATOR by Thomas Scarborough 492
Free power for your projects! The first in a new series

MSF SIGNAL REPEATER AND INDICATOR by Andy Flind 518
How to receive MSF radio clock signals in a shielded building

Series and Features

NEW TECHNOLOGY UPDATE by Ian Poole 480
Non-volatile memory based on CD-ROM technology

CIRCUIT SURGERY by Alan Winstanley and Ian Bell 502
Keep it in the logic family; Capacitors, Resistors and Voltages; More on Multipliers

THE WORLD OF PLCs by Owen Bishop 504
Programmable logic controllers offer many advantages in industrial manufacturing

NET WORK – THE INTERNET PAGE surfed by Alan Winstanley 514
Googlifying News Groups; Sponsored search adverts

Regulars and Services

EDITORIAL 471

NEWS – Barry Fox highlights technology’s leading edge 478
Plus everyday news from the world of electronics

READOUT John Becker addresses general points arising 499

SHOPTALK with David Barrington 510
The essential guide to component buying for EPE projects

CD-ROMS FOR ELECTRONICS 512
Electronic Projects; Filters; Digital Works 3.0; Parts Gallery + Electronic Circuits and Components; Digital Electronics; Analogue Electronics; PICtutor; Modular Circuit Design; Electronic Components Photos; C for PIC Micros; CAD Pack

BACK ISSUES Did you miss these? Many now on CD-ROM! 515

ELECTRONICS VIDEOS Our range of educational videos 523

ELECTRONICS MANUALS 524
Essential reference works for hobbyists, students and service engineers

DIRECT BOOK SERVICE 526
A wide range of technical books available by mail order

PRINTED CIRCUIT BOARD AND SOFTWARE SERVICE 529
PCBs for EPE projects. Plus EPE software

ADVERTISERS INDEX 532

FREE 32-PAGE MAINLINE FLYER (UK issues) between pages 496/497

WE HAVE MOVED!
Please note our new address and phone/fax numbers – see page 471

© Wimborne Publishing Ltd 2001. Copyright in all drawings, photographs and articles published in EVERYDAY PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.

Our August 2001 issue will be published on Thursday, 12 July 2001. See page 463 for details
DIGITIMER

The author was persuaded to “upgrade” his motorised Pace satellite system to Sky Digital. It soon became apparent, though, that its Digibox did not have a record timer feature for use with his VCR. Consequently he set about investigating a suitable external solution, resulting in his Digitimer constructional design. The concept behind Digitimer is that at a preset time the Digibox is sent a series of remote control commands to change to the desired channel. They can be sent either via infra-red or via r.f. to the Digilink connector on the Digibox. The unit is controlled by a PIC16F876. User input is via a keypad and operational status is displayed on an alphanumeric l.c.d. Time keeping functions are controlled by a dedicated Real Time Clock chip. Timer settings and favourite channels are stored in the internal non-volatile EEPROM.

COMPACT SHORTWAVE LOOP AERIAL

Some readers who constructed the Active Ferrite Loop Aerial (Sept ’00) have asked if its coverage can be extended to the shortwave bands. A new circuit has, therefore, been developed for reception between 1·6MHz and 30MHz. Although similar in concept to the medium wave version, plug-in air-cored loops are used, modifications have been made to the tuning and Q-multiplier circuits, and a second buffer stage has been incorporated. In addition to making the operation of the controls smoother at high frequencies, the extra stage also provides signal amplification. This Q-multiplied loop aerial will deliver as much signal as a long wire and null out local electrical interference. Performance, in terms of signal output and depth of null, is very satisfactory.

PERPETUAL PROJECTS – 2

The Sun can flash an l.e.d. forever! This simple solar-powered flasher could be used as a thief deterrent almost anywhere – maybe on a dummy bell box or in an outbuilding etc. Or use it to mark a switch or keyhole so you can find it at night. The second project (yes, two next month) is a Double Door Buzzer; not for double-doors, but to give different tones for two doors. Again it will run forever on solar power.

PLUS ALL THE REGULAR FEATURES

NO ONE DOES IT BETTER

AUGUST 2001 ISSUE ON SALE THURSDAY, JULY 12
4 WATT FM TRANSMITTER
Small but powerful! 9W-10MHz transmits over 200m in the ground and RF stages. Accepts a wide variety of input sources and has a built-in microphone. Adjustable volume control. MA-85 circuit. PCB 46x112mm. Mains operation.

ORDERING INFO:
1038KT £22.95
4014KT £29.95
1051KT £31.95
AS1028 £39.95.

- **EFFECTS**
 - 2 CHANNELED LIGHT MODULATION
 - 16 UNLESS LIGHT EFFECT

- **PRODUCT FEATURES**
 - 4 WATT FM TRANSMITTER
 - Small but powerful! 9W-10MHz transmits over 200m in the ground and RF stages. Accepts a wide variety of input sources and has a built-in microphone. Adjustable volume control. MA-85 circuit. PCB 46x112mm. Mains operation.

- **ORDERING INFO:**
 - 1038KT £22.95
 - 4014KT £29.95
 - 1051KT £31.95
 - AS1028 £39.95.

- **SOUND EFFECTS GENERATOR**
 - Easy to build. Create almost infinite variety of interesting/unusual sounds. (Not cheap Tripad strip board!) and detailed assembly/operating instructions included. Box provided. 351KT £13.95

- **ANIMAL SOUNDS**
 - Dog, rabbit, cat, ferret, tree frog & a strange noise. 351KT £13.95

- **COMPUTER INTERFACE**
 - Any computer can be used to control the sound generator. An. 555 IC circuit. 100KT £7.95

- **CONTROLLED LIGHT EFFECT**
 - Any 25W bulb using an 11 pin lamp holder. 351KT £13.95

- **DIGITAL DISPLAY**
 - The number is led by a 7 segment display. 351KT £13.95

- **1007KT £16.95**

- **9V XENON TUBE FLASHER**
 - Adjustable flash rate (0·25-2 Sec's). PCB 35x40mm. Mains operation.

- **110dB of ear piercing noise.**

- **SERIAL PIC PROGRAMMER**
 - PIC development system. 351KT £13.95

- **LED DICE**
 - 7 LED's simulate dice roll, slow down & land on a number at random. 351KT £13.95

- **110dB of ear piercing noise.**

- **MICRO-9V TRANSMITTER**
 - The all-time bug for low, position and range. Just 1040KT £5.95

- **NEGATIVE/POSITIVE ION GENERATOR**

- **2019BX £8.00**

- **INFRARED SECURITY BEAM**
 - Simple circuit, powered from a 9V battery. PCB 42x45mm. Mains operation.

- **TUNER**
 - 20 SECOND VOICE RECORDER
 - 10 button keyfob PCB 55x112mm. Mains operation.

- **2 CHANNEL UHF RELAY SWITCH**
 - Operates only 2-3A. Requires a simple open dipole aerial. 8-30VDC. PCB 42x45mm.

- **1096KT £27.95.**

- **POWER SUPPLY**
 - Supply up to 2V or 20V over periods from milli-seconds to months. Can also be used as a simple digital analysis. 300m range. Uses line power. 407KT £9.95

- **BARGAIN BUY**
‘PICALL’ PIC Programmer

Kit will program ALL 8, 16, 28 and 40 pin serial AND parallel programmed PIC micro controllers. Connects to PC parallel port. Supplied with fully functional pre-registered PICALL DOS and WINDOWS AVR software packages, all components and high quality DSPTH PCB. Also programs certain ATMELE AVR, serial EPROM 24c and SCENIX SX devices. New PICs can be added to the software as they are released. Software shows you where to place your PIC chip on the board for programming. New has blank chip auto sensing feature for super-fast bulk programming. *A 40 pin wide ZIF socket is required to program 8 & 16 pin devices (available at £15.95).

ATMELE 89xxxx Programmer

Powerful programmer for Atmel 8051 micro controller family. All fuse and lock bits are programmable. Connects to serial port. Can be used with ANY computer & operating system. 4 LEDs to indicate programming status. Supports 89C1051, 89C2051, 89C4051, 89C51, 89LV51, 89C52, 89LV52, 89C54, 89LV55, 89S8252, 89L852 & 89L535 devices. NO special software required – uses any terminal emulator program (built into Windows). NB ZIF sockets not included.

PC Data Acquisition & Control Unit

With this kit you can use a PC parallel port as a real world interface. Unit can be connected to a mixture of analogue and digital inputs from pressure, temperature, movement, sound, light intensity, weight sensors, etc. (not supplied) to sensing switch and relay states. It can then process the input data and use the information to control up to 11 physical devices such as motors, sirens, other relays, servo motors & two stepper motors.

FEATURES:
- 8 Digital Outputs: Open collector, 500mA, 33V max.
- 16 Digital Inputs: 20V max. Protection 1K in series, 5-1V Zener to ground.
- 11 Analogue Inputs: 0-5V, 0 bit (5mV/step.)
- 1 Analogue Output: 0-2.5V or 0-10V, 8 bit (20mV/step.)

All components provided including a plastic case (140mm x 110mm x 35mm) with pre-punched and silk screened front/rear panels to give a professional and attractive finish (see photo) with screen printed front/rear panels supplied. Software utilities & programming examples supplied.

Serial Port Isolated I/O Controller

Kit provides eight 240VAC/12A (10VAC/15A) rated relay outputs and four optically isolated inputs. Can be used in a variety of control and sensing applications including load switching, external switch input sensing, contact closure and external voltage sensing. Programmed via a computer serial port, it is compatible with ANY computer & operating system. After programming, PC can be disconnected. Serial cable can be up to 35m long, allowing remote control. User can easily write batch file programs to control the kit using simple text commands. NO special software required – uses any terminal emulator program (built into Windows). All components provided including a plastic case with pre-punched and silk screened front/rear panels to give a professional and attractive finish (see photo).

ABC Mini ‘Hotchip’ Board

Currently learning about microcontrollers? Need to do something more than flash a LED or sound a buzzer? The ABC Mini ‘Hotchip’ Board is based on Atmel’s AVR 8535 RISC technology and will interest both the beginner and expert alike. Beginners will find that they can write and test a simple program, using the BASIC programming language, within an hour or two of connecting it up. Experts will like the power and flexibility of the ATMELE microcontroller, as well as the ease with which the little Hot Chip board can be “designed-in” to a project. The ABC Mini Board ‘ Starter Pack ’ includes just about everything you need to get up and experimenting right away. On the hardware side, there’s a pre-assembled micro controller PC board with both parallel and serial cables for connection to your PC. Windows software included on CD-ROM features an Assembler, BASIC compiler and in-system programmer The pre-assembled boards only are also available separately.

Advanced Schematic Capture and Simulation Software

‘IC Design-systems’ includes Graphical Library Browser and Driver Generator, Driver Library Editor, Schematic and PCB Editor Generation, Over 7000 driver models, Menu driven Wizard allows you to describe any micro controller family. All fuse and high quality DSPTH PCB. Also programs certain ATMELE AVR, serial EPROM 24c and SCENIX SX devices. New PICs can be added to the software as they are released. Software shows you where to place your PIC chip on the board for programming. New has blank chip auto sensing feature for super-fast bulk programming. *A 40 pin wide ZIF socket is required to program 8 & 16 pin devices (available at £15.95).

See opposite page for ordering information on these kits
Looking for ICs TRANSISTORs?
A phone call to us could get a result. We offer an extensive range and with a world-wide database at our fingertips, we are able to source even more. We specialise in devices with the following prefix (to name but a few).

2N 2SA 2SB 2SC 2SD 2P 2SJ 2SK 3N 3SK 4N 6N 17 40 AD ADC AN AM AY BA BC BD DDT BDW BDY BF BFR BFS BFT BFX BFY BLY BLX BS BR BRX BRY BS BSS BSV BSX BT BTA BTB BRW BU BUK BUT BUV BUW BUX BUY BUZ CA CD CX CXA DAD DG DM DS DTA DTC GL GM HA HCF HD HEF ICL ICM IRF I KA KIA L LA LB LC LD LF LM M MSM MA MAB MAX MB MC MDAI MJE MJF MM MN MPS MPSE MPSU MRF NJM NE OM OP PA PAL PIC PN RC S SAA SAB SAD SAI SAS SDA SG SI SL SN SO STA STK STR STRD STRM STRS SVI T TA TAG TBA TC TCA TDA TDB TEA TIC TIP TIPL TEA TL TLC TMP TMS TPU U UA UAA UC UDN ULN UM UPA UPC UPD VN XR Z ZN ZTS + many others

We can also offer equivalents (at customers’ risk)
We also stock a full range of other electronic components
Mail, phone, Fax Credit Card orders and callers welcome

Cricklewood Electronics Ltd
40-42 Cricklewood Broadway London NW2 3ET
Tel: 020 8452 0161 Fax: 020 8208 1441

Video Surveillance

- CMOS B&W Camera 15mm ×15mm £29.00
- CMOS Colour Camera 15mm × 15mm £65.00
- Board Camera, B&W, 32mm × 32mm £24.00
- Board Camera, Colour, with Audio, 32mm £65.00
- 23cm (1-3GHz) Video/Audio Transmitter £35.00
- 13cm (2-4GHz) Video/Audio Transmitter £35.00
- 1W Booster for 2-4GHz £120.00
- 2W Booster for 1-3GHz £130.00
- 1-3GHz/4-channel Receiver and Switcher £85.00
- 2-4GHz/4-channel Receiver and Switcher £85.00
- Quad (B&W) £95.00
- 4in. boxed TFT Colour Monitor with Audio £110.00
- 2in. TFT Colour Monitor Module £85.00

Order your list for 100 electronics kits free of charge
Also we stock RF parts, power modules and more
CCTV/security products

BITZ TECHNOLOGY LTD
Tel: 01753 522902 Fax: 01753 571657
E-mail: sales@bitztechnology.com
Website: www.bitztechnology.com
HIVAC NUMILOC TUBES, HIVAC ref XN3. Order Ref: 865.

1000W FIRE SPIRALS. In addition to repairing fires, these are useful for making high current resistors. Price 4 for £1. Order Ref: 233.

BRASS-ENCASED ELEMENT. Mains working, 80V standard, replaces in some fridges but very useful for other heating purposes. Price £1 each. Order Ref: 433.

PEA LAMPS, only 4mm but 14V at 0·04A, wire ended, pack of 4. Order Ref: 7RC28.

HIGH AMP THRISTOR, normal 2 contacts from top, heavy threaded fitting underneath, think amperage to be at least 25A, pack of 2. Order Ref: 7FC43.

BRIDGE RECTIFIER, ideal for 12V to 24V charg- er at 5A, pack of 2. Order Ref: 1070.

TEST PRODS for MULTIPLIER with 4mm sockets. Good length very flexible lead. Order Ref: D8k.

LUMINOUS ROCKER SWITCH, approximately 30mm square, pack of 2. Order Ref: D64.

30A PANEL MOUNTING TOGGLE SWITCH. Double-pole. Order Ref: 166.

HIGH POWER 3in. SPEAKER (11W 8ohm). Order Ref: 234.

MEDIUM WAVE PERMEABILITY TUNER. It's almost a complete radio with circuit. Order Ref: 241.

MAINS MOTOR with gearbox giving 1 rev per 24 hours. Order Ref: 89.

CERAMIC WAVE CHANGE SWITCH. 12-pole, 3- way with i.c.s. Order Ref: 303.

REVERSING SWITCH. 20A double-pole or 40A single. Order Ref: 343.

PAXOLIN PANEL. Approximately 12in. x 12in. Order Ref: 1023.

CUTTER and 8 accessories, £7.50. Order Ref: 2P62.

FULL-WAVE BRIDGE RECIFIER 35A 600C. £2. Order Ref: 2P474.

TELEPHONE ANSWERING MACHINE Complete with power supply. £12. Order Ref: 12P38.

ROTEL HAIR CUTTER AND TRIMMER Complete with power supply, £12. Order Ref: 12P38.

Mains operated, £1. Order Ref: 872.

DYNAMIC MICROPHONE 500ohm, plastic body with black mesh head and on/off switch, £2. Order Ref: 2P220.

FLASHING BEACON 12V for cars. £5. Order Ref: 5P267.

LIGHT ALARM. Warns when cupboard doors open, etc. £3. Order Ref: 3P155.

WATER LEVEL ALARM For wall mountings or bath, etc., adjustable for water level, £3. Order Ref: 3P156.

SOCK KIT To make aeroplane, £7.50. Order Ref: 7.5P2.

WATERPROOF LOUDSPEAKER 3½in., very high power, waterproof construction, £1.50. Order Ref: 1P527.

REVERSIBLE MAINS MOTOR Beautifully made by the Japanese, probably about ½h.p. with a good length spindle, £4. Order Ref: 4P44.

PACK OR 5 ADAPTORS Each takes 2 x 13A plugs, £2. Order Ref: 2P18.

TIME AND SET SWITCH 15A mains, £2. Order Ref: 2P104.

250W WOOFER 10in., beautifully made by Challenger, 4ohm, £29.50. Order Ref: 2P97.

IN-CAR UNIT 12V-6V, plugs into lighter socket, £2. Order Ref: 2P315.

TRANSISTOR AMPLIFIER By Newmarket, 12V operated, 3V output, £2. Order Ref: 1/2BL2.

ULTRASONIC CAR OR HOUSE ALARM Operates from its own battery. Nicely cased, is reasonably loud or can be coupled to external horn, £10. Order Ref: 10P76.

UNDERDOME BELL Friedland, transformer or battery operated, £5. Order Ref: 5P232.

MAINS KLAXON TYPE ALARM Free standing, £5. Order Ref: 5P226.

METAL BOX WITH LID Slightly sloping, size 8in. x 3in. x 4in. approximately, £1. Order Ref: 209.

CLOCK MODULE 2in. i.c.d. display, requires 1·5V battery, goes back to zero when switched off so ideal for timing operations. Also has panel for other switching operations, £2. Order Ref: 2P307.

BELT-DRIVEN ENTRY LEAD For tape decks, etc., 2 for £1. Order Ref: 26.

MAINS OPERATED COUNTERS 6 digit, even numbers, £1. Order Ref: 28.

12V AXIAL FAN Approximately 3in. x 3in., will suck or blow, £4. Order Ref: 4P65.

HEADPHONES Extra lightweight, stereo, £1 per pair. Order Ref: 898.

W-SHAPED FLUORESCENT TUBE 30W or 40W, ideal to light house name, etc., £2. Order Ref: 2P314.

WATERPROOF LOUDSPEAKER 3½in., very high power, waterproof construction, £1.50. Order Ref: 1P527.

TERMS

£1 BARGAIN PACKS

SPECIAL OFFER

Here's a lot of buy-one-get-one-free offers for the months of June, July and August, so here's some real bargains not to be missed.

COMPUTER DUST COVER 22in. long, 10in. wide, 6in. deep, nicely boxed, £1. Order Ref: D204.

12V 2A DC POWER SUPPLY Cased with internal fuse, £6. Order Ref: 8P63.

SAFETY LEADS Coiled, stretches to 3m, £1. Order Ref: 846.

DITTO but 3-core 13A, stretches to 1m, £1. Order Ref: 847.

POWER SUPPLIES Cased with D.C. output, 4·5V 150mA, £1. Order Ref: 104.

6V 700mA, cased, £1. Order Ref: 103.

9V 150mA, £1. Order Ref: 733.

5V 100mA, £1. Order Ref: 2P24.

5·9V 500mA, AC output, £1.50. Order Ref: 1.5P97.

PM LOUDSPEAKER 8in. x 4in. 4ohm, £1. Order Ref: 242.

HORN SPEAKER Bohm, £3. Order Ref: 3P82.

BIG PULL SOCKET. Mains operated, £1, Order Ref: 871.

BIG PULL SOLENOID Mains operated, £1, Order Ref: 872.

DYNAMO MICROPHONE 500ohm, plastic body with black mesh head and on/off switch, £2. Order Ref: 2P220.

TIME ON MAINS SWITCH 1 rev per hour, £1. Order Ref: 500.

REVERSING SWITCH. 20A double-pole or 40A single. Order Ref: 343.

PAXOLIN PANEL. Approximately 12in. x 12in. Order Ref: 1023.

CUTTER and 8 accessories, £7.50. Order Ref: 2P62.

FULL-WAVE BRIDGE RECIFIER 35A 600C. £2. Order Ref: 2P474.

TELEPHONE ANSWERING MACHINE Complete with power supply. £12. Order Ref: 12P38.

ROTEL HAIR CUTTER AND TRIMMER Complete with power supply, £12. Order Ref: 12P38.

Mains operated, £1. Order Ref: 872.

DYNAMO MICROPHONE 500ohm, plastic body with black mesh head and on/off switch, £2. Order Ref: 2P220.

HORN SPEAKER Bohm, £3. Order Ref: 3P82.

LIGHT ALARM. Warns when cupboard doors open, etc. £3. Order Ref: 3P155.

WATER LEVEL ALARM For wall mountings or bath, etc., adjustable for water level, £3. Order Ref: 3P156.

SOCK KIT To make aeroplane, £7.50. Order Ref: 7.5P2.

WATERPROOF LOUDSPEAKER 3½in., very high power, waterproof construction, £1.50. Order Ref: 1P527.

REVERSIBLE MAINS MOTOR Beautifully made by the Japanese, probably about ½h.p. with a good length spindle, £4. Order Ref: 4P44.

PACK OR 5 ADAPTORS Each takes 2 x 13A plugs, £2. Order Ref: 2P18.

TIME AND SET SWITCH 15A mains, £2. Order Ref: 2P104.

250W WOOFER 10in., beautifully made by Challenger, 4ohm, £29.50. Order Ref: 2P97.

Send cash, PO, cheque or quote credit card number – orders under £25 add £4.50 service charge.
EPE MICROCONTROLLER
P.I. TREASURE HUNTER
The best MAGENTA DESIGN – highly stable & sensitive – with I.C. control of all timing functions and advanced pulse separation techniques.
- High stability
- High build & use
- No ground effect, works in seawater
- Detects gold, silver, ferrous & non-ferrous metals
- Efficient quartz controlled microcontroller pulse generation.
- Full kit with headphones & all hardware.

KIT 847 £63.95

PORTABLE ULTRASONIC PEST SCARER
A powerful 23kHz ultrasound generator in a compact hand-held case. MOSFET output drives a special sealed transducer with intense pulses via a special tuned transformer. Sweeping frequency output is designed to give maximum output without any special setting up.

KIT 842 £22.56

68000 DEVELOPMENT TRAINING KIT
- NEW PCB DESIGN
- MMU 68000 16-BIT BUS
- MANUAL AND SOFTWARE
- 2 SERIAL PORTS
- PIT AND I/O PORT OPTIONS
- 120 PORT OPTIONS

KIT 621 £99.95
- ON BOARD
- 5V REGULATOR
- PSU £6.99
- SERIAL LEAD £3.99

Stepping Motors
MD38...Mini 48 step...£8.65
MD35...Std 48 step...£9.99
MD200...200 step...£12.99
MD24...Large 200 step...£22.95

EPE PROJECT PICS
Programmed PICs for all EPE Projects
16C84/18F84/16C71 at £5.99 each
PIC16F877 now in stock
£10 inc VAT & postage
(Some projects are copyright)

KIT No. 845 £64.95

PIC PIPE DESCALER
- SIMPLE TO BUILD
- HQ POWER OUTPUT
- FREQUENCY
- AUDIO & VISUAL MONITORING
An affordable circuit which sweeps the incoming water supply with variable frequency electromagnetic signals. May reduce scale formation, dissolve existing scale and improve lathering ability by altering the way salts in the water behave.
Kit includes case, P.C.B., coupling coil and all components.
High coil current ensures maximum effect. L.E.D. monitor.

KIT 868 £22.95

POWER UNIT .. £3.99

MICRO PEST SCARER
Our latest design – The ultimate scarer for the garden. Uses special microchip to give random delay and pulse time. Easy to build reliable circuit. Keeps pests away from newly sown areas, play areas, etc. uses power source from 9 to 24 volts.
- RANDOM PULSES
- HIGH POWER
- DUAL OPTION

KIT 867 £19.99

KIT + SLAVE UNIT £32.50

WINDICATOR

KIT 856 £28.00

DUAL OUTPUT TENS UNIT
As featured in March ’97 issue. Magenta have prepared a FULL KIT for this excellent new project. All components, PCB, hardware and electrodes are included. Designed for simple assembly and testing and providing high level dual output drive.

KIT 866 £32.90

1000V & 500V INSULATION TESTER
Superb new design. Regulated output, efficient circuit. Dual-scale meter, compact case. Reads up to 200 Megohms.
Kit includes wound coil, cut-out case, meter scale, PCB & ALL components.

KIT 848 £32.95

ULTRASONIC PEST SCARER
Keep pests/pests away from newly sown areas, fruit, vegetable and flower beds, children’s play areas, patios etc. This project produces intense pulses of ultrasound which deter visiting animals.
- KIT INCLUDES ALL COMPONENTS, PCB & CASE
- EFFICIENT 100V TRANSDUCER OUTPUT
- COMPLETELY INAUDIBLE TO HUMANS
- UP TO 4 METRES RANGE
- LOW CURRENT DRAIN

KIT 812 £15.00

EPE TEACH-IN 2000
Full set of top quality NEW components for this educational series. All kits as specified by EPE. Kit includes breadboard, wire, croc clips, pins and all components for experiments, as listed in introduction to Part 1.
*Batteries and tools not included.

TEACH-IN 2000 -
KIT 879 £44.95
MULTIMETER £14.45

SPACEWRITER
An innovative and exciting project. Wave the wand through the air and your message appears. Programme to hold any message up to 16 digits long. Comes pre-loaded with “MERRY XMAS”. Kit includes PCB, all components & tube plus instructions for message loading.

KIT 849 £16.99

12V EPROM ERASER
A safe low cost eraser for up to 4 EPROMS at a time in less than 20 minutes. Operates from a 12V supply (400mA). Used extensively for mobile work - updating equipment in the field etc. Also in educational situations where mains supplies are not allowed. Safety interlock prevents contact with UV.

KIT 790 £29.90

SUPER BAT DETECTOR
1 WATT O/P, BUILT IN SPEAKER, COMPACT CASE 20kHz-140kHz
NEW DESIGN WITH 40kHz MIC.
A new circuit using a full-bridge audio amplifier (i.e., internal speaker, and/ or headphone/phone jack socket. The latest sensitive transducer, and ‘double balanced mixer’ give a stable, high performance superheterodyne design.

KIT 861 £24.99
ALSO AVAILABLE Built & Tested... £39.99

rowing your home, and your image. Use it to show your friends what you can do.Kit No. 845 £64.95

Everyday Practical Electronics, July 2001
EPE PIC Tutorial

At last! A Real, Practical, Hands-On Series

- Learn Programming from scratch using PIC16F84
- Start by lighting I.e.d.s and do 30 tutorials to Sound Generation, Data Display, and a Security System.
- PIC TUTOR Board with Switches, i.e.d.s, and on board programmer

PIC TUTOR BOARD KIT
Includes: PIC16F84 Chip, TOP Quality PCB printed with Component Layout and all components* (*not ZIF Socket or Displays). Included with the Magenta Kit is a disk with Test and Demonstration routines.

KIT 870 £27.95, Built & Tested £42.95
LCD Display £7.99 LED Display £6.99
Reprints Mar/Apr/May 98 – £3.00 set 3

PIC TOOLKIT V2
- SUPER UPGRADE FROM V1 • 18, 28 AND 40-PIN CHIPS
- READ, WRITE, ASSEMBLE & DISASSEMBLE PICS
- SIMPLE POWER SUPPLY OPTIONS 5-20V
- ALL SWITCHING UNDER SOFTWARE CONTROL
- MAGENTA DESIGNED PCB HAS TERMINAL PINS AND OSCILLATOR CONNECTIONS FOR ALL CHIPS
- INCLUDES SOFTWARE AND PIC CHIP

KIT 878 ... £22.99 with 16F84 ... £29.99 with 16F877

SUPER PIC PROGRAMMER
- READS, PROGRAMS, AND VERIFIES
- WINDOWS® SOFTWARE
- PIC16C6X, 7X, AND 8X
- USES ANY PC PARALLEL PORT
- USES STANDARD MICROCHIP • HEX FILES
- OPTIONAL DISASSEMBLER SOFTWARE (EXTRA)
- PCB, LEAD, ALL COMPONENTS, TURNED-PIN SOCKETS FOR 18, 28, AND 40 PIN ICs
- SEND FOR DETAILED INFORMATION – A SUPERB PRODUCT AT AN UNBEATABLE LOW PRICE.

KIT 862 £29.99
Power Supply £3.99
DISASSEMBLER SOFTWARE £11.75

PIC STEPPING MOTOR DRIVER
- INCLUDES PCB, PIC16F84 WITH DEMO PROGRAM SOFTWARE DISC, INSTRUCTIONS AND MOTOR.

KIT 863 £18.99
FULL SOURCE CODE SUPPLIED ALSO USE FOR DRIVING OTHER POWER DEVICES e.g. SOLENOIDS

Another NEW Magenta PIC project. Drives any 4-phase unipolar motor – up to 24V and 1A. Kit includes all components and 48 step motor. Chip is pre-programmed with demo software, then write your own, and re-program the same chip! Circuit accepts inputs from switches etc and drives motor in response. Also runs standard demo sequence from memory.

8-CHANNEL DATA LOGGER
As featured in Aug./Sept. ‘99 EPE. Full kit with Magenta redesigned PCB – LCD fits directly on board. Use as Data Logger or as a test bed for many other 16F877 projects. Kit includes programmed chip. 8 EEPROMs, PCB, case and all components.

KIT 877 £49.95 inc. 8 x 256K EEPROMS

All prices include VAT. Add £3.00 p&p. Next day £6.99
WE’VE GONE

By the time you read this we won’t be there! Again? someone asked me the other day. Well it is seven years since we did it last and seven years before that – and seven . . . Yes, it has become repetitive and the interesting thing is that something significant has happened to the magazine roughly every seven years since the birth of PE back in 1964. If you care to read The History of EPE on our UK web site you will get the full picture.

The last time we moved our UK editorial office it was into larger premises to accommodate our expanding publishing “empire”, this time it is for commercial reasons (we will own the building). Of course, the message we need to get across is that even though we are not there anymore it’s business as usual, so please note our new address, telephone and fax numbers. Anything sent to the old address will be redirected by the Post Office but, of course, it may be delayed in that process.

WE’RE STAYING

The move does not affect our advertising office so please continue to use the same address and telephone numbers for Peter Mew – our Advertisement Manager. Also all the E-mail and web site addresses remain unchanged, thanks to technology – pity technology won’t yet allow us to keep our editorial phone and fax numbers, even though we are only moving about three miles up the road.

PLCs

Programmable Logic Controllers (PLCs) are a subject that readers have occasionally asked us about. They are presently only really of interest to those in industry where they are used to control a vast range of manufacturing processes. Because of this, we do not feel that in-depth articles on these devices are appropriate for EPE. However, Owen Bishop’s article in this issue gives an overview of what they are, how they work and where they might be used. We hope it helps your understanding.

SUN’S UP

This issue also sees the start of an interesting series of Perpetual Projects powered by the sun. The research that the designer has undertaken to reduce circuit power consumption has thrown up some interesting results that could be of use to any designer. Even if the projects themselves are not of interest to you, the opening part of the series is well worth reading. (As if you would not read every page of EPE anyway!)

UK: 6 months £14.50, 12 months £27.50, two years £50; Overseas: 6 months £17.50 standard air service or £27 express airmail, 12 months £33.50 standard air service or £51 express airmail.

Online subscriptions, for downloading the magazine via the Internet, £39.99 (US) for one year available from epemag.com. Cheques or bank drafts (in £ sterling) payable to Everyday Practical Electronics and sent to EPE Subs Dept., Wimborne Publishing Ltd, 408 Wimborne Road East, Ferndown, Dorset BH22 9ND Tel: 01202 873870, Fax: 01202 874562. E-mail: subs@epemag.wimborne.co.uk. Also via the Web at: http://www.epemag.wimborne.co.uk. Subscriptions start with the next available issue. We accept MasterCard, Amex, Diners Club, Switch or Visa. (For past issues see the Back Issue page.)

BINDERS

Binders to hold one volume (12 issues) are available from the above address. These are finished in blue p.v.c., printed with the magazine logo in gold on the spine. Price £5.95 plus £3.50 p/p (for overseas readers the postage is £5.00 to everywhere except Australia and Papua New Guinea which cost £10.50). Normally sent within seven days but please allow 28 days for delivery – more for overseas.

Payment in £ sterling only please. Visa, Amex, Diners Club, Switch and MasterCard accepted, minimum card order £3. Send, fax or phone your card number and card expiry date with your name, address etc. or order on our secure server via our UK web site. Overseas customers – your credit card will be charged by the card provider in your local currency at the existing exchange rate.

ADVERTISEMENTS

Although the proprietors and staff of EVERYDAY PRACTICAL ELECTRONICS take reasonable precautions to protect the interests of readers by ensuring as far as practicable that advertisements are bona fide, the magazine and its Publishers cannot give any undertakings in respect of statements or claims made by advertisers, whether these advertisements are printed as part of the magazine, or in inserts.

The Publishers regret that under no circumstances will the magazine accept liability for non-receipt of goods ordered, or for late delivery, or for faults in manufacture.

TRANSMITTERS/BUGS/TELEPHONE

We advise readers that certain items of radio transmitting and telephone equipment which may be advertised in our pages cannot be legally used in the UK. Readers should check the law before buying any transmitting or telephone equipment as a fine, confiscation of equipment and/or imprisonment can result from illegal use or ownership. The laws vary from country to country; readers should check local laws.
Constructional Project

STEREO/SURROUND SOUND AMPLIFIER

MAX HORSEY and TOM WEBB

An inexpensive, easy to build, stereo amplifier that can also produce pseudo surround sound when used with an existing stereo amplifier.

Gives a “true” 1W r.m.s. per channel output from a 12V supply

SYSTEM DETAILS

The block diagram of the Stereo/Surround Sound Amplifier system is illustrated in Fig.1. Note that this project only comprises of the parts within the heavy borders. The other blocks represent your existing system.

The amplifier is designed to amplify a stereo Line signal from any standard source such as a CD-player, tuner, video recorder, mini disc player. It does not include a pre-amplifier and is therefore not suitable for a record deck or microphone.

SURROUND SOUND

If you already have a stereo amplifier, then this 1W amplifier project may be used to extract a pseudo surround sound signal, and the p.c.b. includes provision for additional resistors and a capacitor i.e. the Surround Sound Extractor.

The cost of the surround sound components is less than 50p, and should not be confused with Dolby Surround, Dolby Pro-Logic, Dolby Digital, or DTS sound!

Fig.1. System block diagram for the Stereo/Surround Sound Amplifier. The heavy boxes show what is included in this circuit, plus the selection switch S2.

But the effect – considering the modest cost – is quite convincing.

When hooked up to an existing amplifier, our surround extractor amplifies the difference between the signals applied to the main stereo speakers. If the sound is coming from the centre, the two stereo speakers will be delivering identical signals, and these will not be amplified by the extractor. If the main stereo speakers are 180 degrees out of phase, the sound will be amplified by the extractor and delivered via the rear speakers.

Of course, the sound field will not be as accurate as a fully-fledged surround sound processor, but it will be much better than driving rear speakers in parallel with the front speakers.

Note that this amplifier cannot drive your front and surround speakers at the same time. It is one or the other. If you do not already have a stereo amplifier, you will need to build two amplifier circuits and operate them from separate power supplies.

SWITCHED OPTION

The block diagram of Fig.1 shows how a switch may be employed so that the amplifier circuit can be used as a normal amplifier, or as a surround sound amplifier. When the switch is open the amplifier is in normal stereo mode. Hence if you do not wish to include the surround sound option, the switch and “surround extractor” can be omitted.

When the switch is closed, the “surround extractor” is selected. Note that the two ordinary left and right stereo inputs are
now joined together. So if you leave the switch in this position and use the amplifier to amplify line signals, they will be combined into a mono signal.

If you only require this circuit as a surround extractor, the switch can be omitted and the connections permanently wired as discussed later.

SUMMING UP

When the switch is open (or omitted) the circuit behaves as an ordinary stereo amplifier for use with signals from the Line outputs of CD players etc. The speakers will be at the front.

When the switch is closed the circuit must be used with an additional amplifier. The additional amplifier powers the front stereo speakers, and the circuit drives the rear speakers. Both rear speakers will deliver the same “pseudo surround” sounds.

MAIN CIRCUIT

The full circuit diagram for the Stereo/Surround Sound Amplifier is shown in Fig.2. Some people enjoy the challenge of designing a transistor amplifier from first principles, but if you require a system that is inexpensive and reliable, an amplifier based on an integrated circuit (i.c.) is the best option!

The i.c. chosen for this circuit is the TDA2822M. It is particularly unfussy about layout, operates on a supply of between 3V and 15V and provides a genuine 1W r.m.s. per channel.

It only requires six capacitors and two resistors, namely C1 to C6 and R1 and R2. These provide decoupling and stability for IC1. Overall circuit decoupling is provided by electrolytic capacitor C7.

Overall volume control is provided by VR1a and VR1b. This is a stereo-ganged potentiometer so that a single control knob operates both Left and Right channels in unison.

SOUND EXTRACTOR

The Surround Sound Extractor part of the circuit is shown inset in Fig.2, and may be omitted if not required. The “positive” speaker outputs from your additional amplifier are employed. The extractor circuit draws very little current, and will not affect your existing speakers in any way.

One of the positive speaker outputs is connected to 0V in the circuit. The other positive speaker output is connected via a potential divider made from resistors R3 and R4. The potential divider attenuates (reduces) the signal and ensures that the circuit has no effect on the existing amplifier and speaker system.

The signal is now applied to capacitor C8 which removes any d.c. which may be present. The value of C8 is not critical, and although a value of 1μF is suggested, a lower value – down to say 100nF – should be acceptable. The only effect will be to reduce the bass content in the rear speakers, but since bass is less directional this is not likely to be significant. Note that the capacitor must be non-polarised i.e. do not use an electrolytic type.

Do not connect anything to the negative speaker terminals of your existing amplifier (apart from your existing speakers of course).

Notice that the signal fed via C8 and switch S2 to the circuit will represent the difference between the positive output terminals of your existing front speakers. So the voice of a singer standing in the middle of the stereo field will not appear through the rear speakers. Sounds completely out of the stereo field will appear through the rear speakers with a lower value than 0.1μF. The value must be non-polarised and not an electrolytic type.

![Fig.2. Complete circuit diagram for the Stereo/Surround Sound Amplifier. The surround sound extractor components are those within the boxed area. The “surround” inputs must only be taken from the speaker positive terminals.](image)
of phase via the front speakers will be amplified and directed also through the rear speakers. This will include rear sound effects as used in modern films.

Sounds directed off centre will also appear via the rear speakers and although – strictly speaking – this is an error, in practice it should not present a problem.

OPTIONS

The printed circuit board (p.c.b.) component layout, including the “surround” components, together with a full-size underside copper foil master for the Stereo/Surround Sound Amplifier is shown in Fig.3. This board is available from the EPE PCB Service, code 304.

The interwiring details from the circuit board to the off-board components is also shown in Fig.3. If you only require the circuit as an ordinary stereo amplifier, then omit components R3, R4, C8 and switch S2. If you only require the circuit as a surround sound extractor, then omit switch S2 and link the connections as shown in Fig.4.

If you require both options (remember that you cannot use both at the same time) then fit all components and selector switch S2. This switch allows you to quickly select between using the circuit as a stereo amplifier, or as a surround extractor for the rear speakers.

CONSTRUCTION

The printed circuit board is designed to take the dual stereo Volume control VR1. Begin construction by checking that the control does fit and that the holes in the p.c.b. are large enough. If the control does not fit, or if you would prefer to use two separate controls for the Left and Right channels then a set of wires may be used to link the p.c.b. with the controls. Either way, do not solder in the control(s) at this stage.

Solder in the smallest components first, such as resistors and the 8-pin d.i.l. socket for IC1. Fit the smallest capacitors C5 and C6 (and C8 if required). These may be fitted either way round. Now fit the larger electrolytic capacitors taking care with their polarity. The negative side of each capacitor should be indicated down the side of its casing and its longer lead usually indicates positive.

Next solder in position the potentiometer (Volume control), either directly into the p.c.b. or via wires. If you have a potentiometer which will fit directly into the p.c.b., then the circuit board will not require any additional fastening when housed inside a case.

Insert terminal pins for the various “lead-off” wires. The circuit may be connected to the Line output from a CD-player etc. either directly via twin-screened cable, or via plugs and sockets as shown in Fig.3. Ensure that the screen of the cable (i.e. the wire “mesh” which surrounds the inner insulated wire) is connected to the 0V side of the circuit.

The speaker connections can be made via a speaker terminal block, SK2, as shown. Note that this is fitted from the outside of the case, so do not solder it at this stage.

If you are using the circuit to drive rear speakers you will need to link the “surround inputs” to the positive speaker terminals of your existing amplifier. This can be achieved with ordinary wires.
Connect some loudspeakers (4 ohm to 8 ohm are ideal) to the amplifier. (Note that – unlike some amplifier designs – it does not matter if a speaker output is left open circuit i.e. not connected).

Stereo

Set switch S2 (if used) to Stereo. Power up the circuit and apply a test signal from a “Walkman” etc. A Line output is ideal, though a headphone output will work if no alternative is available.

Check that all is well and that the two stereo channels are separate. Test this by disconnecting one of the stereo line inputs. The appropriate speaker should go silent. If both speakers continue working, it is likely that the left and right channels are joined somewhere. For example, you may have switch S2 set wrongly.

Surround

Set switch S2 to the Surround position and connect the Surround Inputs to the Red (+) connectors of the Left and Right speakers of your existing amplifier.

Try to test with a recording from a film soundtrack or solo artist. You should notice that sounds (such as dialogue) from the centre of the front stereo field are hardly audible via the rear speakers. But sounds off centre are amplified more, and effects sounds are amplified the most.

Fig.4. Amplifier used as a surround sound extractor and to drive the rear speakers. Switch S2 is omitted and link wires inserted as shown.

TESTING

Connect some loudspeakers (4 ohm to 8 ohm are ideal) to the amplifier. (Note that – unlike some amplifier designs – it does not matter if a speaker output is left open circuit i.e. not connected).

Stereo

Set switch S2 (if used) to Stereo. Power up the circuit and apply a test signal from a “Walkman” etc. A Line output is ideal, though a headphone output will work if no alternative is available.

Check that all is well and that the two stereo channels are separate. Test this by disconnecting one of the stereo line inputs. The appropriate speaker should go silent. If both speakers continue working, it is likely that the left and right channels are joined somewhere. For example, you may have switch S2 set wrongly.

Surround

Set switch S2 to the Surround position and connect the Surround Inputs to the Red (+) connectors of the Left and Right speakers of your existing amplifier.

Try to test with a recording from a film soundtrack or solo artist. You should notice that sounds (such as dialogue) from the centre of the front stereo field are hardly audible via the rear speakers. But sounds off centre are amplified more, and effects sounds are amplified the most.

Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Value/Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistors</td>
<td>R1, R2 47Ω (2 off) R3 1k R4 100Ω All 0.25W 5% carbon film</td>
</tr>
<tr>
<td>Potentiometer</td>
<td>VR1 47k dual-ganged (stereo) rotary carbon, p.c.b. mounting, log.</td>
</tr>
<tr>
<td>Capacitors</td>
<td>C1, C2 100μF radial elect. 16V (3 off) C3, C4 470μF radial elect. 16V (2 off) C5, C6 100n ceramic (2 off) C8 1μF any non-electrolytic type, such as polylayer</td>
</tr>
<tr>
<td>Semiconductors</td>
<td>IC1 TDA2822M 1W stereo amp.</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>S1 on/off toggle switch S2 d.p.d.t. toggle switch SK1 2.5mm d.c. power socket, chassis mounting SK2 4-way, spring-loaded, loudspeaker connector block PL1, PL2 phono plug (2 off)</td>
</tr>
</tbody>
</table>

Printed circuit board available from the EPE PCB Services code 304; sloping front case, size 160mm x 100mm x 60mm; 6-pin d.l.l. socket; plastic knob; 9V to 12V battery or regulated mains power supply adaptor (300mA or more); screened cable; multistrand connecting wire; solder pins (15 off); solder etc.

Approx. Cost Guidance Only excluding case & batt./p.s.u. £15

It may not be Dolby Pro-Logic but the effect – considering the modest cost – is quite convincing.

Everyday Practical Electronics, July 2001 475
The prototype unit was housed in a sloping front case measuring approximately 16cm by 10cm and 6cm deep at its highest point. The front panel layout and general positioning of components within the case can be seen in the photographs. The photographs also show how the p.c.b. may be housed in a standard case.

You may wish to use a similar case and front panel layout as shown, in which case you can make up a “dummy” front panel from stiff cardboard (it’s easier to cut, drill and modify) to check that the front panel components will fit into the case without clashing with any other side-mounted components. Using the card as a template, place it over the front panel of the case and drill the 3 holes for the switches and potentiometer. (This assumes that you require all the options as described earlier).

Drill suitable holes in the sides of the case for the speaker connector (SK2), power input connector (SK1) and audio input wires. Alternatively you could use connectors for the audio input, in which case drill the appropriate holes for the connectors.

Once you have drilled out the front panel, you can letter it, possibly using “rub-down” transfers, or you can make up a second thin card “overlay” with lettering on it. This can be positioned on the panel, the required holes punched in the card and the switches and potentiometer bolted in place.

Now complete the final wiring from the p.c.b. to the speaker connector and power socket. Ensure that the polarity of the power supply correctly matches the power socket and conduct a final test of the amplifier.

SAVE UP TO 66p AN ISSUE

SUBSCRIPTION ORDER FORM

My card number is: ...

Name ..
Address ...
..
...Post code

SUBSCRIPTION ORDER FORM

I enclose payment of £..........., (cheque/PO in £ sterling only), payable to Everyday Practical Electronics

Annual subscription rates (2001):
6 Months: UK £14.50, Overseas £17.50 (standard air service),
£27 (express airmail)
1 Year: UK £27.50, Overseas £33.50 (standard air service)
£51 (express airmail)
2 Years: UK £50.00, Overseas £62.00 (standard air service)
£97 (express airmail)

To: Everyday Practical Electronics,
Wimborne Publishing Ltd., 408 Wimborne Road East,
Ferndown, Dorset BH22 9ND
Tel: 01202 873872 Fax: 01202 874562
E-mail: subs@epemag.wimborne.co.uk
Order online: www.epemag.wimborne.co.uk

Everyday Practical Electronics, July 2001
PC USERS CAN HELP MEDICAL RESEARCH

Anyone with a fast PC can use it to analyse medical research data and help discover potential new drugs. Barry Fox reports

For most of the time, most PCs are idling. Either they are doing no work at all, or only a fraction of the processor power is being used by wordprocessor, E-mail or database software.

The idea of exploiting this spare capacity dates back at least three years, when SETI, the Search for Extra-Terrestrial Intelligence (once funded by the US Government but now a cash-strapped voluntary League) started using idle computers and obsolete satellite systems to look for recognisable patterns in radio signals received from space. A regular pattern could signify distant intelligence.

Peer-to-peer analysis

United Devices of Austin, Texas, has now joined with chipmaker Intel and the National Foundation for Cancer Research and Department of Chemistry at Oxford University, to use “peer-to-peer” computing for analysing the characteristics of possible new drugs. The challenge is to check hundreds of millions of molecular structures for their ability to match and block the proteins which are critical to the growth of cancers, such as leukaemia.

This is obviously a “good cause” and anyone with a fast PC can go to www.intel.com/cure (or www.ud.com/home.htm and download a computer program which downloads possible drug structures and runs jigsaw-match checks on them.

The PC runs the program in the background, when it would otherwise be idle – rather like a screen saver. Once the jigsaw check is complete, which should normally take a day or so, the program sends the results back to United Devices Data Centre and requests a new package of data to check. This happens automatically when the user goes onto the Internet to look at any other site.

Virtual supercomputer

Intel predicts that worldwide downloads will eventually involve millions of participants and generate a virtual supercomputer which is ten times more powerful than any of the world’s existing super computers.

Because large projects are broken down into smaller tasks, the proprietary drug information should remain secure. Hopefully the involvement of Intel guarantees security against viruses. But does the program slow down a PC by soaking up processing power? No, assures Daven Oswalt of Intel.

“When applications are being used, these peer-to-peer programs stay on the sidelines, so as not to interfere at all with the user’s main application. It is only at moments when a user is not engaged in processing that the peer-to-peer program computes. This could be when a user steps away to do something else, but leaves the PC on, or when he or she is at the computer but momentarily not using any processing power – not inputting anything that requires a response from the computer, for example.

“Having a more powerful PC not only means faster user application processing, but also faster processing of any peer-to-peer applications that are resident on the PC, such as any philanthropic peer-to-peer program.”

United Devices also assures: “The UD Agent will never interfere with your ability to use your own computer. Most computers never use all their resources – it is estimated that up to 90 per cent of the processing power of an individual PC goes unused. The United Devices distributed computing model is based on the ability to utilize this idle capacity from individual computers.”

But poorly documented

There is no reason to doubt these assurances, but the program is very poorly explained. Users only find out by trial, error and exploration that there are options to tweak the way the program runs, for instance displaying graphics which show the molecules being checked.

The program does not explain what it is doing on the Internet and why it sometimes tries to force a connection and cost the PC owner money on-line while uploading results and downloading more data. This can be very disconcerting for casual users who are worried about viruses. Also, only the highest speed Pentium PCs will be able to plough through the millions of calculations in a reasonable time. Slower PCs will still be at a few per cent of the task after days.

There is no information offered on how to get rid of the agent, but this can be done with the usual Windows Settings, Add and Remove Programs options.

If Intel, United Devices and Oxford University want people to volunteer their resources they should surely pay them the courtesy of offering a better explanation of what the UD Agent software is doing while it lives inside a PC.

UNIVERSAL PROGRAMMER

The LabTool-48 is an “intelligent” universal device programmer which works through your PC’s parallel port. It features a 48-pin universal pin driver and an expandable TTL pin driver and supports over 3000 different devices, including memory, logic and single-chip. It can handle all of Microchip’s PIC series. The literature received states “no adaptor required for any DIL device up to 48 pins – guaranteed”.

Device types catered for are PROM, EPROM, EEPROM, Flash, Serial PROM, NVRAM, PAL, GAL, CEPAL, PEEL, CPLD, EPLD, OTP and Flash microcontrollers. Operations include read, blank check, device insertion/contact check, verify, checksum, EEPROM ID check, compare, erase chip, function test, program, memory protect, device configuration setting, device search, edit buffer, mass production mode, modify vector, serialization, H/L byte buffer swap, buffer search.

For more information contact Burn Technology Ltd., Dept EPE, Welnforth Technology Centre, Building C51, Dorchester, Dorset DT2 6DH. Tel: 01305 852090. Fax: 01305 851940. E-mail: sales@burntec.com. Web: www.burntec.com.
PICS ON-SCREEN WEBSITE

SIMON Blake of the BlackBoxCamera Company wants you to know about his company’s website and their new product, the PIC16F84-STV5730A On Screen Display (OSD) project board.

He tells us the STV5730A is an OSD i.e. widely used in VCRs for displaying on-screen programming menus. Combining this device with a 16F84 gives it the ability to display text and graphics characters on any TV or video monitor. The product provides the hardware and software to create both simple and complex OSD applications, and the website provides free development resources.

For more information contact The BlackBoxCamera Co. Ltd, Dept EPE, Unit U7, Lenton Boulevard, Nottingham NG7 2BY. Tel/Fax: 0700 2522526. E-mail: Simon.Blake@STV5730A.co.uk. Web: www.STV5730A.co.uk.

Greenweld’s Bargains

BY the time you read this Greenweld’s new 52-page May catalogue should have been published. We know that as usual it will have a good selection of the bargains for which Greenweld are renowned (Greenweld – Home of Bargains is the slogan on their latest newsletter received).

Greenweld’s bargain lists are well-worth obtaining – ask for your copy now! Greenweld Ltd., Dept EPE, PO Box 144, Hoddesdon, EN11 0ZG. Tel: 01277 811042. Fax: 01277 812 419. E-mail: bargains@greenweld.co.uk. Web: www.greenweld.co.uk.

Voice of the Crystal

QUITE likely many of you will consider Crystal Radio to be an almost forgotten stepping stone on our tortuous route to achieving today’s electronics technology. It is, though, a technology that can still be achieved today’s electronics technology.

To emphasise the point, we were recently sent a rather delightful book written and illustrated by H. Peter Friedrichs, called The Voice of the Crystal. Peter comments that while his book fits into the genre of crystal radio, it goes beyond that and “it’s quite unlike any you’ve seen before”. It introduces radio theory in simple layman’s terms and then proceeds to demonstrate how to build various radio components completely from scratch. The various components are then linked together to create working radios.

Construction covers building fixed and variable capacitors, a variety of coils including slider, spider and basket-weave types, a plethora of detectors using a veritable rainbow of materials. The book also describes the construction of three different types of home-build headphones, including a piezoelectric design fashioned from the components of a cigarette lighter!

This 185-page book is published in the USA but is readily purchasable online from www.amazon.com, who quote a price of US $14.95. No doubt your local good bookseller could also obtain a copy for you, ISBN 0-9671905-0-9.

NATIONAL VALVE MUSEUM

Allan Wyatt of the National Valve Museum has sent us the Museum’s remarkable CD-ROM, which contains photographic images and details of many of the world’s early valves.

Allan tells us that the museum was founded early in 2000 with the specific aim of providing a first class digital collection of this essential part of our national heritage. The original plans for digital collections were discussed with major museums which, while they completely supported the initiative, had no funding available to do something similar or to help.

The window of opportunity seemed too small to let it drop, so Allan has funded it himself. The core of the project is a publication database with high quality digital pictures, accessed via the Internet or via CD-ROM. Each indexed term is validated against a master list to maintain accuracy. All of the web pages and indexes are generated from a batch process to make updates fast and easy and the equivalents list is dynamically linked to the exhibit entries each time the process is run.

All software from the database onwards has been designed specifically for the museum project. A physical home is not practical at present, and Allan feels that a close-up picture can convey far more than a cabinet full of valves.

AYNOE who uses E-mail is cursed by spam – unwanted messages that bucket through from the Internet, offering “100% FREE” opportunities to spend money on becoming a millionaire. Although subscribers to reputable E-mail services who send spam can in theory be stopped, most unsolicited junk E-mail now comes from anonymous senders using untouchable services in far-off lands. China is a prime suspect.

CD-ROMs, costing a few dollars, contain literally millions of E-mail addresses, and can be used to automate E-mail transmission. It takes only four hours to send a million spam E-mails and it costs the sender only an hour in line time.

Filtering Spam

Some Internet service providers now try and filter mail by searching for tell-tale words. But the spammers then avoid those words. Others use the Brightmail system which uses trap accounts to attract spam and then put a network block on everything from the same address or with the same header. But spammers can then change the headers and sender addresses.

Guernsey-based Anodyne Developments thinks it has a better solution, with Stamplets. The E-mail or Internet service provider installs software which interrogates the address list stored in the Internet mail software (e.g. Microsoft Outlook or Netscape Messenger) on the user’s PC. It then lets through only those messages which come from known addresses.

All other messages, which may either be unwanted spam, or wanted messages from unknown or new senders, is then held for up to 30 days on the service provider’s server. An automated reply is transmitted to the sender, saying that the original message will only be delivered if the sender pays a small fee. This is payable in any of the online credit and debit micro-units used for e-commerce and Internet auctioning. These units are for instance tied to the price of gold, with credit bought in advance at the beginning of each month by credit card.

Anodyne’s Stamplets system would let E-mail users give out free credit to people charged for sending wanted E-mails, and set their own price to charge spam senders.

Deterrence

If adopted, the system would certainly deter anyone sending unsolicited messages by the million, because they would face hefty bills to get their messages through. But first the E-mail and Internet service providers must adopt the system and so far there have been no big-name takers. Also some users may not like the idea of wanted E-mails from unknown senders initially being blocked.

MARCONI MUSEUM

The interactive online Marconi Museum has been opened by E-minister Patricia Hewitt. The website coincides with the 100th anniversary of the world’s first transatlantic wireless transmission by Guglielmo Marconi, the pioneer of wireless communication, and captures his extraordinary achievements.

The website features 10,000 web pages containing an historic collection of 500 pieces of ephemera, 426 photographs, 33 sound clips and 10 film clips. The Marconi Online Museum caters for interests of all ages, including students, historians, researchers and wireless enthusiasts, and particularly school children, for whom the content is directly relevant to the National Curriculum.

New Technology Update

Non-volatile memory based on CD-ROM technology promises smaller, faster devices with a multitude of applications, reports Ian Poole.

In today’s electronics technology, memory is being used in increasing quantities. PCs usually have a hundred or more megabytes of RAM, whereas only ten or fifteen years ago a few kilobytes was standard. The increase has been necessary due to the development and use of far more sophisticated computer software. However, technology has had to advance to enable memory to be sufficiently compact and cheap to be used in this way. It is often said that memory is cheap and this is quite true. It only costs a few tens of pounds to put more memory in a PC.

To meet the ever-growing requirements for memory, new technologies are being developed. In one development ST Microelectronics is to start work on a joint development project with the US based company, Ovonyx. The aim is to build non-volatile memory based around the techniques used in rewritable CDs.

The new memory is named phase change amorphous memory and the basic technology has been developed by Ovonyx, a company that has come out of Energy Conversion Devices Inc. The memory is based on an alloy that can be converted from an amorphous to a crystalline state and back again using an electric current. The two phases or states of the material have quite different resistances enabling it to be used to store information.

ST have obtained a licence from Ovonyx that will let them build this memory technology into microcontrollers, system-on-chip, and bulk memory devices as well as reconfigurable logic devices.

Technology

The technology uses unique thin film materials to store information in a very compact manner. The memory is based around a phase change chalcogenide alloy similar to that used to store information on commercial rewritable CDs and DVD RAM.

Optical disks use light from a laser to convert small spots on the disk from the amorphous state with a disordered structure to a crystalline state with a regular atomic structure. In this way the digital data can be stored because the amorphous state is non-reflective and has a high resistance whereas the crystalline state is reflective and has a low resistance.

The phase change memory operates in a very similar manner but uses an electric current to change the state of the material.

To read the data, a voltage is applied to the storage area and the state of the cell is detected by the amount of current that flows. The system is particularly efficient and can store data in a much smaller area than its optical counterpart. Furthermore, data can be read and written at a much greater speed and there are cost advantages over more conventional forms of memory, including DRAM and Flash. This results from the very small active storage area and the simple manufacturing process required. In fact the manufacturing process deviates only a little from the standard CMOS flow line, making it very attractive for manufacturers who would not have to invest large sums in new plant.

Basic concept

The material that has been most widely used in amorphous semiconductor memories to date has been a composition based on germanium and tellurium (GeTe). Small quantities of other dopants such as antimony can be added to improve the conductivity for the low resistance phase. In addition to this selenium is often added to improve the switching performance.

The crucial aspect of the device is in switching the memory element between the high and low resistance states. In fact both conversions are implemented by heating the data storage element itself with a high current pulse. The current pulse is sufficient to melt the storage element and on cooling down it crystalises so that the atomic structure is ordered and the material can conduct an electric current through a low resistance.

To reverse the change and erase the data a higher current pulse is applied. Typically this will be about ten times that of the original write pulse and will have much faster rise and fall times. The effect of this is that when the molten material cools down it changes to its amorphous state with a high resistance.

Device structure

Details of the actual device structures in use at the moment are not very clear as little information has been released. One structure that may be in use is shown in Fig.1. Here the data storage region is filled with the chalcogénide. When in the crystalline state current can flow from the upper electrode to the resistive element. Obviously when in the amorphous state it will exhibit a high resistance and significant current will not be able to flow.

Performance

The memory has many advantages. It is non-volatile allowing the information to be retained even when the power is removed. Currently Flash is the most widely used form of non-volatile memory. This has the disadvantage that it has to be erased in blocks. In addition to this the memory only has a limited number of read/write cycles.

Today’s devices typically withstand about 100,000 write cycles.

Amorphous memory does not suffer from either of these problems, having a virtually unlimited lifetime and each cell can be individually addressed for both read and write. This enables it to be used in ordinary memory applications as well as those that would normally have been serviced by Flash memory.

A further advantage is that no power is required to maintain the memory even when in standby operation. Other forms of memory use considerable amounts of current and as a result this will give amorphous memory a significant advantage, especially for portable applications where battery size and lifetime are primary considerations.

Future

The small size, flat topology and the low voltage operation make the memory very suitable for migration to smaller geometries than those that are being used today. In fact the performance of individual cells improves if they are scaled down in size. Interestingly, the reverse is true for memories such as Flash where the amount of charge stored is dependent upon the surface area of the electrodes within the cell. If the amount of charge stored is too small then the performance of the memory will be impaired.

The advantages of amorphous memory mean that it should find uses in a wide variety of applications. Laptop and palmtop computers will be a particularly suited. In addition to this the new multimedia third generation mobile phones will have a far greater requirement for memory and they should find many uses in this arena. Apart from the portable applications where their low power consumption is of particular interest they should find widespread use in virtually all types of electronics where memory is required. Obviously this will include the run of the mill computer applications where there is a truly vast market.

Fig.1. Planar form of an amorphous memory

Everyday Practical Electronics, July 2001
Zener Diode Tester – Service Check

HAVING amassed a large collection of surplus Zener diodes, some using type numbers and codes which are obsolete, others having lost their markings altogether, the circuit diagram shown in Fig. 1 was developed to check their polarity and voltage. It supplies a constant current to the device under test and a digital voltmeter (DVM) then reads the test diode's Zener breakdown voltage across the device. The constant current source ensures the Zener is unlikely to be damaged.

In the circuit, transistor TR2 forms a constant current source in conjunction with diodes D1, D2 and resistors R1 and R2, to provide a test current of approximately 7mA into TR2’s collector. With no test diode connected, the meter reads the supply voltage, either 33V or 6V depending on which positive test terminal is used. This indicates the off-load battery voltage.

When the test diode is connected current flows through it to 0V via resistor R3. Transistor TR2 is turned off at this time as its base current, via resistor R1, is blocked by TR1. Provided current through the test diode exceeds about 7µA then the voltage developed across R3 is sufficient to turn on transistor TR3.

The base current of transistor TR3 is limited by resistor R5 to a safe level under all conditions, and capacitor C1 decouples TR3 base. The transistor’s collector current is drawn from the +33V supply via transistor TR1’s base emitter junction, turning TR1 on. Resistor R4 prevents TR1 being spuriously turned on by any leakage in TR3 whilst capacitor C2 decouples TR1 base.

With transistor TR1 turned on, this provides the base current for TR2 via R1, enabling the constant current source to be used for measuring the test diode’s Zener voltage. As soon as the test diode is removed the circuit returns to its quiescent state. If the polarity of the device is unknown, connecting it the wrong way round will give a reading of 0-6V to 0-7V on the DVM as a Zener behaves like an ordinary silicon diode in the forward direction. Should the device be a short-circuit then 0V will be read on the DVM.

Devices other than Zener diodes could be checked by the circuit. By using three 9V PP3 type batteries (B1 to B3) in series with four “AA” cells (B4 to B7) as shown, l.e.d.s. could be safely checked for operation and polarity. Note that using the 6V tap for testing will not risk reverse breakdown (usually quoted as 5-1V for an l.e.d.) if the device is accidentally reversed when testing. If the l.e.d. is serviceable and correctly polarised the 7mA test current gives a visible light.

This principle could be extended to safely sorting the pinouts of unknown 7-segment displays.

J.A. Morton,
Sowerby Bridge, W. Yorks.

Fig.1. Circuit diagram for a simple Zener Diode Tester. Note that capacitors C1 and C2 are disc ceramic types.
The circuit diagram of Fig.2 emits a beep when it is actually sounding. If the door is left either closed, or this acts like a resonator which will amplify the tone. The piezo disc is mounted rigidly on the wood of a cupboard, inals of opposite polarity in order to double the charge accumulated on C3. Switch contacts from damage caused by the door is closed; resistor R3 protecting the positive supply to prevent it from floating.

As C3 charges and the voltage across it rises, the voltage left to the rest of the circuit falls, so generating a falling, diminishing voltage rise, the voltage left to the rest of the circuit.

The circuit is very simple, and is based on a CMOS 4069 hex-inverter chip, IC1. Gates IC1a and IC1b form an oscillator at about 700Hz, which is buffered by gates IC1c to IC1e. Gate IC1f is unused, so pin 1 is tied to the positive supply to prevent it from floating.

Richard Neill, Cookham Dean, Berks.

Fig.2. Circuit diagram for the Cupboard Door Monitor.

INGENUITY UNLIMITED
BE INTERACTIVE
IU is your forum where you can offer other readers the benefit of your Ingenuity. Share those ideas, earn some cash and possibly a prize!
Everyday Practical Electronics, July 2001

Construclional Project

PIC TO PRINTER INTERFACE

JOHN BECKER

Demonstrates PIC control of Epson dot-matrix printers, and offers a long-term hard-copy data logger.

EPE reader Andy Daw had a letter published in Readout March '01. To quote the author, he said:

I read with interest the UFO Detector/Recorder in the January '01 issue. The true nature of Raymond Haigh's chart recorder is inspiring. Having once read whole articles about recording aurorae I know that hard copy recording of analogue events is a work of art. What is needed is a cheap and easy method.

Some people have bought new colour printers and their old dot-matrix printers are just sitting in the loft. It would be nice to do a PIC-based analogue interface to dot-matrix printers - Z-fold paper for week-long recording, A4 for shorter periods, variable 'chart' speed, date stamp and grid lines.

What a good idea it seemed! And described here is one way of doing it. In fact, it is not at all difficult.

EPSON PRINTERS

A good ten years ago the author investigated Epson printers and how they could be instructed, through GW-Basic and QuickBasic, to print graphics data recorded in connection with a weather centre and other DOS-based designs. Those designs basically output data to the PC's screen and to disk, but the facility to also output screen displays to a printer was deemed to be worthwhile.

Consequently, the author obtained Epson's ESC/P reference manual, a massive tome that details how all the functions of Epson's printers can be controlled. Through it, the desired graphics printout facilities were added (long before the days of Screen Dumps through Windows!).

The introduction to the manual says that:

When Epson created the ESC/P printer control language, the industry standard for sophisticated, efficient operation of dot matrix printers was born.

To ensure that the features on all Epson printers are used to their fullest, this reference manual was created as an aid in creating programs and drivers. In addition, information is included on features and options available on all dot-matrix printers produced by Epson for the American, European and non-Japanese Pacific markets.

The manual is applicable to the full Epson range, including ESC/P2 and ESC/P 24-pin printers, and ESC/P 9-pin printers. The latest version, actually dated December 1997, was downloaded free from Epson's web site by the author in February 2001 (see later).

It is this edition that certain page references are made within this article. The commands used are those which the manual states are backwards compatible with all ESC/P and ESC/P2 models.

Consequently, it would appear that the interface described here can be used with any Epson-compatible dot-matrix printer. As the author has proved, the manual's data is applicable to some inkjet colour printers as well. It has been proved with the dot-matrix LQ-550 and LQ-570 and with the inkjet Photo 600 and Stylus Photo 750. A third inkjet printer, though, a Photo 650 purchased in Feb '01, would not respond to the graphics commands from the experimental board, although it did respond to the text commands.

However, the "brief" of this design, as set by Andy Daw, was to show how dot-matrix printers could be controlled. The fact that it can control some inkjets is therefore a bonus!

It is only the simplest of commands that are demonstrated here, showing how text and graphics can be printed under PIC control. The information presented, though, should allow readers to add their own additional printing features according to Epson's commands as listed in their manual, including text font selection (lettering size and style) and enhanced graphics printing.

COMING NEXT

This article first examines how Epson printers are controlled, and then as a practical example, describes the construction of a simple data logger. The logger inputs analogue data having a level between 0V and +5V d.c., converts...
Everyday Practical Electronics, July 2001

LISTING 1. Send text to printer directly via parallel printer port

PORT = &H378:
OUT DATA = PORT:
OUT CTLDATA = PORT + 2:
FOR A = 1 TO LEN(A$):
D = ASC(MID$(A$, A, 1)): ' get ASCII value of each character in turn
GOSUB PRINTDATA:
NEXT:
PRINTDATA:
B = INP(INDATA) AND 128 ' read status of Busy line (bit 7)
STOP: ' end of routine

D = 0: ' send line feed command (ASCII 10) to printer
D = 13: ' send carriage return (ASCII 13) to printer
FOR A = 1 TO LEN(A$): ' for length of the test line (A$)
A$ = "This is a printer test line": ' line to be sent to printer
CTLDATA = PORT + 2: ' Control data register (e.g. H37A)
OUT CTLDATA, 254: ' binary 11111110 – i.e. bit 0 (Strobe) = 0
OUT CTLDATA, 255: ' send the value to the printer
OUT CTLDATA, 254: ' data is sent to the printer by the second address following the first (e.g. H37A), named CTLDATA in Listing 1.

It should be noted that the PC inverts the Strobe line output, hence the apparent contradiction between the Strobe value in Listing 1 and the Strobe value shown in the timing graph of Fig.1.

In Listing 1 it will be seen that Strobe is only pulsed for the duration of one command. With the 120MHz PC on which this routine was tested, the delay between the two commands that toggle Strobe was measured to be about 5µs, more than enough to comply with the timing requirements shown in Fig.1. With PCs having a much faster clock it may be necessary to put a delay between each of the output commands, for example:

OUT CTL DATA, 255
FOR E = 1 TO DELAY: NEXT
OUT CTL DATA, 255

where DELAY might, perhaps, be given a value of 10 (or even much more) in order to extend the Strobe pulse length.

Try Listing 1 on your PC, with the DELAY included until you know whether or not you need it. It will be necessary, of course, to check which PORT value you need to use, as commented earlier.

Immediately on running the program you should hear the printer respond, and then stop. Winding the paper forward a bit you should see that the test message has been printed.

Experiment with sending other messages instead, of differing lengths. If you are feeling adventurous, write a program that sends several lines of text to the printer.

When normally using Basic to print text to a printer, you would simply issue the command LPRINT, AS. What Listing 1 does is to completely bypass the computer’s own printing procedure, directly
accessing the printer via the printer port registers.

PRINTER PIN DIRECT ACCESS

For graphics output to the printer, the procedure is just a bit more complicated, but not a lot.

First the printer has to be told that it is to accept a batch of data that it is to treat as its pin-activating (graphics) data. Epson have allocated specific series of ASCII values as command groups that tells the printer it is to treat the next lot of data in a different way than if it were to receive text data (Epson manual pages C-2 to C-8 – Command Lists).

Note that all values from hereon are quoted in decimal unless stated otherwise.

The first control command is ASCII 27, which is also known as the ESCAPE command, ESC for short. It is, perhaps, after this command name that Epson’s printers are known as ESC/P and ESC/P2. It is a command that has to precede any group of content commands.

To put the printer into its “command” mode, the ESC command (27) is sent to the printer in the same way that text data was sent in Listing 1:

D = 27: GOSUB PRINTDATA

Next the ASCII value 42 (the asterisk symbol) is sent, telling the printer that it is being put into one of its graphics modes (Select Bit Image, page C-176).

D = 42: GOSUB PRINTDATA

DOT DENSITY

It is now necessary to tell the printer the dot density required and the number of graphics data bytes that will follow.

In the Epson manual (C-177/8 – Dot Density), tables give the value that should be sent to set the required density. The value used by the author with his 24-pin printer was 128, which sets the horizontal density at 90 dots per inch (dpi), a vertical density of 60 dpi, with adjacent dot printing, 8 dots per column, and 1 byte per column. (For a 9-pin ESC/P printer this value would produce the same results for all parameters except vertical density, which would become 72 dpi.) The density setting is thus sent as:

D = 6: GOSUB PRINTDATA

The number of graphics data bytes to be sent will vary with what we want to send to the printer. Let’s suppose we want to send 300 bytes.

The quantity value is sent as two 8-bit bytes (page C-176), first LSB (least significant byte) followed by MSB (most significant byte). The MSB is obtained by dividing the quantity by 256 and ignoring the remaining fraction. In this case the MSB is 300 \(/ 256 = 1 \). The LSB is simply 300 minus the MSB times 256, which is 300 – \((1 \times 256) = 44\).

In Basic, the calculation can be done as:

\[
\text{MSB} = 300/256; \text{LSB} = 300 - (\text{MSB} \times 256)
\]

where the backslash (“\”) division command automatically tells Basic that the MSB is to be an integer. Another way of doing it would be to use the integer command (INT) with the forward slash division command (“/”) and say: \(\text{MSB} = \text{INT}(300/256)\). You could alternatively use the MOD (modulo) command to obtain the LSB, i.e. \(\text{LSB} = 300 \bullet \text{MOD} 256\).

The number of data bytes that will follow is thus sent as:

\[
\begin{align*}
\text{D} &= \text{LSB}; \text{GOSUB PRINTDATA} \\
\text{D} &= \text{MSB}; \text{GOSUB PRINTDATA}
\end{align*}
\]

Now the next 300 data bytes will be treated as instructions to the printer that it is to activate its pins according to the binary representation of the data value received. The printer head automatically moves across the paper by one position for each data byte received. The amount of forward movement is according to the horizontal density value previously set.

GRAPHICS IMAGE

To understand how a graphics image can be printed, imagine that an 8-pin print head has its pins numbered as follows:

- Pin 7 (top) = 128 (binary bit 7)
- Pin 6 = 64 (binary bit 6)
- Pin 5 = 32 (binary bit 5)
- Pin 4 = 16 (binary bit 4)
- Pin 3 = 8 (binary bit 3)
- Pin 2 = 4 (binary bit 2)
- Pin 1 = 2 (binary bit 1)
- Pin 0 (bottom) = 1 (binary bit 0)

To activate the topmost pin (pin 7), you would simply send a decimal value of 128. To activate pins 5 and 3 together you would send \((32 + 8 = 40)\). To activate them all together you would send 255 (the total of all bit values). For example, you could send 300 bytes of data that would activate the pins in a strict incrementing sequence from 0 to 255, roll over to zero and then continue upwards again until all 300 bytes had been sent.

Such a sequence, following the sending of the data quantity LSB/MSB, would be sent as:

\[
\begin{align*}
\text{D} &= 0 \\
\text{FOR A = 1 to 300} & \quad \text{GOSUB PRINTDATA} \\
\text{D} &= \text{(D + 1) AND 255} \\
\text{NEXT} \\
\text{D} &= 13; \text{ carriage return} \\
\text{GOSUB PRINTDATA} \\
\text{D} &= 10; \text{} \text{line feed (optional)} \\
\text{GOSUB PRINTDATA}
\end{align*}
\]

where D is incremented by one each time round the loop, with the AND 255 statement limiting D to a maximum value of 255, after which it repeats incrementing again from zero. Try it, and observe the pattern created on the paper.

Note that after the full batch of data has been sent for any line, a carriage return command (ASCII 13) must always be sent. It may often be desirable (but not essential) to follow it by sending a line feed command (ASCII 10). The latter depends on whether or not you actually want the paper to move upwards by one step.

EQUALITY

It is important to note that if the amount of data sent does not correspond to the amount that the printer is expecting (as advised by sending the LSB/MSB earlier), the printer will not respond correctly.

If too little data is sent, the printer will wait until more is received, probably not having actually printed any data to the paper yet. If too much is sent, the printer is likely to consider the excess data as text characters, and some strange symbols may well be printed.

Always send the same amount of graphics data as is expected, and follow that data by a carriage return. (It is not necessary to tell the printer how many text characters are to be sent.)

It is necessary to always precede any batch of graphics data bytes with the commands discussed, i.e.:

D = 27: GOSUB PRINTDATA

D = 42: GOSUB PRINTDATA

D = 6: GOSUB PRINTDATA (or value selected from C-176/8)

D = LSB: GOSUB PRINTDATA

D = MSB: GOSUB PRINTDATA

(Now send all graphics values as required)

D = 13: GOSUB PRINTDATA

PRINTER INITIALISING

All the foregoing has been carried out on the assumption that the printer is freshly switched on and has not been used in any other way. In other words, it is still in its Reset mode, as is actioned at the time of switch on.

However, such might not be the case – the printer may already have had other commands sent to it by another program, commands which may not apply to the way in which you wish to use the printer.

Consequently, prior to sending data to the printer, it is preferable that you ensure that it is in the mode required. The first set of commands to be sent, therefore, is a pair of Reset commands. These take the following form (page C-199 – Initialize Printer):

D = 27: GOSUB PRINTDATA: ‘ ESC

D = 64: GOSUB PRINTDATA: ‘ @ symbol

It is then desirable (but not always necessary) that you set the line spacing that the printer will increment by each time the line feed command is given. For the PIC interface to be described later, an increment of 24/180-inch has been selected to suit the graph to be drawn. The manual shows the requirements on page C-55 (Set N/180 Inch Line Spacing).

D = 27: GOSUB PRINTDATA: ‘ ESC

D = 51: GOSUB PRINTDATA: ‘ ASCII value for symbol “3”

N = 24; D = N: GOSUB PRINTDATA: \(\text{’ where N sets the spacing}\)

All five commands should be sent before sending other data.

PIC EQUIVALENT CODE

Let’s now show how the Basic codings are translated to PIC. There’s actually not a lot difference! For instance:

```
MOVLW 27
CALL PRINTIT
```

is the PIC equivalent of the Basic:

D = 27: GOSUB PRINTDATA

Everyday Practical Electronics, July 2001
The essential command routines are shown in Listings 2 to 7.

In these listings, the PIC’s Port addresses and their order of pin-to-function allocation have been set previously to suit the layout on the printed circuit board, more on which later.

It is worth noting that different Port and pin allocations can be used to suit other applications of your own design, with the software amended accordingly.

The NOP pauses in the PRINTIT routine provide a delay of about 1 microsecond. The pause will be somewhat longer when a 3-2768MHz crystal is used, as it is in the accompanying circuit design.

Believe it or not, that is basically all there is to sending data to the printer from a PIC. However, one other principle aspect will be discussed later: how to plot a continuous graph to paper when data logging.

First, though, a practical circuit design for PIC-controlling an Epson dot-matrix printer is described.

INTERFACE CIRCUIT DIAGRAM

A PIC16F877 microcontroller was chosen as the base through which PIC to printer interfacing could be demonstrated. The circuit diagram is shown in Fig.2.

In brief, IC2 is the PIC microcontroller, which is operated at 3-2768MHz as set by crystal X1. Op.amp IC1a is configured as a d.c. unity gain buffer whose output is fed to one of IC2’s analogue-to-digital conversion (ADC) pins, RA0/AN0.
Everyday Practical Electronics, July 2001

A second op.amp buffer, IC1b, is shown but it is not actually used in this design. You might find it useful if writing your own software for some other application.

Pushbutton switches S1 and S2 allow the PIC’s data sampling rate to be set up or down (range one sample every 1 to 255 seconds). Switch S3 causes the PIC to start or stop sampling and printing.

Liquid crystal display module X2 provides visual readout for various messages or stop sampling and printing.

Approx. Cost
Guidance Only
£30 excluding case.

TABLE 1. Printer Connector Pin Functions

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Direction</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>STROBE</td>
<td>In</td>
<td>STROBE pulse for printer to read incoming data. Pulse width must be more than 0.5μs.</td>
</tr>
<tr>
<td>2 to 9</td>
<td>DATA 1 to 8</td>
<td>In</td>
<td>These signals present information of bits 1 to 8 of parallel data, respectively. Bit 1 = LSB, Bit 8 = MSB. Logic 1 = High, Logic 0 = Low.</td>
</tr>
<tr>
<td>10</td>
<td>ACKNLG</td>
<td>Out</td>
<td>About an 11μs pulse. Low indicates that data has been received and that the printer is ready to accept more data.</td>
</tr>
<tr>
<td>11</td>
<td>BUSY</td>
<td>Out</td>
<td>A High signal indicates that the printer cannot receive data. The signal goes High in the following cases: 1. During data entry 2. During printing 3. When off-line 4. During printer error state</td>
</tr>
<tr>
<td>12</td>
<td>PAPER</td>
<td>Out</td>
<td>A High signal indicates that the printer is out of paper.</td>
</tr>
<tr>
<td>13</td>
<td>SELECT</td>
<td>Out</td>
<td>Pulled up to +5V through a 3k3 resistance.</td>
</tr>
<tr>
<td>14</td>
<td>AUTO FEED</td>
<td>In</td>
<td>When this signal is Low, the paper is automatically fed 1 line after printing.</td>
</tr>
<tr>
<td>15</td>
<td>NC</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>CHASSIS GND</td>
<td>Logic ground level</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>CHASSIS GND</td>
<td>Printer’s chassis ground which is isolated from the logic ground.</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>NC</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>19 to 30</td>
<td>NC</td>
<td>Twisted pair return signal ground level.</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>INIT</td>
<td>In</td>
<td>When this becomes Low, the printer controller is reset to its power-up state and the printer buffer is cleared. NP this level is normally High. Its pulse width must be more than 50μs.</td>
</tr>
<tr>
<td>32</td>
<td>ERROR</td>
<td>Out</td>
<td>This level becomes Low when the printer is: 1. In paper out state; off-line; in error state. 2. During printer error state 3. As for pins 19 to 30</td>
</tr>
<tr>
<td>33</td>
<td>GND</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>NC</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>–</td>
<td>Pulled up to +5V through a 3k3 resistance.</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>SLCT IN</td>
<td>In</td>
<td>The level of this signal is factory-set to Low (see Epson manual).</td>
</tr>
</tbody>
</table>

COMPONENTS

<table>
<thead>
<tr>
<th>Resistors</th>
<th>See SHOP TALK</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 1k</td>
<td></td>
</tr>
<tr>
<td>R2, R3 10k</td>
<td></td>
</tr>
<tr>
<td>All 0–25W 5% carbon film</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potentiometer</th>
<th>See SHOP TALK</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR1 10k preset, min. round</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitors</th>
<th>See SHOP TALK</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 22μF radial elect. 16V</td>
<td></td>
</tr>
<tr>
<td>C2, C3 100mF ceramic (2 off)</td>
<td></td>
</tr>
<tr>
<td>C4, C5 10μF ceramic</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semiconductors</th>
<th>See SHOP TALK</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 1N4148 signal diode</td>
<td></td>
</tr>
<tr>
<td>IC1 MAX492 dual rail-to-rail op.amp (or similar)</td>
<td></td>
</tr>
<tr>
<td>IC2 PIC16F877 PIC microcontroller (see text)</td>
<td></td>
</tr>
<tr>
<td>IC3 78L05 +5V voltage regulator</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
<th>See SHOP TALK</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1, S2 s.p.m. push-to-make switch (2 off)</td>
<td></td>
</tr>
<tr>
<td>S3 s.p.d.t. min. toggle switch</td>
<td></td>
</tr>
<tr>
<td>SK1 25-way Centronics connector, female, right-angled, p.c.b. mounting</td>
<td></td>
</tr>
<tr>
<td>X1 32/76MHz crystal</td>
<td></td>
</tr>
<tr>
<td>X2 2-line 16-character (per line) alphanumeric display</td>
<td></td>
</tr>
<tr>
<td>TB1 4-way pin-header strip</td>
<td></td>
</tr>
<tr>
<td>TB2 4-way + 6-way pin-header strips</td>
<td></td>
</tr>
</tbody>
</table>

Printed circuit board, available from the EPE PCB Service, code 30B; case to suit (see text); 8-pin d.i.l. socket; 40-pin d.i.l. socket; p.c.b. supports (4 off); connectors to suit TB1 and TB2; connecting wire; solder, etc.

PRINTING CONNECTIONS

Refer now to Fig.3 and to Table 1. Fig.3 shows the connections at the printer (36 pins) and at what is normally the computer end of the setup (25 pins). Table 1 shows the pin assignments for the standard 36-way Centronics parallel interface connector, as used at the printer end.

The demo p.c.b. uses a 25-pin connector so that a standard Centronics printer cable can be used between the unit and the printer. If you have a printer you should already have this cable!

PROGRAMMING

The PIC can be programmed on-board via the TB1 connector pins, which are in the author’s standard order. PIC Toolkit Mk2 is a suitable unit for programming the software into the PIC. Diode D1 and resistor R1 prevent distress to the circuit’s 5V supply when programming is in progress.

The circuit may be used with a d.c. power supply of between about 7V and 15V. IC3 regulates the input voltage down to the 5V supply required by the circuit. This 5V voltage level must not be significantly exceeded for fear of damaging the PIC, i.e., and printer. A deviation of about 10 per cent (but no more) is permissible.

CONNECTIONS FUNCTIONS

In the earlier discussions, we examined the functions for the DATA, BUSY and ACKNLG lines. It seems unlikely that the PAPER, ERROR, AUTO FEED and INIT functions listed in Table 1 will find use in a PIC-controlled printer interface.

For the first two functions, the reading of the BUSY line provides the answer to whether or not the PIC is to send more data. Line Feed and Initialisation (INIT) functions can be performed through software. Functions SLCT and SLCT IN are probably only of use when several printers are chained. See the Epson manual for details of the functions not discussed.
Although some functions are not implemented through the demo software, the p.c.b. provides connections between the PIC and all function lines except SLCT IN.

Data lines are connected to PIC PORTD, and Control lines to PORTC. If you are designing a board for another circuit of your own invention, you could probably omit the PIC connections for the SLCT, PAPER, ACKNLG, AUTO FEED, ERROR and INIT functions. This would allow you to control the printer via only 10 lines, DATA x 8, STROBE and BUSY.

Consequently, if the ADC and l.c.d. readout facilities are not needed, you could actually control the printer from a PIC16F84. This would leave three pins for other purposes. The use of the DATA lines could also be multiplexed between the printer and other external circuits.

It would seem desirable to connect a resistor between the printer’s unused inputs and 0V or +5V (see Table 1 for which power level is appropriate for which pin). A suggested resistor value is 3k3 – as used by Epson on a couple of lines as shown in Table 1).

As seen in the photographs, the prototype was not mounted in a case and the choice of style for this is left to you.

Do not insert IC1 and IC2 or connect the l.c.d. until you have ascertained that the power supply is being correctly regulated down to +5V by IC3.

CONSTRUCTION

The printed circuit board component and track layouts for this interface are shown in Fig.4. The board is available from the EPE PCB Service, code 308.

First insert and solder the few wire links, then the two d.i.l. i.c. sockets, followed by the remaining small electronic components. Conclude with connectors TB1, TB2 and SK1, and then wire up the switches and power supply.

As seen in the photographs, the prototype was not mounted in a case and the choice of style for this is left to you.

Do not insert IC1 and IC2 or connect the l.c.d. until you have ascertained that the power supply is being correctly regulated down to +5V by IC3.

The PIC microcontroller can be programmed on-board via the TB1 connector, a function which can be performed by Toolkit Mk2. The software is available as stated later.

If you intend to use the design simply as a data logger with printer output, you may prefer to use a pre-programmed PIC – they are available as stated in Shoptalk.

Before running the unit, first switch S3 to the Stop position. On power-up the programmed PIC will cause a opening message to be displayed on the l.c.d. screen:

SET RATE PRD= 2 on line 1, and WAITING START on line 2.

The value of PRD= 2 shows that the sampling rate is set for taking samples once every two seconds. The period may be increased, up to once every 255 seconds, by pressing and holding down pushbutton switch S1. The value increments at a rate of twice per second. After 255 has been reached, the sample rate rolls over to 1 (second per sample), omitting the zero step.

Switch S2 allows the rate to be decremented, rolling over to 255 following 1. The sampling rate can only be set prior to switching on S3.

OVER-ACTIVE

It may, incidentally, be found that some printers seem a bit over-active if a
sampling rate of once per second is chosen, hence the default value of 2. This was the case for the author’s inkjet colour printer, although once per second did not make his dot-matrix printers seem over-active.

When S3 is switched on, the message on the screen changes to just show the period (PRD) value on line 1, whilst line 2 changes to state WAITING PRINTER. If the printer is not ready (not switched on, cable omitted, paper out, etc), the screen will remain in this mode until the printer is ready.

The printer’s status is first determined by reading its ACK line, with the statements:

```
WAITACK: BTFS PORTC,ACK
    GOTO WAITACK
```

This causes the program to wait until the ACK line goes high, which is its normal status when the printer is switched on.

Then, once ACK is high, and as part of the sending data process, the BUSY line is read to determine if it is low, as discussed earlier.

CIRCUITTING-UP

When the printer is ready the l.c.d. top line will display an hour-minutes-seconds clock counter, counting upwards from zero. The clock counts in seconds intervals, irrespective of the sampling rate selected. Note that it will stop counting if the printer detects an error condition (paper out, etc). It will not detect if the printer is switched off since BUSY will automatically go low in this instance, or if the cable is disconnected.

Line two shows the value of the last sample that the PIC has taken via its analogue input, RA0, ranging between 0 (0V) and 255 (+5V approximately – actually the line voltage value at which the PIC is being powered).

If no signal input is applied to the op.amp, IC1a, the PIC’s RA0 input will see a voltage midway between the two power voltages, about 2.5V, resulting in a DATA line value of around 127.

At the right of line 2, a counter keeps track of the number of samples taken since printing commenced, e.g. TL= 9. TL can reach 9999, after which it rolls over to zero and starts counting upwards again.

When the printer starts running following S3 being switched on, a text line is printed first, confirming the sampling rate, e.g.:

SAMPLING SET FOR ONCE PER 1 SECOND

<table>
<thead>
<tr>
<th>Time</th>
<th>0</th>
<th>1/4</th>
<th>1/2</th>
<th>3/4</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00:00</td>
<td>00:00:10</td>
<td>00:00:18</td>
<td>00:00:26</td>
<td>00:00:34</td>
<td>00:00:42</td>
</tr>
<tr>
<td>00:01:00</td>
<td>00:01:08</td>
<td>00:01:16</td>
<td>00:01:24</td>
<td>00:01:32</td>
<td>00:01:40</td>
</tr>
<tr>
<td>00:01:30</td>
<td>00:01:38</td>
<td>00:01:46</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TERMINATING

Sampling and printing may be terminated at any time by switching off S3. The printer responds by printing the finishing time (elapsed time since printing began). Then follow two line feeds, and the printer stops. The l.c.d. screen reverts to showing WAITING START (etc) when S3 is switched off.

DATA REVERSAL

The software uses variations on the control routines discussed earlier in the article. There are two aspects, though, that deserve further discussion. First, a “reversal” of the data sent to the printer:

The printed circuit board has been configured so that connections to the 25-pin socket are made in the most convenient order, without lots of cross-over links. This has meant that the pinouts from PORTD are in the opposite order in relation to the DATA pins of connector SK1.

Consequently, on entry to the PRINTIT routine a data byte reversal routine is first called (REVERSE – see Listing 8) which rearranges the binary logic to the correct bit order. For instance, binary 10101010 becomes 01010101.

RASTERFAREAN

The second aspect concerns the way in which adjacent sampling values are plotted:

LISTING 8. Reverse order of bits to suit p.c.b. layout

| REVERSE: | MOVWF STORE1 : store data val brought in on W
| MOVLW 8 : set loop val for 8 bits to reverse
| MOVWF LOOPA |
| REV1: | RRF STORE1,F : rotate right STORE1 into Carry
| DECFSZ LOOPA,F : decrement loop until all 8 bits done
| GOTO REV1 |
| MOVF STORE2,W : call STORE2 into W as reversed order val
| RETURN |

L.C.D. screen prior to printing data to printer.

Typical l.c.d. screen during printing.
Each sample value is compared against the previous one. From this the start and end points for the printing of the graph dots for one “raster” line are determined.

From a zero position (beyond the “time stamp”), the printer is fed with a series of zero values, until the dots-start position is reached. Then the dots sequence is commenced, in which just one printer head pin is activated. After this sequence, further zero values are fed to the printer, until a total of 256 printing commands have been issued for that line.

During the 256 commands sequence, the software automatically activates four printer pins at the graph line positions, creating the dotted graph reference lines.

PIN HEAD CYCLE

When writing the software, the author recognised two ways in which adjacent printing lines could be kept close, either by shifting the line feed by a very small value, or by changing the pin number activated between adjacent lines. It is this latter technique that is employed.

Track is kept of the number lines being printed. Pins are activated in relation to this count value, on a cycle of eight (effective-ly, the software establishes the “modulo-9” value of the count).

On the modulo value equalling 0, only pin 7 (value = 128, see earlier) is the one activated for that line. On the next line, pin 6 becomes the only active one (≡ 48). And so on until pin 0 (≡ 1), after which the next pin number will again become 7.

Each time the modulo value equates zero, a line feed command is issued, which moves the paper forward by an amount that keeps all line groups equally spaced.

Immediately following this, the next elapsed time value is printed.

It is worth noting that the author’s inkjet printer appears to shift the print head across the paper three times for each sample. This may be a situation for which a prohibitive command might be available, but the author has not investigated it. It is of no significance to the printed results.

CONCLUSION

So there we have it – how a PIC can be interfaced to an Epson-compatible dot-matrix printer, and how you can use this facility as a hard-copy, time stamped, data logger and plotter. Thank you Andy Daw for making the suggestion, the author enjoyed implementing it!

It is hoped that you now feel encouraged to experiment with the many other printer commands described in Epson’s reference manual.

RESOURCES

The software for this project was written in TASM and is available as source code, HEX code and OBJ code on 3-5-inch floppy disk from the EPE Editorial Office (a nominal handling charge applies). It is also available for free download from the EPE ftp site. For more details of both methods, see Shoptalk elsewhere in this issue, or the EPE PCB Service page.

Epson’s web site, from where you can download the free Acrobat-based reference manual, is at www.epson.com. There are several files involved. The one that includes all Epson’s commands is the first one, EpsonPart1(1).pdf, and includes all the “C-” referenced pages mentioned during this article.

It is well worth downloading the other Epson manual files as well, since many other printer control aspects are covered in them, some of which relate to specific models of printer.

All commands discussed earlier are believed to be available on all Epson dot-matrix models.

Incidentally, the software for this PIC to Printer Interface was developed on the author’s new Toolkit TK3 For Windows (Toolkit MR-3), which will be published in the October 2001 edition. TK3 has full stand-alone operation and has many functions available, including Internet and MPASM access.

DISTANCE LEARNING SHORT COURSES with BTEC CERTIFICATION

Analogue and Digital Electronics, Fibre Optics, Fault Diagnosis, Mechanics, Mathematics and Programmable Logic Controllers

- Suitable for beginners and those wishing to update their knowledge and practical skills
- Courses are very practical and delivered as self contained kits
- No travelling or college attendance
- Learning is at your own pace
- Each course can stand alone or be part of a modular study programme
- Tutor supported and BTEC certified

For information contact:
NCT Ltd., P.O. Box 11
Wendover, Bucks HP22 8XG
Phone: 01296 624270; Fax 01296 625299
Web: http://www.nct ltd.uk

ELECTRONICS SURPLUS CLEARANCE SALE

SCOOP PURCHASE:

FLUKE HAND HELD DIGITAL MULTIMETER, MODEL 8024B

Cancelled export order 750V AC/DC 2 amp AC/DC Resistance 20Megohm plus Siemens range. Also measures temperature –20°C to +1265°C. Temp. probe not included. Calibrated for K-type thermocouple. Peak hold facility. Supplied brand new and boxed but with original purchasing organisation’s small identifying mark on case. Test leads and handbook included.

Offered at a fraction of original price: £47.50, p&p £9.50

A DIGITAL HANDHELD LCR METER.

Measuring inductance, capacitance and resistance. 3.5 digit, 1999 count, LCD display, inductance range 2MH to 20H, capacitance range 2000pF to 200F, resistance range 2000Ω to 2 megohms. Brand new and boxed with test alligator clip leads and user manual. £44 including postage.

MAGNETIC CREDIT CARD READER.

Keyboard and laptop display system. Point of sale unit. Cost over £150, our price £44

A DIGITAL HANDHELD LCR METER.

Measuring inductance, capacitance and resistance. 3.5 digit, 1999 count, LCD display, inductance range 2MH to 20H, capacitance range 2000pF to 200F, resistance range 2000Ω to 2 megohms. Brand new and boxed with test alligator clip leads and user manual. £44 including postage.

THE ELECTRONICS SURPLUS TRADER –

This is a listing of new first class components, books and electronic items at below trade prices. Includes manufacturers’ surplus and overstocks. Also obsolete semiconductors, valves and high voltage caps and components. Send two first class stamps for large catalogue.

BOOKS:

ELECTRIC UFOs by Albert Budden. A chilling exposure of electromagnetic pollution and its effects on the environment and health including fireballs, UFOs and abnormal states. Many case studies and field investigations and experiments. 286 pages, photos. £7.50, p&p £2.50

THE GUINNESS BOOK OF ESPIONAGE

Includes photos and details of spy sets. Enigma equipment and clandestine devices. 256 pages. £12.50, p&p £3.75

THE ELECTRONICS SURPLUS TRADER –

This is a listing of new first class components, books and electronic items at below trade prices. Includes manufacturers’ surplus and overstocks. Also obsolete semiconductors, valves and high voltage caps and components. Send two first class stamps for large catalogue.

DISTANCE LEARNING SHORT COURSES with BTEC CERTIFICATION

Analogue and Digital Electronics, Fibre Optics, Fault Diagnosis, Mechanics, Mathematics and Programmable Logic Controllers

- Suitable for beginners and those wishing to update their knowledge and practical skills
- Courses are very practical and delivered as self contained kits
- No travelling or college attendance
- Learning is at your own pace
- Each course can stand alone or be part of a modular study programme
- Tutor supported and BTEC certified

For information contact:
NCT Ltd., P.O. Box 11
Wendover, Bucks HP22 8XG
Phone: 01296 624270; Fax 01296 625299
Web: http://www.nct ltd.uk
Perpetual Constructional Projects

PERPETUAL PROJECTS

THOMAS SCARBOROUGH

- Solar-Powered – No batteries
- Uses a common – Uniboard – p.c.b.
- Will run indefinitely, without attention
- Ideal for the novice.

A series on “solar powered” projects that will run unattended for months – in fact, for years or even centuries!

The four-part series includes eight “perpetual” projects, all of which will continue to run indefinitely without attention. All are based on one small p.c.b. called a “Uniboard”. Each project is powered around the clock – perpetually – by a one Farad “Goldcap” capacitor (memory backup) and a small solar cell (no battery). Each is designed for continuous operation with a maximum of thirty minutes sunlight a day – in fact just five minutes sunlight with the specified 300mW solar panel.

In Conception

The concept in itself is a simple one, however it required considerable experimentation, and a little ingenuity, to obtain around-the-clock operation for every project in the series. A number of “micropower” i.c.s were at first tested for suitability, but virtually all fell short – some consuming 60µA, some 100µA, some even 500µA when in use. This was not nearly good enough to see a “Goldcap” through a long night.

Finally, a veteran among i.c.s delivered a nice surprise – the 4093 quad 2-input NAND Schmitt trigger i.c. showed that it was capable (for instance) of perpetually flashing an l.e.d. (light-emitting diode) with just 15µA power consumption when the Motorola version (MC14093BCP) was used.

To put this in perspective, the typical power requirements of one of these Perpetual Projects is more than one thousand times less than the requirements of an ordinary l.e.d., and thirty times less than those of the “efficient” LM3909 l.e.d. flasher i.c.

Projects at a glance:

☆ L.E.D. Flasher ☆ Rain Alarm
☆ Loop Burglar Alarm ☆ Gate Sentinel
☆ Double Door-Buzzer ☆ Bird Scarer
☆ Door-Light ☆ Register

Besides the projects listed here, the series includes nine suggestions for modifications. These include a Single Door-Buzzer, a Broken Beam Beeper, a Power Failure Alarm, a Soil Moisture Monitor, a Thermistor, a Timer, a Liquid-Level Alarm, a Wake-Up Alarm, and a Break Contact Alarm.

Design Considerations

The “all-purpose” 4093 quad 2-input NAND Schmitt trigger i.c. has a great many potential applications. It may even be used as the heart of radio receivers and metal detectors. However, only projects thought to be practical perpetual projects have been selected.
A decision was made early on to limit the designs to a single active component, namely the 4093 CMOS i.c. (regulator components excepted). No additional i.c.s or transistors are employed. Thus – it might be said – we have here a series of pocketable practical perpetual projects!

Some circuits which seemed to be candidates for the series at first needed to be omitted from the main line-up because they were not strictly “perpetual”. Due to higher current consumption, they would have shut down some time before sunrise. Nonetheless, some of them would have been very useful, and are therefore included in the series under “Suggestions”.

In particular, those circuits which teetered too long on the edge of triggering (that is, which involved slow-moving analogue signals, such as a thermistor or soil moisture monitor) did not meet the necessary power requirements. If gates are held at a level close to triggering, the 4093 i.c. will consume 60µA at 3V (some makes will consume up to 200µA), although this may be reduced a little with a simple trick.

Under normal circumstances, such power consumption would be negligible – however, power consumption must average 20µA or less to see one of these Perpetual Projects around the clock.

In particular, those circuits which teetered too long on the edge of triggering (that is, which involved slow-moving analogue signals, such as a thermistor or soil moisture monitor) did not meet the necessary power requirements. If gates are held at a level close to triggering, the 4093 i.c. will consume 60µA at 3V (some makes will consume up to 200µA), although this may be reduced a little with a simple trick.

Conservation
An important design consideration throughout the series is that, as far as possible, no oscillator should run “in the background” – that is, oscillate while a piezo disc or l.e.d. is disabled. It is possible, for instance, to silence a piezo sounder by switching off a buffer, while the oscillator behind it remains active.

In order to conserve power, each oscillator needs to be shut down when not in use. In some of the projects, such “background” oscillation (if it were permitted) would exhaust the “Goldcap” capacitor well before it could go around the clock.

But first we must turn our attention to the most distinctive aspects of this series – the solar-powered power supply and voltage regulator for all these projects.

It might be worth noting at this stage that the biggest outlay for the Perpetual Projects lies in the power supply and regulator components. Once these have been purchased, the cost of the projects which follow will be well below £10 each. It now only remains for you to choose the Perpetual Project that appeals to you and await its publication. Better still, to avoid missing that particular issue, why not place a regular order for EPE at your local Newsagent (or take out a Subscription) and experiment with all these forthcoming Solar-Powered projects?
PERPETUAL PROJECT – 1

SOLAR-POWERED POWER SUPPLY & VOLTAGE REGULATOR

THOMAS SCARBROUGH

Free power for your projects!

Before we undertake the construction of the first practical circuit of our Perpetual Projects for this series (next month) we must consider the power supply requirements and construct a suitable unit that will cater for all the various circuit designs. All the projects are built on a low-cost Uniboard (printed circuit board – one required for each project, unless you are expert at desoldering!), which also includes the Solar-Powered Power Supply and Voltage Regulator circuit described here.

The Solar-Powered supply section is only required once, unless you wish to build and keep all the projects as separate modules. Once the power supply and regulator components have been purchased, the cost of the other projects which follow is in the region of £5 each (excluding p.c.b.).

POWER SUPPLY

The full circuit diagram for the Solar-Powered Power Supply and Voltage Regulator is shown in Fig. 1. Capacitor C1 is charged by means of the solar cell X1, which provides 6V to 12V, and 10mA upwards – that is, a relatively small solar cell will provide adequate charge.

Note that 12V should be the maximum actual unloaded output of the solar cell in full sunlight – therefore one having a load voltage rating of 6V or 7.5V will most likely suit. A higher voltage solar panel could be employed in such a way that its conductance is automatically adjusted to keep a useful long-term service from a capacitor is “free-fall”, then levels out as it reaches a fraction of its starting-point. Therefore, the secret to obtaining any useful long-term service from a capacitor is to regulate its rapidly falling voltage. In this case, this is achieved with the help of bipolar transistor TR1 and f.e.t. TR2.

Field effect transistor (f.e.t.) TR2 is a voltage- (or field effect) controlled, and it is very necessary feature in this application. The control voltage is provided at the collector (c) of bipolar transistor TR1, which forms part of a variable potential divider, through preset VR1 and thermistors R3 and R4. As the voltage across C1 decreases, so the conductance of TR1 decreases, and the potential at TR1’s collector rises. This in turn increases the conductance of TR2.

During the testing of the Perpetual L.E.D. Flasher project (next month), the voltage across capacitor C2 held steady for 20 hours before beginning to slip, and had fallen only 5 per cent after 26 hours. A bipolar transistor with high or medium gain does not serve well in the position of TR1, and a very low gain transistor, the TIPP31C, is required for this purpose since its conductance is

Constant voltage across capacitor C2 as the voltage across C1 falls. A f.e.t. was chosen for this purpose since its conductance is

Power Supply, Voltage Regulator

A capacitor behaves very differently to a battery, in that a battery’s voltage goes into gradual decline as it discharges, while a capacitor’s voltage generally goes into a “free-fall”, then levels out as it reaches a fraction of its starting-point.

Therefore, the secret to obtaining any useful long-term service from a capacitor is to regulate its rapidly falling voltage. In this case, this is achieved with the help of bipolar transistor TR1 and f.e.t. TR2.

Diode D2 prevents reverse leakage of current, and its inclusion (with solar cell disconnected) extends the charge holding time of C1 more than ten-fold. Diode D2 drops about 0.7V, therefore the highest voltage that will be found across capacitor C1 is 4.9V. This ensures far better regulation than if C1 were charged to capacity – in fact, a fully charged C1 does not confer much more life on the circuit. Note that capacitor C1 should never be directly attached to the solar cell, since its maximum rating is 5.5V. It is easily damaged, as well as expensive, and needs to be treated with care.

Capacitor C1 is quickly charged in full sunlight. With a small 6V 10mA solar cell receiving full sunlight, it will be fully charged within 30 minutes. A 12V 100mA solar cell will charge C1 in less than a minute.

Capacitor C1 cannot be over-charged, nor can the solar cell overload any of the projects, so long as its maximum output is actual 6V to 12V.

VOLTAGE REGULATION

Fig. 1. Complete circuit diagram for the Perpetual Projects Solar-Powered Power Supply and Voltage Regulator.
Everyday Practical Electronics, July 2001

Fig.2. Uniboard Power Supply and Voltage Regulator component layout and full-size copper foil master. Not all the holes/pads are used.

A 4·5V battery supply (three AA batteries in series) is connected in place of C1. Be sure to observe the correct polarity.

Most of the Uniboard projects will continue for the shelf life of the batteries (five years in the case of quality alkaline batteries). However, this will inevitably involve the bother (too much for the author!) of replacing batteries every so many years – not to mention that your descendants will need to replace them, too!

The regulator circuit is built up on a small, single-sided, printed circuit board (p.c.b.) and the topside component layout, wiring and details of the underside full-size copper foil master are shown in Fig.2. This board is available from the EPE PCB Service, code 305. (If you are going to make your own p.c.b., it is so designed that it may be drilled using a piece of 0·1in. matrix stripboard as a template.)

IN COMPARISON

An interesting (but very approximate) comparison is made in Table 1 between C1 (a 1 farad memory retention capacitor) and an AA nickel-cadmium rechargeable battery. This also gives a rule of thumb for determining the length of service of any particular project in this series.

The anticipated hours of service of any given Perpetual Project are calculated by dividing capacity (mAh) by actual current consumption (mA).

CONSTRUCTION

Construction of the Solar-Powered Power Supply and Voltage Regulator, which lies at the heart of the series, is fairly straightforward and once the regulator has been constructed, it is over to you to choose which specific project you would like to add to your Uniboard.

Note that all the projects may also be run off batteries. In this case, the solar cell and “GoldCap” capacitor (C1) may be omitted during construction, as well as R1, D1, and D2. A 4·5V battery supply (three AA batteries in series) is connected in place of C1. Be sure to observe the correct polarity.

Most of the Uniboard projects will continue for the shelf life of the batteries (five years in the case of quality alkaline batteries). However, this will inevitably involve the bother (too much for the author!) of replacing batteries every so many years – not to mention that your descendants will need to replace them, too!

The regulator circuit is built up on a small, single-sided, printed circuit board (p.c.b.) and the topside component layout, wiring and details of the underside full-size copper foil master are shown in Fig.2. This board is available from the EPE PCB Service, code 305. (If you are going to make your own p.c.b., it is so designed that it may be drilled using a piece of 0·1in. matrix stripboard as a template.)

Table 1: Comparison between an AA type NiCad and the 1 farad (“GoldCap”) capacitor, with f.e.t. regulator

<table>
<thead>
<tr>
<th>Component</th>
<th>Nominal Voltage</th>
<th>Nominal Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA nickel-cadmium (rechargeable)</td>
<td>1·2V</td>
<td>500mAh</td>
</tr>
<tr>
<td>Average Life: 1000 cycles</td>
<td>Average Charge Time: 14 hours</td>
<td>Shelf Life: 1 year</td>
</tr>
<tr>
<td>One farad capacitor with regulator</td>
<td>3V</td>
<td>0·5mAh</td>
</tr>
<tr>
<td>Average Life: “Infinite” cycles</td>
<td>Average Charge Time: 5 minutes</td>
<td>Shelf Life: 1 day</td>
</tr>
</tbody>
</table>

All the components should fit into place without too much difficulty. Start construction by soldering the solder pins and link wire in position, then the resistors, thermistors, and preset VR1, continuing with the diodes, capacitors and transistors. Also insert and solder the dual-in-line socket if you wish to build any of the projects on the same p.c.b. as the Power Supply – they all use the same 14-pin i.c. The leads of the solar cell are taken to the solder pins as shown in Fig.2.

If a single high-value resistor for R2 is unobtainable, you may insert 10 megarhms and 4·7 megarhms resistors in series to make up the required value. Also, if 100 kilohms at 25°C n.t.c. thermistors are unobtainable,
use other values in series to make up about 200 kilohms in all.

Be sure to observe the correct polarity of the solar cell and the two capacitors, and the correct orientation of diodes D1, D2, transistors TR1 and TR2. The cathode (k) ends of D1 and D2 are banded.

SETTING UP

Before we commence the calibration, you should give the p.c.b. one final inspection for any wiring faults, such as “bridged” solder tracks, or wrongly positioned components (particularly as not all the holes/pads are used with each project). If all appears to be correct, you can now leave the solar cell (but not the p.c.b., which should be protected from wide temperature swings) in direct sunlight to charge up capacitor C1.

Give the circuit half an hour in full sunlight to be certain that C1 has fully charged (five minutes if the specified solar panel is used). Then temporarily connect a 180 kilohms resistor (a load resistor) across capacitor C2, and measure the voltage across it. Solder pins are provided for this purpose at both sides of C2.

Turn preset potentiometer VR1 across its full range – this should give you readings from about 2.5V to 4.7V (this may vary according to component tolerances). In the various Uniboard projects, a supply of either 3V or 3.6V will be required. If the voltages measured do not fall within these parameters, experiment with the value of resistor R2 – a higher value for higher voltages, and vice versa.

Note that capacitor C2 causes a delay to any adjustments that are made to the voltage – the circuit does not respond to adjustment of preset VR1 immediately. This means that you will need to allow half a minute or so for the voltage to settle at any particular setting of VR1.

LONG TERM

Since there is plenty of time until next month, why not test the long-term stability of the power supply in the meantime?

Temporarily connect the 180 kilohms load resistor across capacitor C2. Adjust the voltage across C2 to 3V. The current passing through the resistor at 3V will be about 17µA (V/R), which is a little more than the required current for the Perpetual L.E.D. Flasher (next month).

All being well, this voltage should hold steady for 18 hours and more before beginning to slip – if not rising slightly in between.

GOING ACTIVE

Having built and “tested” the Solar-Powered Power Supply and Voltage Regulator, we can now proceed with a general introduction to the Perpetual Projects’ single most active component (regulator components excepted), which is IC1 – a 4093 quad 2-input NAND Schmitt trigger.

There are various manufacturers of the 4093 i.c., and the make used in this series is the Motorola MC14093BPC. This does make a difference – the make significantly affects both the power consumption and characteristics of the 4093 i.c. For instance, the GD4093B i.c. roughly doubles the power consumption. Therefore, other 4093 i.c.s may be used as a stop-gap measure, but are likely to perform inadequately.

Each of IC1’s gates (of which there are four – see Fig.3) switches, or triggers, very decisively between high and low states (logic 1 and logic 0) at its output terminal. Such switching is crucial to these applications – ordinary NAND gates fail to function at all.

The four 2-input gates of IC1 employ, of course, NAND logic. To explain this in the simplest terms, if both the inputs of a NAND gate are taken high (to positive), the output is low (or negative). All other combinations of inputs give a high output.

Wires may be taken directly from inputs to the positive or negative rails – or they may be taken high or low through a resistor. This also means that potential dividers may be used at the inputs, which will be described in more detail as the series progresses.

Inputs should not be left “floating” (unconnected), otherwise an input may not know what to do, and is likely to behave erratically. By “tying inputs high”, a significant amount of power (as much as one third) is conserved in the projects which follow.

DELAYED ACTION

One more important aspect of IC1 is that the transition of an input from a low to a high state or vice versa may be delayed.

If, for instance, a capacitor (Cx – see Fig.4) is wired between the negative rail (0V) and an input B, and a resistor (Rx) is wired between Input B and the positive rail, a certain amount of time passes before the capacitor charges, and therefore the transition from a high to a low state is delayed at the output terminal.

Not only this, but as soon as the capacitor’s charge reaches two thirds of the supply voltage (assuming that Input A is high as well), the gate conducts, and the capacitor is discharged. This sequence begins again once the capacitor’s charge has dropped to one third of the supply voltage.

Armed with this knowledge, you should be able to understand (almost!) all the workings of the projects in this series and even develop further circuits of your own.

programming of the PIC16F877. As a result, the last several weeks has proved to be very interesting indeed, my Wife has become a Computer/Electronics Widow and I have built my own skeleton version of the TX software and successfully Programmed a PIC16F877 with TKTEST4.

Next step is to get hold of a Graphic LCD and continue with the Feb ’01 supplement.

I have renewed my subscription and look forward to further interesting projects, especially TX Mk3, to keep me going. EPE has saved me from boredom and for that I thank all your staff and wish them well for the future.

Nick Biggs, via the Net

Welcome back Nick. We wish you every success.

DOOR BELL SLAVE

Dear EPE,

I have a wireless chime with a range of 30 metres, which is three metres too short to reach my workshop from the front door. How can I use a second unit as a “slave-relay” to increase the range?

M. Guthrie, Loughrea, Co. Galway, Ireland

Well, anyone? (The colleague who suggested the 74LS139 column driver, presumably because of pressure of work, I dropped any of the fine constructional projects published because of pressure of work, I dropped the subscription last year, definitely a mistake on my part.)

Some five months ago, I was signed off from work so the medical profession could investigate my ongoing health problem. However, my prototypes haven’t blown the 74LS139 column driver, presumably because of a sink/ing feeling when I noticed the extra resistors R1 to R4 (which I haven’t used). How?”

I recently added a keypad interface to a 6502 simulation software that maps standard type microprocessors to PIC mnemonics. The web address is:

Alan Bradley, via the Net

Thank you for your interesting comments Alan. Yes, PIC V-Scope could run faster as you suggest, although it fulfills my original intentions for a really simple PIC-only unit. One day I might try the route you suggest, with enough encouragement from you all. Do you all want one?

Thanks for the useful Elektor info, too. (In case readers wonder about an acknowledgment the existence of other mags, we are quite happy to mention them when appropriate, in the belief that the market benefits by having several rival publications devoted to the same subject. We are the best, though!)
Your soldering tutorial seemed to explain that the soldering iron was primarily an indication of its resilience to heat loss when working on “larger jobs” or quickly working one joint after another. It confused me that lower powered irons can achieve the same temperature as the higher power irons.

My other question is regarding Weller soldering stations. The WSM50 has a 50W temperature (soldering stations have a variable control), but the newer higher wattage has more power (heat) in reserve. This only becomes apparent when soldering larger joints, or when performing many joints in rapid succession. Here’s why.

The lower-wattage iron will struggle to keep heated up, with the result that heat can be drawn out of it faster than it can be replaced by the element. So the joints will not be formed correctly. At a minimum, the user must wait for the iron to regain its operating temperature in between making joints.

If you tried to solder a copper water heating cylinder with such an iron, the copper tank would draw out all the heat from the element, and the tip would never reach the melting point of solder. The tip would be stone cold.

A higher wattage (25W-40W) is able to keep heating the tip as fast as heat is replaced. Both are usually available. A 25W iron is fine for general hobby use; a 40W iron is better and can be used for general collaborative soldering. A 50W iron is called a “thermostatic” for closer temperature control and is a better bet.

Regarding your other question, a 50 watt iron should be more than enough, with ample in reserve for almost all routine soldering of discrete and integrated components. A temperature controlled iron, the lower-wattage iron, would be ideal if you can afford to spoil yourself then is what I would buy. But it may be overkill, and you could instead practice your skill on a cheaper iron before deciding to upgrade.

A fixed temp-controlled iron will be fine though, and Weller have plenty of spares, tips, handles, etc. and are extremely popular. You won’t go wrong with a Weller. Skilled engineers I know use a 40W Weller and are very happy. But in the UK I’d expect to pay say £40 (US$ 50) for a good iron.

PIC PROGRAM EDITOR

Dear EPE,

I have just built the board for your PIC Tutorial (Mar-May ‘98) and have my first i.e.d.s flashing. What a thrill! Having found a Windows editor called FPE by Allen Phillips that I prefer over the Microsoft one, I managed to get your program into it and used it.

I open FPE, edit or write a program and then launch your programmer from there, continually hopping between the two, but having to “re-max” each time. I read with interest that you will be making a Windows version. Maybe you can have your new programmer running from an editor designed specifically with your projects in mind.

You are the leaders in this field and I have decided, after following your articles from way back when, that you are now the electronics guru, surpassing even Bob Grossblatt of Radio Emelekti.

Mike MacLeod, Mossel Bay, South Africa, via the Net

Flattery is always welcome! In fact, Mike, Toolkit for Windows (TK3) provides access to any text editor of the user’s choice. We are aiming at publishing in the October ‘01 issue.

CLOCKS

Dear EPE,

Referring to Chris Betts’ letter (Synchronous Motors, Rent the VME ‘01), some time ago I solved a similar problem by locking a 300Hz oscillator to the 50Hz UK mains supply. I then locked a 60Hz oscillator to this 300Hz source and fed the result through a simple step-up transformer driven by a switching transistor. A second small transformer stepped down the 50Hz mains and a half-wave rectifier provided the d.c. power required. No crystals or stabilised supplies were needed, and the solution was cheap!

Les Williams, Stourport on Severn, Worcs

Interesting, thank you Les.

REVAMPS IDEAS

Dear EPE,

It is noticeable that old ideas get revamped every so often, mostly disguised by the use of a PIC or some other processor type device. I suppose there are only so many circuits to go around.

I have a large collection of older magazines, if I find a good circuit that can’t be built as originally intended would it be possible to send in the idea for an updated article?

There are some ideas that are timeless in concept but require reworking to achieve a practical design – that is, finding updated devices or a new way to use old ideas.

Ian Johnson, Kidderminster, Worcs

Yes, Ian, there are some basic concepts that deserve updating from time to time for the sake of those who have newly entered electronics or when more advanced techniques allow them to be implemented more easily.

If any reader has an idea which he would like to recommend as a possible EPE article we will be pleased to consider it. Whilst as a magazine we do not actually design circuits, we have many enterprising contributors who delight in plying their designing/authoring skills and who could well be interested to follow up suggestions.

CHRIS BETTS

I have just built the board for your PIC Tutorial (Mar-May ‘98) and have my first i.e.d.s flashing. What a thrill! Having found a Windows editor called FPE by Allen Phillips that I prefer over the Microsoft one, I managed to get your program into it and used it.

I open FPE, edit or write a program and then launch your programmer from there, continually hopping between the two, but having to “re-max” each time. I read with interest that you will be making a Windows version. Maybe you can have your new programmer running from an editor designed specifically with your projects in mind.

You are the leaders in this field and I have decided, after following your articles from way back when, that you are now the electronics guru, surpassing even Bob Grossblatt of Radio Emelekti.

Mike MacLeod, Mossel Bay, South Africa, via the Net

Flattery is always welcome! In fact, Mike, Toolkit for Windows (TK3) provides access to any text editor of the user’s choice. We are aiming at publishing in the October ‘01 issue.

CLOCKS

Dear EPE,

Referring to Chris Betts’ letter (Synchronous Motors, Rent the VME ‘01), some time ago I solved a similar problem by locking a 300Hz oscillator to the 50Hz UK mains supply. I then locked a 60Hz oscillator to this 300Hz source and fed the result through a simple step-up transformer driven by a switching transistor. A second small transformer stepped down the 50Hz mains and a half-wave rectifier provided the d.c. power required. No crystals or stabilised supplies were needed, and the solution was cheap!

Les Williams, Stourport on Severn, Worcs

Interesting, thank you Les.

REVAMPS IDEAS

Dear EPE,

It is noticeable that old ideas get revamped every so often, mostly disguised by the use of a PIC or some other processor type device. I suppose there are only so many circuits to go around.

I have a large collection of older magazines, if I find a good circuit that can’t be built as originally intended would it be possible to send in the idea for an updated article?

There are some ideas that are timeless in concept but require reworking to achieve a practical design – that is, finding updated devices or a new way to use old ideas.

Ian Johnson, Kidderminster, Worcs

Yes, Ian, there are some basic concepts that deserve updating from time to time for the sake of those who have newly entered electronics or when more advanced techniques allow them to be implemented more easily.

If any reader has an idea which he would like to recommend as a possible EPE article we will be pleased to consider it. Whilst as a magazine we do not actually design circuits, we have many enterprising contributors who delight in plying their designing/authoring skills and who could well be interested to follow up suggestions.

PIC TRICKS

In response to my request in Readout May ‘01 for short snippets of interesting PIC codes, Harry Purves of Newcastle-upon-Tyne sent a lengthy e-mail about some definition tricks he finds useful. It is too long to quote in full but the summary is that he defines the Status flags and actions to be temporarily introduced without having to recompile to machine code. This makes tricky development much easier.

ELECTRONICS TUTORIALS

Dear EPE,

I have recently started buying EPE again regularly. I like Circuit Surgery, Ingeny Unlimited, Network, New Technology Update and of course series such as Teach-In and the special articles like the recent Schmitt Trigger. As a pensioner and a radio amateur, I think it’s a good source of info and interest from time to time. One thing that I have come across, amongst the many “home pages” that amateur radio and electronics hobbyists publish is the one produced by Ian Purdy (VK2TTP) from Australia. I think it’s a good source of info and practical examples for anybody new or old to radio and electronics.

You need to have a look at the extent of the site to gauge how much effort he puts in, and I think it’s worth a “plug” in EPE. I have absolute…
Regular Clinic

CIRCUIT SURGERY

ALAN WINSTANLEY and IAN BELL

Logic families and component voltage ratings come under scrutiny in our regular column answering readers’ problems.

Keep it in the logic family

Our thanks to reader Richard Black who E-mailed us about logic families:

After four years, I’ve suddenly found the time to take up electronics as a hobby again. On designing my first project I have discovered that I can’t remember the differences between 74LS, 74HC and 4000 series ICs.

For example, what’s the difference between the following: 7400 quad 2-input NAND, 74HC00 quad 2-input NAND, 74HCT00 quad 2-input NAND, 74LS00 quad 2-input NAND? Hope this isn’t a daft question!

This is not a daft question at all – there is a bewildering number of “logic families”, i.e. types of circuitry and technology for implementing discrete digital systems. The first commercially available logic family was resistor-transistor logic (RTL), introduced in 1962. This was followed by diode-transistor logic (DTL) and then the transistor-transistor logic (TTL) of the classic 7400 series. All these are based on the bipolar junction transistor (BJT), with TTL using a “multiple emitter” transistor at logic gate inputs.

New versions of TTL have continued to be introduced which provide higher operating speed and/or lower power dissipation, for example Advanced Schottky TTL (ASTTL). Another type of bipolar logic is Emitter-Coupled Logic (ECL) which provides a very high speed of operation.

Going MOS

In addition to these bipolar logic families, there are a number of MOSFET-based families. MOS logic may be implemented using n-type or p-type transistors alone (NMOS and PMOS), or both together (CMOS). NMOS provides higher performance than PMOS, but the advantages of CMOS mean that most MOS logic is now CMOS.

The classic CMOS logic family is the 4000 series, but just to confuse you even more, CMOS versions of the “TTL” 7400 series are also available (74HCT00 and others). MOS and bipolar transistors can be used together to exploit the advantages of both, in BiCMOS, the 74ABTC series for instance.

CMOS 4000 series are susceptible to damage by static electricity (so handle with care), can operate on +3V to +15V supplies, and may behave unpredictably if inputs are left unconnected. Compare this with the original 7400 and other TTL series, which must have a supply of +5V (±0.5V), are not static sensitive and have inputs that behave as logic 1 when left floating.

The 4000 series provides some multiplexers that can be used for switching and selecting analogue signals, but there are no analogue functions in the TTL 7400 series. Other series have different properties, for example 74LV500 is a CMOS series operating on a 3.3V supply. Not all functions are available in all families though.

When designing with discrete logic it is important to be aware of the general differences in the behaviour of the different logic types (CMOS, TTL, ECL etc) and the individual specifications of the logic family you are using, such as the allowable supply voltage range, power consumption, and typical propagation delays. The “maximum fanout”, logic levels and drive currents are also worth checking. Maximum fanout is the number of inputs that a single output will drive and still give good logic levels.

Variation in logic levels and drive capabilities mean that you cannot necessarily connect the output from a device from one logic family, directly to the input of one from a different family. Some conversion devices are available to help with this problem. The ability of logic outputs to drive non-logic loads such as LEDs also varies between families.

To find out these details consult a data-book for the series, or a datasheet for one of the devices. If you do a lot of logic design it is a good idea to get hold of the appropriate manufacturers’ data books or CD-ROMs as these contain sections covering the general characteristics of the devices in the series and design guidelines, as well as all the individual datasheets. This data is also available on-line from the semiconductor manufacturers’ web sites.

A summary of just some of the 74 series variations is shown in Table 1. Often you will be able to manage with LS or HCT families for most project or experimental work. These parts are widely available by mail order from all the usual vendors. I.M.B.

Capacitors, Resistors and Voltages

I need to get some parts for a schematic which requires a 9V battery. What voltage should the resistors and capacitors be? Some of the parts sold have a rating of 100V, I guess I can’t use those, or can I? Thanks, Ilya, via E-mail.

There’s no problem using components that have a higher voltage rating in your 9V circuit. The value is simply the maximum voltage rating they can sustain.
Electrolytic capacitors show their maximum working voltage rating which should not be exceeded. Applications.

One component which does require special consideration is the polarised electrolytic capacitor. For general electronic circuits, these are seldom seen with voltages higher than 63V or 100V d.c. It is perfectly safe to use a higher-voltage rated capacitor in a low voltage circuit; it is however very unwise to greatly exceed the capacitor’s voltage rating, and it can be dangerous to reverse-polarise an electrolytic by a substantial amount for any length of time.

Resistor Voltages

Turning to resistor values, again there would be no problem using any type in the reader’s 9V circuit. For example, the popular Philips CR25 is rated at 250V which would be just fine for the project.

Sometimes you do need to pay more attention to resistor voltages though – in fact, resistor voltage ratings can be an area of some confusion.

The Philips product catalogue specifies the voltage rating as “V_{lim}” (V_{max}) which we take to mean the maximum voltage across the resistor. However some sources mention “250V r.m.s.” for this value, which implies a peak voltage rating of more like 350V. There seem to be no hard and fast rules concerning whether maximum voltages are r.m.s. or peak, so this aspect would need confirming where necessary. Sometimes, several resistors are wired in series just to ensure that individual voltage ratings are not exceeded.

There are several interesting aspects of resistor ratings which are worth bearing in mind. Using the formula P = V^2/R, placing 500V across a 1M resistor means that the resistor would dissipate 0.25Watts. Whilst this is within the power rating of a typical small carbon film resistor, it would exceed typical voltage ratings. Manufacturers sometimes quote a voltage rating and a “maximum overload voltage” or even a parameter known as the “limiting element voltage” that you see in many data sheets.

For example, a data sheet for carbon resistors, downloaded from the web site of manufacturer Kamaya Ohm, defines the rated voltage as:

\[V_{\text{d.c. or a.c. r.m.s.}} = \frac{\sqrt{\text{Rated Dissipation}}}{\text{(Rated Resistance)}} \]

Here the rated voltage is clearly derived from the power rating using the formula P = V^2/R. But in case you think you can apply any voltage across the resistor provided the power dissipation is not exceeded, there are more factors to bear in mind!

On the Limits

Another resistor voltage rating sometimes quoted is the limiting element voltage which, Kamaya states, can only be applied to resistors where the resistance value is equal to or higher than the “critical resistance value”. I presume this latter term is the minimum resistor value permissible to ensure that the resistor’s power rating is not exceeded at any given voltage; so at 250V d.c. voltage drop, the “critical resistance value” of a 0.25W resistor must be 250 kilohms or more; at 9V d.c. it would be just 330 ohms.

Depending on the resistor type, the limiting element voltage is typically 200V to 350V d.c. or V a.c. r.m.s. All resistors have a maximum overload voltage, but if the limiting element voltage is quoted instead, you can take this to mean the maximum voltage allowed across the resistor provided its power rating is not exceeded.

Note that if the overload voltage is exceeded then the resistor’s insulation may break down, even if the resistor is dissipating hardly any power. A.R.W.

More on Multipliers

Gregory O’Kelly E-mailed in response to our article on voltage multipliers in January 2001:

In your January 2001 edition, on page 36, you show a voltage multiplier that allegedly increases the voltage by a multiple of six of peak input voltage. I find that it is more like 2 to the sixth power, with each electrode acting almost like a doubler. I have hooked this up to the output from a 555 timer in an attempt to get something like an ignition coil, but the current flow is extremely low.

I want to use the pulse to produce electrochemical pulses, and I need greater current flow. Could you tell me how to go about doing this? Do I increase the capacitance? Since I want merely to multiply the output voltage from the 555 timer by a multiple of 6 or 8, not 64, should I just use three capacitors of a high faradic rating?

We repeat the schematic to which Gregory refers in Fig. 1. Although the circuit is called a voltage “multiplier” the action is really additive. The capacitors add up the peak voltage of the a.c. waveform. One stage of the multiplier does not multiply the output from the previous stage – it just adds more multiples of the input voltage.

We mentioned in the original article that the Cockcroft-Walton voltage multiplier did not readily provide high current outputs, and that the voltage would tend to drop in response to sudden changes in loading. Unfortunately, the circuit is not good at high currents because it takes several a.c. cycles to recharge the multiplier, also the capacitors are effectively in series, reducing their effective capacitance. Thus the output ripple is high and the regulation is poor.

In order to get a higher current output you first need to make sure that the source (a.c. input) is capable of supplying the required current at the low voltage end of the multiplier. This may include some demanding current transients to charge the capacitors quickly and we strongly doubt that a simple 555 would be up to the job.

Using high quality, suitable components, and high quality construction will help reduce losses in the circuit. Larger capacitors will allow the circuit to provide larger transient energy to the output, but if this is to be sustained the source has to be up to the job of constantly “recharging” the multiplier. Furthermore, high current demand from the load may still result in large voltage drops and high ripple.

We’re not sure there is a simple solution for what you’re trying to achieve, namely a source of high voltage, high current pulses for (we guess) laboratory experiments. I.M.B.
In June 2001, we looked at how electronics played an important role at Jodrell Bank. That article was the first of an occasional series looking at how electronics is used to control various industrial and research applications.

During the industrial visits made for this series it has become clear that PLCs, or Programmable Logic Controllers to give them their full name, are currently the most popular devices used for electronic control. In this article we look at PLCs in general and describe a number of examples of their application in various industries.

RELAY LOGIC

Before we consider PLCs, it is interesting to look at two earlier but related techniques, the older of which is relay logic control. In many instances this gave way to hardwired logic integrated circuit control. Relay logic is still used by several companies for controlling processes that do not demand the more complex programming achievable with PLCs.

The simple example shown in Fig.1 (see also Panel 1) shows only the relay contacts, and omits the circuits associated with the various sensors which provide input to the system. It also omits any interfacing there might be to deliver sufficient electrical power to the solenoids or motor.

Although a well-designed and proven relay logic system can give years of trouble-free service, it has several drawbacks.

One of these is that relays take up a lot of board space and even a relatively simple process such as filling a packet with cheese requires many relays. Partly compensating for this is the advantage that, given the schematic, it is easy to understand how it works.

A third point about relay logic is that it is hard-wired. This makes it easy for an engineer to test its action with a multimeter and to service it and make any adjustments that may be necessary. But it takes appreciable time to design, assemble and wire up the board. Once built, it may be very inconvenient and costly to alter it to correct errors in design or to modify or extend its action. Very often the easiest solution is to scrap the entire board and start again.

LOGIC GATES

Hardwired logic control makes use of the large range of logic i.c.s of the TTL, CMOS and other families. The function of Fig.1 can be performed by logic gate i.c.s,
Everyday Practical Electronics, July 2001

The inputs and outputs (I/O) of a PLC are much more numerous than those of an ordinary desktop computer. A PLC does not necessarily have a keyboard, a disk drive or a monitor but it may have several hundred inputs and outputs. In the PLC world, I/O is of supreme importance. The I/O is in the lower section of the photograph below and the leads connecting this to the control unit can be seen. Since the system does not usually have a keyboard or monitor, it is normally programmed by attaching a special programmer to it. This is needed only when setting up the system or occasionally when making changes to its operating routines.

PLC PROGRAMMING

These facts are the main ones of interest to an engineer designing and building a PLC system. For the rest, the system is regarded as a “black box”.

PLC SYSTEMS

The main parts of a PLC system are illustrated in Fig. 3 and, as an example, the photograph below shows the contents of a PLC cabinet that controls one of the packaging lines at Glanbia Foods Ltd.

At the centre of the system is a controller unit. This is where all the logical operations take place and where programs and data are stored. The controller is the large white box at top left. To its right is another smaller box, which is an extension unit to allow more inputs and outputs to be connected.

Although the controller is based on a CPU, the manufacturers play down its importance. In the world of PLCs there seems to be no equivalent of the “Intel Inside” sticker found on so many PCs.

Looking through the literature and data sheets one rarely comes across any mention of what kind of IC is doing all the processing. Inside” sticker found on so many PCs. It seems to be no equivalent of the “Intel Inside” sticker found on so many PCs. This brings us to PLCs, which are intended to provide a wide range of control functions based on (though not restricted to) the principles of relay logic.

A simplified control system for filling packets with grated cheese is shown in Fig. 1. The cheese is supplied by a hopper that can be opened or closed by solenoids that operate in opposite directions. A sensor (perhaps optical) detects when a packet is in position to receive the cheese. A signal from the sensor energises the coil of relay A if a packet is in position. The packet is on a platform (a segment of a conveyor belt) supported by a load cell, which measures the weight of the packet and the cheese, if any, it contains.

A signal from the load cell energises relay B if the weight is at its maximum value (pack full). Relay B has two contacts, the upper one being closed when the packet is not full. So, a solenoid opens the hopper if the packet is in position and the packet is NOT full.

The lower part of the circuit controls what happens when the packet becomes full. Relay B is energised, turning off the “open” solenoid and turning on the “close” solenoid. This stops the flow of cheese into the packet. The change in relay B also starts the motor that moves the conveyor belt to take away the full packet and replace it with an empty one.

The circuit is a gross over-simplification of what is usually needed to control such an operation. There would normally be sensors such as microswitches to confirm that the hopper is actually open or closed. Input from these sensors would be used to activate additional relays to be wired in series with relays A and B.

There would be sensors to confirm that the packet had actually been taken away. There would also be a delay between closing the hopper and moving the packet. A relay with a non-ferrous slug on its core could be used to produce such a delay.

Some manufacturers produce a special purpose programming computer, similar to a PC, but often having a keyboard with keys dedicated to keying in PLC programs. Other systems use a regular desktop or laptop PC running specialised programming software.

A PLC system usually has its own power supply, separate from the supply to the sensors and actuators of the system. This prevents electrical noise from passing into and disrupting the action of the processor. Most PLC units operate on 24 V d.c.

PLC units are manufactured by a number of specialist companies who produce the controllers, compatible I/O units, PSUs and other units with a wide range of specifications so that a designer can pick out just that combination of units which best suits the requirements of the plant.

It is also a feature of PLC systems that the individual I/O units are relatively inexpensive so that a few additional ones can be included in the system when it is first put together. This allows for subsequent expansion to cope with initial design faults, afterthoughts, process modifications and expansion. In this way PLCs are superior to hard-wired relay and logic systems.

The advantages of PLCs have become so widely appreciated that a number of manufacturers are now producing PLC systems suited for small-scale control such as thermostat and door opening systems. It is even suggested that the model railway enthusiast could find many ways of using these small-scale PLCs.

INPUT/OUTPUT OPTIONS

An I/O device usually consists of a rack-mounted circuit card bearing a number of identical interface circuits. Each card has its address in the memory map of the controller, and on that card there are usually several (typically eight) individually addressable I/O circuits.
In Fig.4 is shown one circuit (or channel) on a typical d.c. input card. This is intended to receive a d.c. signal (usually a logic high or low) from the plant and to send an identical signal on to the processor. The plant and processor do not necessarily operate on the same d.c. levels but this is taken care of in the circuitry.

The circuit includes an opto-isolator to protect the processor from any high voltages that may find their way to the card from the plant. There is usually an indicator l.e.d. on the card (often a row of l.e.d.s on the edge of the card, one for each channel). The output side of the card is powered from the processor’s d.c. supply. Usually the input side of a system is made up of a mix of d.c. and a.c. cards. The system designer can select from various types of card of either sort, adding a few spares in case of a change of design at a later stage.

A.C. INTERFACING

The typical a.c. input card circuit in Fig.5 has a full-wave bridge rectifier. An indicator lamp (not an l.e.d.) across the input connections lights when a signal is being received (the a.c. signal is either on or off). The rectified signal goes to an opto-isolator to protect the system from excess voltages. Since the input signal is often at mains voltage this precaution is essential. Beyond the opto-isolator the circuit is powered from the system power supply and a buffer sends a logic-level replica of the input signal to the processor.

Output cards also incorporate opto-isolators. In a typical d.c. output card (Fig.6) logic-level signals from the processor are sent to a transistor which switches the current through the photodiode of the opto-isolator. The phototransistor is in the base circuit of a power transistor which has its collector connected to the plant d.c. supply. This may often be at 24V d.c.

The load is in the transistor’s collector circuit. Connected across the load is an indicator l.e.d. located on the card to show the state of the output. Also there is a diode to protect the circuit from the voltage spikes that occur if the load is inductive, as it often is, for solenoids and motors are very common actuators in industrial systems.

As an alternative to the transistor output of the d.c. card, some types of card have relay outputs. The coil of the relay replaces the load shown in Fig.6. It can be situated on the card and powered from the system supply. Using a relay means that a wide range of plant voltages, d.c. or a.c., can be used to drive the load.

In an a.c. output card, useful for controlling motors, the plant a.c. is rectified to provide a d.c. potential across the phototransistor of the opto-isolator (Fig.7). When a signal is present, the phototransistor conducts and this produces a pulse to trigger the triac. The triac then conducts, and an alternating current passes through the indicator lamp and the load.

Most cards deal with digital signals, those that are on or off, high or low. There are also cards for analogue signals, often incorporating analogue-to-digital converters for converting analogue input to digital form to send to the processor.

PROGRAM OPERATION

Apart from the read only memory (ROM) used for storing the operating system, the memory map includes the regions shown in Fig.8. The major part of this is PROM (programmable ROM), used for storing the program fed into it by the programming computer.

The PROM may extend to only a few kilobytes, which is sufficient for storing the program steps that the controller requires. In addition, there is an area of random access memory (RAM).

The way in which a typical PLC operates its program is usually very different from the operation of a PC programmed in machine code or one of the high-level languages. In a typical PC program, the processor starts at the beginning, after which it may jump about indefinitely from one routine to another, depending on the input (from its keyboard, disk drives and elsewhere) that it receives at various stages.

It skips around the program from routine to routine, sometimes waiting for input and at other times producing output (continually updating the monitor, for example, or sending data to a modem). There may be some routines (such as updating the monitor, or waiting for input from the keyboard) that it returns to frequently. It may visit these routines several times a second.

Other routines may be run very rarely, perhaps only when something goes wrong.

PLC SCANNING

While some of the more sophisticated PLCs do allow for conditional jumps and other features commonly available in PC programs, a typical PLC program is simply a series of steps taken in order from beginning to end, and repeated from beginning to end for as long as the PLC is operating. This is called scanning the program and a scan takes about 2ms to 5ms per kilobyte of program, depending on the processor.

In a typical control system a scan takes between 10ms and 50ms, depending upon the number of steps in the program. Before
Everyday Practical Electronics, July 2001

need for a specialist electronic engineer. Returning to the examples of Fig.2 and Fig.3, the equivalent in ladder logic is shown in Fig.9, which represents the controls for filling a packet with a quantity of (in this instance) grated cheese.

In programming the system, a diagram such as this is drawn on the screen of the programmer or PC; the software converts this to the equivalent machine code, which is then downloaded into the PROM of the controller.

The symbols used in this diagram are derived from the symbols used in the USA for representing relays in schematics. A relay with normally-open contacts looks rather like the symbol for a capacitor.

The relay contacts are open until the packet is in position ready for filling. When the sensor detects that the packet is in position, the corresponding bit in the input image is set to logic 1. The slanting line across the next symbol in the top row of the diagram indicates normally-closed contacts. The contacts are closed unless the given condition is true. The “weight” bit in RAM stays at logic 0 until the packet reaches the required weight.

Viewing the diagram as a pair of relay contacts in series, a current flows from the left through the two pairs of contacts and activates the “open hopper” solenoid when both relays are closed. That is, when the packet is in position and it is not full.

During a program scan the processor reads the state of the two bits and, if one is logic 1 and the other is logic 0 it stores an “open hopper” bit in the output image. At the end of the scan an output is sent to the solenoid to activate it (or continue its state of activation), to keep the hopper open, delivering grated cheese to the packet.

The controller then scans to the second row of the program. Here the position of the packet is not important. If the packet has reached full weight, the output image must be changed to switch on the solenoid to close the hopper, and to start the motor to carry the packet away to be sealed. In this row the processor reads the weight bit again and, if it is logic 1, sets the bits to initiate appropriate action.

Ladder Logic

The schematic in Fig.9 illustrates only two steps in a program that might be 100 or more steps long. The complete program has vertical lines down each side, cross-connected by the row of symbols describing the logic. The appearance of the diagram of a complete program strongly resembles a ladder, which is why this form of representation has become known as ladder logic.

When we examine such programs it becomes obvious that even an apparently simple task requires a considerable number of inputs and outputs, perhaps several hundred on one machine.

Most systems suitable for controlling with PLCs also provide for the program to be entered as a drawing of a logical system. Here the programming is similar to that of the earlier control systems based on TTL or CMOS i.e.s. Logic symbols such as AND and OR gates are assembled on the screen of the programmer and connected by “wires”. Then the software generates the corresponding machine code to be downloaded into PROM.

A third method of programming a PLC is by a text-only statement list. The logic of the system is keyed in, in standardised form, as a table of instructions to the processor.

The ladder logic described so far provides for logical operations such as AND (relays in series on a single rung), or OR (relays in parallel on branching rungs). The use of normally-closed relays introduces NOT, which provides for NAND and NOR operations.

Even when programming with ladder logic it is possible in the more advanced PLC systems to call on routines which provide the equivalent of flip-flops, counters and timers.

PLCs in Action

To illustrate the versatility of PLCs this article concludes with a few examples taken from Glanvia’s plant.

The photograph on the next page shows a section of the belt that carries packages of cheese from the wrapping section, which is off to the left of the photograph.

The package then passes on to a short length of belt, on a platform that is mounted on a load cell. This weighs the package as it passes across the section. Although one associates load cells with weighing massive objects such as fully-laden trucks, sensitive load cells are frequently used in packaging plants for objects weighing only a few hundred grammes.

Readout of the weight takes only a fraction of a second and is displayed on the
control panel. If the weight is outside the preset limits the next section of the belt tips downward, as shown in the photograph (below), and the rejected package falls into a receptacle below the line.

When a package of acceptable weight comes along, it continues along the main line to the right, where a vendor's label is printed with its weight and is applied to the package. The system also calculates the price of the piece and prints this on the label together with the bar code.

All this is done within a fraction of a second as the packages stream along the production line. The system keeps a full record of the number of packages passed and also the number rejected for being over or under weight.

SAFETY

Food safety is of paramount importance so special precautions are taken to detect metallic objects that might be embedded in the cut blocks of cheese. At one point there is a large coil around the conveyor belt and an oscillating signal is applied to this coil. Close above the line is an inductive proximity detector. This consists of a core wound with a coil and connected to a frequency-sensitive circuit.

If there is any metal object in the cheese there is a phase delay which is detected by the circuit. The PLC registers this change. The timing of the program is such that just as that block reaches a point 40cm further along the line, a rejection lever is actuated to push the block off the line. Alternatively, a photo-reflective detector further along the line may detect the arrival of the suspect block and operate the reject arm.

SIMPLICITY PAYS

The process is simple and well illustrates the nature of most applications of PLCs. Textbooks on electronic control systems lay great emphasis on negative feedback, proportional control, integral control and other sophisticated aspects of control systems, but these do not feature in the majority of practical systems.

PANEL 2. Chemical Plant Sensors

Most of the processing at chemical manufacturers Rhone-Poulenc Ltd. involves liquids, so the main measurements required are temperature, pressure, level and flow. The reactants are normally inside an enclosed system, but there must be points at which probes are allowed to enter the system. In the case of tanks, the probes are inserted through sealed openings at the top. This minimises leakage should the seal deteriorate.

Very often the activity at different parts of the system is monitored in more than one way using different types of sensor. One measurement is a back-up of the other and, if the two fail to agree, an alert is signalled on the control panel.

An ingenious way of measuring flow is the MicroMotion sensor, which depends on the detection of Coriolis forces. This is the force which makes the water spin in a clockwise direction as it drains from the bath (anti-clockwise in the Southern Hemisphere).

The fluid is made to flow in an omega-shaped tube and the force distorts the tube slightly. Distortion is measured using a strain gauge or an electromagnetic pickup and from this the rate of flow can be calculated. The liquid is completely enclosed in the tube and there are no vanes or other moving parts to be sealed in (and eventually leak).

Liquid level may be measured by a tuning fork level sensor (Fig.10). A crystal oscillator in the base of the fork vibrates the fork at 30kHz. However, when the tines of the fork are partly covered by liquid, this shifts the frequency of the system. The resulting frequency is measured and this is related to the liquid level.

Another method of level measurement involves capacitance. In effect the sensor of Fig.11 is a capacitor. If the liquid is an electrical conductor, the pin and the casing (plus liquid) act as plates and the PTFE sleeve is the dielectric. If the liquid is a non-conductor, the sleeving is omitted and the liquid acts as dielectric.

In either case, capacitance increases with liquid level. The sensing circuit measures the capacitance by measuring the frequency of an oscillating circuit containing the sensor. Changes of frequency are interpreted in terms of liquid level.

It would be possible to devise a system by which the filling of, say, grated cheese bags would be monitored as it is occurring, bringing the weight up to the required level. Such a system would be more complicated, possibly slower, and certainly more expensive to build and maintain than the simple accept/reject system.

In practical and economic terms, the simpler (and cheaper) the system the better. This does not necessarily apply to all manufacturing processes, but it applies to most. It is cheaper to omit the fine adjustments and simply reject the occasional item that is out of range. On the shop floor, economics rules over control theory and PLCs are usually the best means for controlling systems at this level.

In practice, most control systems have a simple on-off binary nature. Only a small range of instructions is needed for such a system. The situation is akin to that which has lead to the development of RISC (reduced instruction set) computers.

Research has shown that although a typical microprocessor may have several hundred instructions in its set, 80 per cent of a typical program makes use of only 20 per cent of the instructions. Now, microcontrollers are being manufactured
with as few as 30 instructions. This makes it very easy to learn the program-
ing language.

SPECIAL PRECAUTIONS

Certain industries pose special problems that can be solved by PLCs, but which need attention to various precautions. The Rhone-Poulenc plant (see Panel 2), for example, manufactures agri-
cultural products, such as herbicides, and intermediate products for the pharmaceu-
tical industry.

It produces these chemicals on the large scale and their production often involves highly flammable liquids such as toluene, methanol and xylene. For this reason there must be no combustion or sparks in the areas where chemicals are processed and stored. Obviously there is no place for relays and other spark-producing equip-
ment on the plant. There are risks when any electrical components are present, for a faulty device or cable might soon overheat to the point at which it could ignite a flam-
nable vapour.

Each production rig has its own enclosed control room, keeping the operating staff well away from the scene of chemical reac-
tions. Whereas the PLC cabinet is usually located beside the plant, mainly in order to keep electrical connections as short as possible, the PLCs at Rhone-Poulenc are situated in a special room adjacent to the control room.

The PLCs drive pneumatic actuators, so that communication between the PLC cab-

ets and the plant is exclusively by air lines. This eliminates the risk of fire or explosions caused by sparks or over-

heating.

The design philosophy of the system is that the consequences of failures are so potentially catastrophic that no chances can be taken. Consequently the sensors and actuators are all simple in principle and have proven reliability.

Also, there are many of them, monitor-

ing every stage of production. This means that a system may have up to 1000 input/output connections and a correspond-

ingly long (but well-tried and tested) program. The system designers have no intention of trying to lead the way in the chemical industry!

SUMMING UP

The industrial popularity of PLCs is attributable to their many advantageous features:

- At the design stage there is no need for a really detailed description of the pro-

posed system. The size of the processor and the number of cards of each kind is easy to estimate within limits, allowing a little spare capacity for future modifications.

- At the construction stage the system is easily assembled from a wide range of standard units, most of which are relatively inexpensive.

- At the installation stage it is possible to make use of pre-built units to cover cer-

tain aspects of control.

- At the commissioning stage it is easy to modify the system if changes or exten-

sions to the original design are thought necessary. As explained earlier, this is def-

initely not the case with relay logic and other early systems in which any changes made at this stage may be prohibitively expensive.

- At the operational stage PLC systems are easy to check and maintain. Later changes to the system are simple to effect.

PANEL 3. Resin Production using PLCs

Chipboard is made by mixing wood chips with a bonding resin, and rolling the mixture out into a sheet. At the Chirk works of Kronospan Ltd the resin is prepared in large kettles. Formerly, control of the process was wholly manual but, recently, it has been automated, using PLCs.

With either method of control the kettle is first loaded with formaldehyde and then urea is run in, using a screw feeder. The reaction is exothermic (generates heat), so the process can be started from cold, although materials may be warmed first to 60°C. The heat produced by the reaction is such that the mixture has to be cooled by a cold water jacket around the kettle. Precise control is necessary at this stage because the reaction can soon run away, with the risk of an explosion. For this reason the reaction is care-

fully controlled and the temperature is never allowed to rise above 98°C.

The reaction rate is maintained at the correct level by controlling three parameters: the initial temperature, the rate of adding urea, and the circulation of the cooling water.

The PLC system developed at Kronospan is programmed in 32 stages, with a target rate of addition and temperature for each stage. The targets are stored as a look-up table in the ROM of the controller. At each stage the kettle is weighed using load cells and the weight of its contents compared with the weight specified in the lookup table. The rate of feed of urea is then adjusted proportionately.

At the same time the temperature is measured and compared with its lookup table, and appropriate adjustments made to the flow rate of the cooling water. If the temperature is more than 2°C above the prescribed level, the feed of urea is cut off completely.

ACKNOWLEDGEMENTS

The author thanks the following for their help in providing the information upon which this article is based: Glanbia Foods Ltd, Norwich; Kronospan Ltd, Chirk.
Once again Maplin have discontinued stocking the required transistor – this time the TIPP31C – and cannot offer an alternative device. We have found that Cricklewood (tel 020 8452 0161) currently have stocks and enquiries should be made to them. They carry a large range of semiconductor devices and can usually find those “rare'' devices. The TIPP31C is also listed by Electromail (see above), code 638-532.

Stereo/Surround Sound Amplifier

Picking out the most likely components to cause concern when putting together the items needed to build the Stereo/Surround Sound Amplifier highlighted the stereo amplifier i.e., the stereo potentiometer and the sloping front case.

Taking the TDA2822M 1W stereo amp, again Maplin (tel 0870 264 6000) are currently “out of stock'' but expecting delivery very soon. In the meantime, try Rapid Electronics (tel 01206 751166) code 82-0672, who do have some in stock.

The sloping front case is not critical and most of our component advertisers should be able to come up with a suitable alternative, even if the dimensions do not exactly match the prototype (Maplin code LH63T), provided they are greater than specified. The next, chassis mounting, d.c. power socket came from Rapid (see above), code 20-0985.

If you wish to use and mount the 16mm dual-gauged stereo potentiometer directly on the p.c.b., as shown in the article, this came from Maplin, code VQ35G. The printed circuit board is available from the EPE PCB Service, code 304.

PIC To Printer Interface

Nearly all the components used in the PIC To Printer Interface prototype are RS parts and any bona fide stockist, including some of our advertisers, should be able to obtain them for readers. If difficulties are experienced in obtaining the MAX492 dual rail-to-rail op.amp, it can be ordered through Electromail (tel 01536 204555 or http://rswww.com), code 192-2738.

A ready-programmed PIC16F877 microcontroller can be purchased from Magenta Electronics (tel 01293 565435 or www.magenta2000.co.uk) for the inclusive price of £10 (overseas add £1 p&p). They also supplied the alphanumeric display module and you should specify that you want one with a pin connector attached.

The printed circuit board (code 308) and the software is available from the EPE PCB Service, see page 529. The software is available on a 3.5in. PC-compatible disk (EPE Disk 4) for the sum of £3 (UK), to cover admin costs (for overseas, see page 529). It is also available Free from the EPE web site at ftp://ftp.epemag.wimborne.co.uk/pubs/PICS/PICprinter.
Electronic Surveillance Equipment Kits from the UK’s No.1 Supplier

SUMA DESIGNS has been supplying professional quality electronic surveillance equipment kits for over 20 years. Whether your requirement is hobbyist, amateur or professional you can be sure that you are buying from a company that knows the business. We ONLY sell surveillance products, no alarms, disco lights or computer bits. All of our kits are designed for self assembly and are well tried, tested and proven. All kits are supplied complete with top grade components, fibreglass PCB, full instructions, circuit diagrams and assembly details. Unless otherwise stated all transmitter kits are tuneable and can be received using an ordinary VHF FM radio.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Dimensions</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTX Ultra-miniature Room Transmitter</td>
<td>Connects onto telephone line, switches on and off automatically as phone is used.</td>
<td>22mm x 22mm</td>
<td>£29.95</td>
</tr>
<tr>
<td>MTX Micro-miniature Room Transmitter</td>
<td>Best selling room transmitter kit. Just 17mm x 17mm including mic.</td>
<td>22mm x 22mm</td>
<td>£13.95</td>
</tr>
<tr>
<td>STX High-performance Room Transmitter</td>
<td>High-performance transmitter with buffered output for greater stability and range.</td>
<td>22mm x 22mm</td>
<td>£16.95</td>
</tr>
<tr>
<td>VTS300 High-power Room Transmitter</td>
<td>Our most powerful room transmitter with around 250mW of output power.</td>
<td>22mm x 22mm</td>
<td>£49.95</td>
</tr>
<tr>
<td>VXT Voice-activated Room Transmitter</td>
<td>Triggers only when sounds are detected by on-board mic. Variable trigger sensitivity and on-time with LED trigger indicator. Very low standby current.</td>
<td>22mm x 22mm</td>
<td>£17.95</td>
</tr>
<tr>
<td>HVX400 Main /Powered Room Transmitter</td>
<td>Connects directly to 240V AC supply. Ideal for long-term monitoring.</td>
<td>30mm x 35mm</td>
<td>£21.95</td>
</tr>
<tr>
<td>SCRX Subcarrier Scrambled Room Transmitter</td>
<td>To increase the security of the transmission the audio is subcarrier modulated. Receiver now requires the decoder module (SCDM) connected to allow monitoring.</td>
<td>22mm x 22mm</td>
<td>£20.95</td>
</tr>
<tr>
<td>SCDM Subcarrier Decoder for SCRX</td>
<td>Connects to headphone socket on receiver and provides decoded audio output to headphones.</td>
<td>32mm x 27mm</td>
<td>£24.95</td>
</tr>
<tr>
<td>UTLX Ultra-miniature Telephone Transmitter</td>
<td>Smallest kit available. Connects onto telephone line, switches on and off automatically as phone is used.</td>
<td>20mm x 20mm</td>
<td>£13.95</td>
</tr>
<tr>
<td>TLX700 Micro-miniature Telephone Transmitter</td>
<td>Best selling kit. Performance as UTX but easier to assemble as PCB is 20mm x 20mm.</td>
<td>20mm x 20mm</td>
<td>£14.95</td>
</tr>
<tr>
<td>STLX High-performance Telephone Transmitter</td>
<td>High-performance transmitter with buffered output for greater stability and range. Connects onto telephone line and switches on and off automatically as phone is used.</td>
<td>22mm x 22mm</td>
<td>£16.95</td>
</tr>
<tr>
<td>FTS7 Automatic Telephone Recording Interface</td>
<td>Connects between telephone line (anywhere) and normal cassette recorder. Automatically switches recorder on and off as phone is used. Both sides of any conversation recorded.</td>
<td>25mm x 67mm</td>
<td>£12.95</td>
</tr>
<tr>
<td>CD400 Pocket Size Bug Detector/Locator</td>
<td>LED and piezo bleper pulse slowly. Pulse rate and tone pitch increase as signal source is approached. Variable sensitivity allows pinpointing of signal source.</td>
<td>45mm x 54mm</td>
<td>£34.95</td>
</tr>
<tr>
<td>CD600 Professional Bug Detector/Locator</td>
<td>Multicolour bargraph LED readout of signal strength with variable rate bleper and variable sensitivity allows pinpointing of any signal source.</td>
<td>35mm x 32mm</td>
<td>£59.95</td>
</tr>
</tbody>
</table>

TO ORDER:

- Post, fax or telephone your order direct to our sales office. Payment can be Credit card (Visa or Mastercard), Postal Order, cash (please send registered or cheques. Kits despatched same day [when goods need clearing].
- Please order by COD if paying by Credit card. Order by telephone or fax.

SEND 2 x 1st CLASS STAMPS FOR OUR 2000 KIT CATALOGUE CONTAINING FULL DETAILS OF THESE AND OTHER KITS.

A BUILD-UP SERVICE IS AVAILABLE ON ALL OF OUR KITS. DETAILS IN CATALOGUE. VISIT OUR WEBSITE: www.suma-designs.co.uk. Please note: Some of our part numbers are being unscrupulously used by other companies selling kits eg. MTX, VXT. DO NOT BE MISLEAD! These are NOT GENUINE SUMA KITS which are only available direct from us or our appointed distributors.

If you wish to collect kits direct from our office

PLEASE TELEPHONE

Everyday Practical Electronics, July 2001

511
ANALOGUE ELECTRONICS

Analogue Electronics is a complete learning resource for this most difficult branch of electronics. The CD-ROM includes a host of virtual laboratories, animations, diagrams, photographs and text as well as a SPICE electronic circuit simulator with over 50 pre-designed circuits. Sections on the CD-ROM include: Fundamentals – Analogue Signals (5 sections), Transfer Functions (4 sections), Active Filters (6 sections), Op.Amps – 17 sections covering everything from Symbols and Signal Connections to Differentiators. Amplifiers – Single Stage Amplifiers (8 sections), Multi-stage Amplifiers (3 sections). Filters – Passive Filters (10 sections), Phase Shifting Networks (4 sections), Active Filters (6 sections). Oscillators – 6 sections from Positive Feedback to Crystal Oscillators. Systems – 12 sections from Audio Pre-Amplifiers to 8-Bit ADC plus a gallery showing representative p.c.b. photos.

DIGITAL ELECTRONICS

Digital Electronics builds on the knowledge of logic gates covered in Electronic Circuits & Components (opposite), and takes users through the subject of digital electronics up to the operation and architecture of microprocessors. The virtual laboratories allow users to operate many circuits on screen. Covers binary and hexadecimal numbering systems, ASCII, basic logic gates, monostable action and circuits, and bistables – including JK and D-type flip flops. Multiple gate circuits, equivalent logic functions and specialised logic functions. Introduces sequential logic including clocks and clock circuitry, counters, binary coded decimal and shift registers. A/D and D/A converters, traffic light controllers, memories and microprocessors – architecture, bus systems and their arithmetic logic units.

FILTERS

Filters is a complete course in designing active and passive filters that makes use of highly interactive virtual laboratories and simulations to explain how filters are designed. It is split into five chapters: Revision which provides underpinning knowledge required for those who need to design filters. Filter Basics which is a course in terminology and filter characterization, important classes of filter, filter order, filter impedance and impedance matching, and effects of different filter types. Advanced Theory which covers the use of filter tables, mathematics behind filter design, and an explanation of the design of active filters. Passive Filter Design which includes an expert system and filter synthesis tool for the design of low-pass, high-pass, band-pass, and band-stop Bessel, Butterworth and Chebyshev op.amp filters.

DIGITAL WORKS 3.0

Digital Works Version 3.0 is a graphical design tool that enables you to simulate digital logic circuits and analyze their behaviour. It is so simple to use that it will take you less than 10 minutes to make your first digital design. It is so powerful that you will never outgrow its capability.

- Software for simulating digital logic circuits
- Create your own macros – highly scalable
- Create your own circuits, components, and i.c.s
- Easy-to-use digital interface
- Animation brings circuits to life
- Vast library of logic macros and 74 series i.c.s with data sheets
- Powerful tool for designing and learning

PRICES

Prices for each of the CD-ROMs above are:

- Hobbyist/Student ..£45 inc VAT
- Library ..£299 plus VAT
- Institutional (Schools/HE/FE/Industry)£199 plus VAT
- Institutional 10 user (Network Licence)£199 plus VAT

(UK and EU customers add VAT at 17.5% to “plus VAT” prices)
Interested in programming PIC microcontrollers? Learn with PICtutor by John Becker

This highly acclaimed CD-ROM, together with the PICtutor experimental and development board, will teach you how to use PIC microcontrollers with special emphasis on the PIC16x84 devices. The board will also act as a development test bed and programmer for future projects as your programming skills develop. This interactive presentation uses the specially developed Virtual PIC Simulator to show exactly what is happening as you run, or step through, a program. In this way the CD provides the easiest and best ever introduction to the subject. Nearly 40 Tutorials cover virtually every aspect of PIC programming in an easy to follow logical sequence.

HARDWARE
Whilst the CD-ROM can be used on its own, the physical demonstration provided by the PICtutor Development Kit, plus the ability to program and test your own PIC16x84s, really reinforces the lessons learned. The hardware will also be an invaluable development and programming tool for future work.

Two levels of PICtutor hardware are available – Standard and Deluxe. The Standard unit comes with a battery holder, a reduced number of switches and no displays. This version will allow users to complete 25 of the 39 Tutorials. The Deluxe Development Kit is supplied with a plug-top power supply (the Export Version has a battery holder), all switches for both PIC ports plus i.c.d. and 4-digit 7-segment i.e.d. displays. It allows users to program and control all functions and both ports of the PIC. All hardware is supplied fully built and tested and includes a PIC16F84.

PICtutor CD-ROM

<table>
<thead>
<tr>
<th>Hobbyist/Student</th>
<th>£45 inc. VAT</th>
<th>Standard PICtutor Development Kit</th>
<th>£47 inc. VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institutional (Schools/HE/FE Industry)</td>
<td>£99 plus VAT</td>
<td>Deluxe PICtutor Development Kit</td>
<td>£99 plus VAT</td>
</tr>
<tr>
<td>Institutional 10 user (Network Licence)</td>
<td>£189 plus VAT</td>
<td>Deluxe Export Version</td>
<td>£99 plus VAT</td>
</tr>
</tbody>
</table>

(UK and EU customers add VAT at 17.5% to “plus VAT” prices)

Electronic Circuits & Components Photos

A high quality selection of over 200 JPEG images of electronic components. This selection of high resolution photos can be used to enhance projects and presentations or to help with training and educational material. They are royalty free for use in commercial or personal printed projects, and can also be used royalty free in books, catalogues, magazine articles as well as worldwide web pages (subject to restrictions – see licence for full details).

Price £19.95 inc. VAT

Electronic Circuits & Components + The Parts Gallery

Provides an introduction to the principles and application of the most common types of electronic components and shows how they are used to form complete circuits. The virtual laboratories, worked examples and pre-designed circuits allow students to learn, experiment and check their understanding. Sections include: Fundamentals: units & multiples, electricity, electric circuits, alternating circuits. Passive Components: resistors, capacitors, inductors, transformers. Semiconductors: diodes, transistors, op.amps, logic gates. Passive Circuits, Active Circuits

The Parts Gallery will help students to recognise common electronic components and their corresponding symbols in circuit diagrams. Sections include: Components, Components Quiz, Symbols, Symbols Quiz, Circuit Technology

Hobbyist/Student .. £34 inc VAT
Institutional (Schools/HE/FE Industry) £99 plus VAT
Institutional 10 user (Network Licence) £189 plus VAT

(All UK and EU customers add VAT at 17.5% to “plus VAT” prices)

Modular Circuit Design

This CD-ROM contains a range of tried and tested analogue and digital circuit modules, together with the knowledge to use and interface them. Thus allowing anyone with a basic understanding of circuit symbols to design and build their own projects.

Essential information for anyone undertaking GCSE or "A" level electronics or technology and for hobbyists who want to get to grips with project design. Cover the seven different Input, Processor and Output modules and are fully described, together with detailed information on construction, fault finding and components, including circuit symbols, pinouts, power supplies, decoupling etc.

Single User Version £19.95 inc. VAT
Multiple User Version £34 plus VAT

(UK and EU customers add VAT at 17.5% to “plus VAT” prices)

ORDERING

ALL PRICES INCLUDE UK POSTAGE

Student/Single User/Standard Version price includes postage to most countries in the world. EU residents outside the UK add £5 for airmail postage per order.

Institutional, Multiple User and Deluxe Versions – overseas readers add £3 to the basic price of each order for airmail postage (do not add VAT unless you live in an EU (European union) country, then add 17½% VAT or provide your official VAT registration number).

Send your order to:
Direct Book Service
Wimborne Publishing Ltd
409 Wimborne Road East
Ferndown, Dorset BH22 9ND

To order by phone ring 01202 873872. Fax: 01202 874562

Goods are normally sent within seven days

E-mail: orders@wimborne.co.uk

Online shop: www.epemag.wimborne.co.uk/shopdoor.htm

Minimum system requirements for these CD-ROMs: PC with 486/166MHz, VGA+256 colours, CD-ROM drive, 32MB RAM, 10MB hard disk space. Windows 95/98, mouse, sound card, web browser.
SURFING THE INTERNET
NET WORK
ALAN WINSTANLEY

Google Rocks!

In last month's Net Work we discussed the Open Directory Project (ODP) available at www.dmoz.org which is claimed to be the largest human-edited web search resource on the Internet. It has a clean front end with none of the usual portal-type distractions.

Today, the other best-known search engine has to be Google (www.google.com). The author considers this resource to be so significant that this month we return to the Google web site once again – this time to look at Usenet and the advanced features Google's downloadable toolbar offers to make life easier.

The author strongly recommends installing the Google toolbar into Internet Explorer 5 or higher, so that a search box and other options are always to hand. Google's Internet Explorer toolbar has many useful benefits which soon become apparent in use: for example you can Highlight any search phrase "hits" (useful on long or complex pages – multiple terms are highlighted in different colours), and using Word Find you can scroll from one search hit on a page to the next one.

Deja View

There are more handy options in the Google toolbar which regular web users will soon appreciate. One of the most significant is the direct link to Usenet (newsgroups). Many old hands on the Internet mourned the loss of Deja News, the best-known archive of newsgroup postings established in 1995. It's all very well searching the world-wide web for answers, but if you wanted to know what your peers think – perhaps you had a particular software or hardware problem and wondered if anyone else had overcome that same problem – then the savvy net user would head over to Deja News to trawl through the Usenet archives.

These archives contain some 500 million messages and are considered by many to be public property, which is why there was an outcry when Deja folded and the archives, trademarks and Deja's domain names landed in Google's lap. In fact it could be a marriage made in Heaven, because there is nothing Google likes better than the challenge of searching through a terabyte of data – fast. Even on a 56K dialup connection, results are returned virtually instantaneously.

Usenet Googified

During the first half of 2001 Google has therefore busied itself with Usenet, and the result is that a powerful beta version of Google News is online at http://groups.google.com. Happily, Google Groups is easily accessible via the Explorer toolbar where installed, and the archive did an eerily efficient job of pulling up many of my own posts dating back to the mid 1990s! A Search Usenet button is also available in the Google Toolbar – excellent!

If you don't have the toolbar, you should still bookmark Google Groups and become familiar with its features; more than once I have resolved some thorny problems by searching Usenet archives; in fact I have just received an E-mail from someone who searched Google and found one of my posts dated 1997 which he wanted to discuss with me! Now you have half a decade of human conversation at your fingertips.

You can now also post onto Usenet using Google, and the way to ensure that your post is not archived, if required, is to add the line X-No-Archive: yes into the header of your message. Furthermore, as many old hands will know, posting into Usenet means that your E-mail address will quickly be scooped up by spammers (junk E-mailers) so you should never use your regular daytime E-mail address anywhere in your Usenet message.

For those using other operating systems or browsers, Google does offer a search function restricted to Linux or BSD users. Macintosh users can see the Options page ("GooGlify your browser") for details of the Sherlock plug-in for Apple Macs.

There's yet more! The Google toolbar has an optional "Search Directory" button which combines the Open Directory Project (see last month) together with Google's own PageRank feature. This indicates how importantly Google's highly complex algorithms have rated a web page hit for relevance. Last of all, the toolbar's drag and drop feature allows you to drop any text or URL, from the main browser into the toolbar to start a search.

All in all, Google could be your first port of call when hunting for answers on the Internet. Even so, it is still possible that Google may not always return very many suitable hits, especially if you are looking for obscure information (remember to trawl through newsgroups too). It is worth having a second search engine up your sleeve.

Alta Vista (www.altavista.com) is another search engine which appears to be re-inventing itself as . . . a search engine. Its portal content has been stripped away leaving a leaner page that harks back to the mid 90's, and it incorporates Babel Fish, which enables both text and web sites to be translated between a number of languages.

Alta Vista was originally created by the computer manufacturer Digital Equipment as a living testimony to the power of its own systems (see Net Work, March 2000) before the engine was catapulted into commercialisation when DEC sold out. Many others use Yahoo or Ask Jeeves instead.

A Word from Our Sponsors

Many portal sites rely on good old advertising for their revenue, in spite of the mounting evidence of the decreasing effectiveness of on-line advertising, specifically banner adverts. Predictably, users have acquired the ability to focus on the content and block out banner adverts altogether, so the click-through ratios of typical banners are very low indeed.

Banner adverts are a standard size, usually 468×60 pixels. Most users will not wait for a banner to download and instead they will start to read the page as soon as it starts to download. Hence we recognise the "start" of a banner ad and we block it out. Indeed software is available which will block out adverts or will prevent time-consuming animated gifs from downloading at all.

One of the latest trends in on-screen advertising is the use of superstitials, interstitial and transitional adverts. Superstitials load in the background at "quiet" times and only start to play when fully loaded. Interstitials are more irritating – they are often in the form of pop-up windows that open immediately, followed by a delay while the advert loads. Unlike banner adverts, you cannot help but notice – because you usually have to close the window to dismiss it. Last of all, the transitional advert runs when fully downloaded, and will play in the main browser window for a few seconds when the next page is being loaded.

Payback Time

As the revenue from traditional banner advertising falls, and businesses have to start to pay several hundred dollars to be registered on major search engines, it seems that payback time is dawning on the Internet. Users have always enjoyed a vast amount of free content paid for by advertising, but now there are signs that online advertising will become a lot less subtle and a lot more “in your face”.

That’s it for this month, so as Babel Fish would say in Spanish, las gracias por leer esto, le consideran próximo el mes! My E-mail address is alan@epemag.co.uk.

Everyday Practical Electronics, July 2001
We can supply back issues of EPE by post, most issues from the past three years are available. An EPE index for the last five years is also available – see order form. Alternatively, indexes are published in the December issue for that year. Where we are unable to provide a back issue a photocost of any one article (or one part of a series) can be purchased for the same price. Issues from Dec. 2000 onwards are also available to download from www.epemag.com.

DID YOU MISS THESE?

MAR ’00
- PROJECTS: EPE ICEbreaker • High Performance Regenerative Receiver-1 • Parking Warning System • Automatic Tram Signal.
- FEATURES: Teach-In-2000 – Part 5 • Practically Speaking • Technology Timelines-2 • Ingenuity Unlimited • Circuit Surgery • New Technology Update • Net Work – The Internet.

APRIL ’00
- PROJECTS: Flash Slave • Garage Link • MicroPICscope • High Performance Regenerative Receiver-2.
- FEATURES: Teach-In-2000-Part 6 • Ingenuity Unlimited • Technology Timelines-3 • Circuit Surgery • Interface • Telarc Home Video • Net Work – The Internet.

MAY ’00
- PROJECTS: Versatile Mo/Audio Preampifier • PIC Light Checker • Low-Cost Capacitance Meter • Multi-Channel Transmission System-1.
- FEATURES: Teach-In-2000-Part 7 • Technology Timelines-4 • Circuit Surgery • Practically Speaking • Ingenuity Unlimited • Net Work – The Internet • FREE Giant Technology Timelines Chart.

JUNE ’00
- PROJECTS: Atmospheric Electricity Detector-1 • Canute Tide Predictor • Multi-Channel Transmission System-2 • Automatic Nightlight.
- FEATURES: Teach-In-2000 – Part 8 • Technology Timelines-5 • Circuit Surgery • Interface • New Technology Update • Ingenuity Unlimited • Net Work – The Internet.

JULY ’00
- PROJECTS: G-Meter • Camera Shutter Timer • PIC-Gen Frequency Generator/Counter • Atmospheric Electricity Detector-3.
- FEATURES: Teach-In-2000-Part 9 • Practically Speaking • Ingenuity Unlimited • Circuit Surgery • PICO Diag REVIEWED • Net Work – The Internet.

AUG ’00
- PROJECTS: Handy-Amp • EPE Moodloop • Quiz Game Indicator • Door Protector.
- FEATURES: Teach-In-2000-Part 10 • Cave Electronics • Ingenuity Unlimited • Circuit Surgery • Interface • New Technology Update • Net Work – The Internet Page.

SEPT ’00
- PROJECTS: Active Ferrite Loop Aerial • Steeplechase Game • Remote Control IR Decoder • EPE Moodloop Power Supply.
- FEATURES: Teach-In-2000-Part 11 • New Technology Update • Circuit Surgery • Ingenuity Unlimited • Practically Speaking • Net Work – The Internet Page.

OCT ’00
- PROJECTS: Wind-Up Torch • PIC Dual-Chan Virtual Scope • Fridge/Freezer Alarm • EPE Moodloop Field Strength Indicator.

NOV ’00
- PROJECTS: PIC Pulsesmeter • Opto-Alarm System • Sample-and-Hold • Handicap Switch.
- FEATURES: The Schmitt Trigger-Part 1 • Ingenuity Unlimited • PIC Toolkit Mk2 Update V2.2 • Circuit Surgery • New Technology Update • Net Work – The Internet • FREE Transistor Data Chart.

DEC ’00
- PROJECTS: PIC-Monitored Dual PSU-Part 1 • Static Field Detector • Motorists’ Buzz-Box • Twinkling Star • Christmas Bubble • Festive Fader • PIcogram.
- FEATURES: The Schmitt Trigger-Part 2 • Ingenuity Unlimited • Interface • Circuit Surgery • New Technology Update • Quasar Kits Review • Net Work – The Internet • 2000 Annual Index.

JAN ’01
- PROJECTS: Versatile Optical Trigger • UFO Detector and Event Recorder • Two-Way Intercom • PIC-Monitored Dual PSU-Part 2.
- FEATURES: Using PICs and Keypads • The Schmitt Trigger-Part 3 • New Technology Update • Circuit Surgery • Practically Speaking • Ingenuity Unlimited • CIRSIM Shareware Review • Net Work – The Internet.

FEB ’01
- PROJECTS: Ice Alert • Using LM3914-6 Bargraph Drivers • Simple Methone • PIC Audio Power Meter.

MAR ’01
- PROJECTS: Doorbell Extender • Body Detector • DIY Tesla Lighting • Circuit Tester.
- FEATURES: Understanding Inductors • The Schmitt Trigger-Part 5 • Circuit Surgery • Interface • New Technology Update • Net Work – The Internet Page.

APRIL ’01
- FEATURES: The Schmitt Trigger-Part 6 • Practically Speaking • Ingenuity Unlimited • Circuit Surgery • Net Work – The Internet Page • FREE supplement – An End To All Disease.

MAY ’01
- FEATURES: The Schmitt Trigger-Part 7 • Interface • Circuit Surgery • Ingenuity Unlimited • New Technology Update • Net Work – The Internet Page.

JUNE ’01
- PROJECTS: Hosepipe Controller • In-Circuit Ohmmeter • Dummy PIR Detector • Magfield Meter.
- FEATURES: Controlling Jodrell Bank • PIC16F8x’s Extended Memory Use • Practically Speaking • Ingenuity Unlimited • New Technology Update • Circuit Surgery • Net Work – The Internet Page.

BACK ISSUES ONLY £3.00 each inc. UK p&p. Overseas prices £3.50 each surface mail, £4.95 each airmail.

We can also supply issues from earlier years: 1998 (except Jan. to May, July, Nov., Dec.), 1999, 2000 (except Feb.). Where we do not have an issue a photocost of any one article or one part of a series can be provided at the same price.

ORDER FORM – BACK ISSUES – PHOTOSHOTS– INDEXES

- [] Send back issues dates
- [] Send photocosts of (article title and issues date)
- [] Send copies of last five years indexes (£3.00 for five inc. p&p – Overseas £3.50 surface, £4.95 airmail)

Name: ____________________________ Address: ____________________________ Tel: ____________________________

I enclose cheque/P.O./bank draft to the value of £ ____________________________ Please charge my Visa/Mastercard/Amex/Diners Club/Switch £ ____________________________

Card No. ____________________________ Card Expiry Date ____________________________

Note: Minimum order for credit cards £5.

Send to: Everyday Practical Electronics, Wimborne Publishing Ltd., 459 Wimborne Road East, Ferndown, Dorset BH22 9BD. Tel: 01202 873872. Fax: 01202 874562.

E-mail: orders@epemag.wimborne.co.uk On-line Shop: www.epemag.wimborne.co.uk/shop.htm

Payments must be in £ sterling – cheque or bank draft drawn on a UK bank. Normally supplied within seven days of receipt of order.

Send a copy of this form, or order by letter if you do not wish to cut your leave.
A great way to buy EPE Back Issues – our wallet-sized CD-ROMs contain back issues from our EPE Online website plus bonus articles, all the relevant PIC software and web links. All this for just £12.45 each including postage and packing.

VOL 1 CONTENTS
BACK ISSUES – November 1998 to June 1999 (all the projects, features, news, IUs etc. from all eight issues). Note: No advertisements or Free Gifts are included.
PIC PROJECT CODES – All the available codes for the PIC based projects published in issues from November 1998 to June 1999.

VOL 2 CONTENTS
BACK ISSUES – July 1999 to December 1999 (all the projects, features, news, IUs, etc. from all six issues). Note: No advertisements or Free Gifts are included.
PIC PROJECT CODES – All the available codes for the PIC-based projects published in issues from July to December 1999.

VOL 3 CONTENTS
BACK ISSUES – January 2000 to June 2000 (all the projects, features, news, IUs, etc. from all six issues). Note: No advertisements or Free Gifts are included.
PIC PROJECT CODES – All the available codes for the PIC-based projects published in issues from January to June 2000.

VOL 4 CONTENTS
BACK ISSUES – July 2000 to Dec. 2000 (all the projects, features, news, IUs etc. from all six issues). Note: No Free Gifts are included.
PROJECT CODES – All the available codes for the programmable projects from July to Dec. 2000.

EXTRA ARTICLES – ON ALL VOLUMES
BASIC SOLDERING GUIDE – Alan Winstanley’s internationally acclaimed fully illustrated guide.
UNDERSTANDING PASSIVE COMPONENTS – Introduction to the basic principles of passive components.
HOW TO USE INTELLIGENT L.C.D.s, By Julian Ilett – An utterly practical guide to interfacing and programming intelligent liquid crystal display modules.
PhyzyB COMPUTERS BONUS ARTICLE 2 – Creating an Event Counter. By Clive “Max” Maxfield and Alvin Brown.
INTERGRAPH COMPUTER SYSTEMS 3D GRAPHICS – A chapter from Intergraph’s book that explains computer graphics technology in an interesting and understandable way with full colour graphics.

EXTRA ARTICLE ON VOL 1 & 2
THE LIFE & WORKS OF KONRAD ZUSE – a brilliant pioneer in the evolution of computers. A bonus article on his life and work written by his eldest son, including many previously unpublished photographs.

NOTE: This mini CD-ROM is suitable for use on any PC with a CD-ROM drive. It requires Adobe Acrobat Reader (available free from the internet – www.adobe.com/acrobat)

BACK ISSUES CD-ROM ORDER FORM
Please send me (quantity) BACK ISSUES CD-ROM VOL 1
Please send me (quantity) BACK ISSUES CD-ROM VOL 2
Please send me (quantity) BACK ISSUES CD-ROM VOL 3
Please send me (quantity) BACK ISSUES CD-ROM VOL 4

Price £12.45 each – includes postage to anywhere in the world.

Name ...
Address ..
Post Code ...

□ I enclose cheque/P.O./bank draft to the value of £
□ Please charge my Visa/Mastercard/Amex/Diners Club/Switch £

Card No. ...
Expiry Date ... Switch Issue No.

SEND TO: Everyday Practical Electronics, Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND.
Tel: 01202 873872. Fax: 01202 874562.
E-mail: orders@epemag.wimborne.co.uk

Payments must be by card or in £ Sterling – cheque or bank draft drawn on a UK bank.

Normally supplied within seven days of receipt of order.

Send a copy of this form, or order by letter if you do not wish to cut your issue.

Order on-line from www.epemag.wimborne.co.uk/shopdoor.htm or www.epemag.com (USA $ prices)
or by phone, Fax, E-mail or Post
How to receive MSF radio clock signals in a “shielded” building.

In common with the author’s Multi-channel Transmission System featured in the May and June 2000 issues, this project began with a request from the local Hospital Radio group.

The group use radio-controlled clocks working from the 60kHz MSF signals transmitted from Rugby to assist with the synchronisation of some of their broadcast items. They soon discovered that these clocks were unable to receive the signal in their new studio, which is located in the interior of a large steel-framed building.

A way of overcoming this problem was required so once again the author’s services were called upon. Clearly the simplest approach would be to place a receiving antenna somewhere close to the edge of the building or even outside it, conduct the signal to the studio through a screened cable and then re-radiate it close to the clocks.

Small ferrite antenna assemblies are readily available complete with capacitors tuned to the Rugby MSF signal so they’d tried simply attaching one to each end of a length of 75 ohm UHF TV co-axial cable, but it didn’t work! “The signal seemed to get lost in the cable”, was their comment.

In retrospect, the probable cause of the failure was the cable’s capacitance which would have shifted both antenna centre frequencies a long way from the required 60kHz. A circuit to buffer and amplify the signal at the receiving end seemed the most promising solution and ultimately led to the development of this project. It seems likely that the problem of MSF clocks failing to work in steel-framed buildings may be quite common since many office and factory premises use this form of construction, so this circuit may find plenty of applications.

There may also be electronics enthusiasts who would like to work with the signal and would appreciate its availability at an easily usable level and source impedance since resistive or capacitive loading will tend to de-tune it and adversely affect performance. For this reason it is first buffered by the field effect transistor (f.e.t.) TR1, which does not amplify the signal voltage but greatly reduces its impedance. The output from TR1 is taken from the source (s) connection.

Diodes D1 and D2 protect TR1 from excessively high signal levels should these be encountered. Transistor TR2 provides a voltage gain of about 20, set by the values of resistors R4 and R5.

An AD8532 dual op.amp, IC1, was selected for its features of high speed, rail-to-rail outputs, good output current capability and ability to operate from a 5V supply. The first amplifier IC1a provides further voltage gain of about 10 and incorporates some upper and lower frequency response tailoring with capacitors C6 and C7.

Finally, the signal passes through a passive low-pass filter comprised of resistor R10 and capacitor C8 to the second amplifier, IC1b, which is used as a unity-gain buffer. Resistor R11 protects the output from accidental short circuits.

A problem with high-gain circuits is unwanted positive feedback which can cause instability. Often the path taken by such feedback is through the power supply...
rails. Two measures have been taken in this circuit to prevent this occurring.

The first is the use of the local supply voltage regulator IC2 to provide a constant 5V supply. Together with decoupling capacitors C9 and C10, this virtually eliminates signal frequency fluctuations in the supply and also allows the circuit to operate from a wide supply voltage range, including 12V, which is readily available from the Hospital Radio group’s equipment.

from Rugby using a 100 per cent modulation system, meaning that the signal is either on or off.

A concern during the design of this project was that the high Q of the tuned ferrite aerials would cause long rise and fall times in the re-transmitted signal which might in turn render it unrecognisable by the clocks. However, in practice this has not proved to be a problem. Two clocks of very different types were placed next to the output antenna and both synchronised correctly to its signal with no difficulty whatsoever.

REPEATER CONSTRUCTION

The components for the repeater part of the project are all mounted on a small printed circuit board as shown in Fig.2. This board is available from the EPE PCB Service, code 306.

COMPONENTS

<table>
<thead>
<tr>
<th>Main Repeater Unit</th>
<th>Approx. Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistors</td>
<td>£26 excluding case and meter.</td>
</tr>
<tr>
<td>R1, R11 1k (2 off)</td>
<td></td>
</tr>
<tr>
<td>R2 39k</td>
<td></td>
</tr>
<tr>
<td>R3 22k</td>
<td></td>
</tr>
<tr>
<td>R4 1k</td>
<td></td>
</tr>
<tr>
<td>R5 12Ω</td>
<td></td>
</tr>
<tr>
<td>R6 470Ω</td>
<td></td>
</tr>
<tr>
<td>R7 10k</td>
<td></td>
</tr>
<tr>
<td>R8 100k</td>
<td></td>
</tr>
<tr>
<td>R9 220Ω</td>
<td></td>
</tr>
<tr>
<td>R10 5k</td>
<td></td>
</tr>
<tr>
<td>All 1% 0.6W metal film.</td>
<td></td>
</tr>
<tr>
<td>Capacitors</td>
<td></td>
</tr>
<tr>
<td>C1 part of antenna assembly (see text)</td>
<td></td>
</tr>
<tr>
<td>C2, C6 47nF resin-dipped ceramic (2 off)</td>
<td></td>
</tr>
<tr>
<td>C3, C5 470nF resin-dipped ceramic (2 off)</td>
<td></td>
</tr>
<tr>
<td>C4, C10 100µF radial elect. 10V (2 off)</td>
<td></td>
</tr>
<tr>
<td>C7 6p8 ceramic plate</td>
<td></td>
</tr>
<tr>
<td>C8 47pF resin-dipped ceramic</td>
<td></td>
</tr>
<tr>
<td>C9, C11 100nF resin-dipped ceramic (2 off)</td>
<td></td>
</tr>
<tr>
<td>C12 100µF radial elect. 25V</td>
<td></td>
</tr>
<tr>
<td>Semiconductors</td>
<td></td>
</tr>
<tr>
<td>D1, D2 1N4148 signal diode (2 off)</td>
<td></td>
</tr>
<tr>
<td>TR1 2N3819 n-channel f.e.t.</td>
<td></td>
</tr>
<tr>
<td>TR2 BC184L npn transistor (2 off)</td>
<td></td>
</tr>
<tr>
<td>IC1 TL071 f.e.t. op.amp</td>
<td></td>
</tr>
<tr>
<td>IC2 ADB532 dual op.amp</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>L1/C1 60kHz ferrite antenna assembly</td>
<td></td>
</tr>
<tr>
<td>TB1 4-way screw terminal block, p.c.b. mounting</td>
<td></td>
</tr>
<tr>
<td>Printed circuit board, available from the EPE PCB Service, code 306; 8-pin d.i.l. socket; solder pins; solder, etc.</td>
<td></td>
</tr>
</tbody>
</table>

LOCAL TIME

In practice this was found to produce a strong but localised signal field which is exactly what is required. If more than one clock has to operate from this arrangement it should be possible to connect several extra tuned circuits to the cable, each with a 10nF capacitor and a 10kΩ resistor in series with the first. Data is transmitted with the first. Data is transmitted everyday Practical Electronics, July 2001
Construction should begin with the fitting of all resistors, the two diodes, the small ceramic capacitors, a d.i.l. (dual-in-line) socket for IC1, the three electrolytic capacitors and the regulator IC2. The terminal block TB1 may also be fitted at this point and a pair of solder pins can be provided for connections to the antenna coil.

A supply of between 9V and 15V should be applied, and the regulated 5V supply should be checked as present and correct.

The two transistors may be fitted next. A temporary short circuit link wire should be connected between the input and the 0V line, and power re-applied. If all is well, the collector (c) of TR2 should have a d.c. voltage of about 2·2V and the supply voltage to the transistors, measured at the top of R2 (as seen in Fig.2), should be about 4·4V . If this appears correct, IC1 can be inserted and the circuit powered again.

The two outputs of IC1, pin 1 and pin 7, should both show d.c. voltages of about 2·2V and the total supply current should be about 6·3mA. If so, the board is probably OK so it can be completed by fitting and connecting the ferrite antenna, L1.

This part of the project can be fitted into a case if necessary, but any housing used should be made of plastic with no large metal components close to the antenna. In areas of poor signal strength it may be best to use a weatherproof housing and site the unit outside to obtain a better signal. The method of connecting the re-radiating antenna to the unit is shown in Fig.3.

This may also be housed in a small plastic case for a neat appearance, though in some cases it may be possible to simply hide it behind the clock. The negative supply should be earthed at some point to keep signal radiation from the screened output cable to a minimum.

During the design of the repeater amplifier it was decided that a portable signal strength indicator would be useful as it might assist in finding the best spot to place the receiving antenna, in orientating it for the strongest signal, and in checking the output field strength at the point where it was re-radiated.

The antenna may be attached to the board with a couple of blobs of Blu-Tack, which seems to increase in strength over time and has proved more than adequate in the prototype. Further testing will require test equipment (or a steel-framed building and a clock!) or the signal strength indicator unit which will be described next.

If an oscilloscope is available it may be used to display the output of the board, which will vary according to the range from the transmitter, but will probably be a few tens of millivolts. It should appear as a 60kHz sinewave, pulsing on and off at around 1Hz or slightly faster.
The simplest way of doing this was to construct another amplifier and use it with an a.c. millivoltmeter. The workshop multimeter’s a.c. performance was a bit depleted at 60kHz so another circuit was designed as an add-on for the task. This is shown in Fig.4.

In this circuit, IC1 is a TL071 op.amp used to buffer the input and provide a small amount of extra gain. Its output drives an a.c. millivoltmeter circuit built around transistors TR1 and TR2, which compensate for the forward voltage drops of diodes D1 and D2, whilst driving the 100μA meter, ME1.

The various capacitor values have been chosen to reduce response at low frequencies whilst maintaining it at 60kHz. In fact, the response begins to fall off at around 5kHz but at the other end is still flat to beyond 200kHz. The sensitivity is set by the values of resistors R2 and R6 and, with the values shown, is 100mV peak-to-peak, or about 35mV r.m.s. for a sinewave input.

The meter is a 100μA moving coil type. Capacitors C2, C7 and C8 are local supply decouplers to help maintain stability. The supply voltage for this circuit may be anywhere between about 7V and 15V, so a 9V PP3 battery may be used for portability. Construction of this part of the circuit consists of assembling the components on the p.c.b. as shown in Fig.5. This board is available from the EPE PCB Service, code 307.

METERING CONSTRUCTION

Begin assembly with the resistors, then the diodes, small capacitors, a d.i.l. socket for IC1, and finally the transistors and electrolytic capacitor.

Solder pins are used to make external connections to this part of the project. If the meter is attached to the circuit and power applied it should initially read zero, but touching pin 6 (output) of the socket of IC1 will probably result in a small reading.

Next IC1 can be fitted. Note that this op.amp has no input bias voltage circuit as it will obtain a d.c. bias from the voltage present at the output of the first board.

If it is desired to test the circuit on its own using a signal generator, it will be necessary to provide input biasing. This can be done with a couple of 100kΩ resistors and a 100nF coupling capacitor as shown in Fig.6. The complete circuit should draw a supply current of about 2·5mA.

INTERCONNECTIONS

Connecting the unit to the first board requires some care. If the two boards are too close to each other, feedback will take place between them and cause false high meter readings, so they should be kept a reasonable distance apart and the wiring between them and the meter should be kept short and tidy.
ENCLOSURES

If a more professional job is required, a plastic case can be used instead with a similar layout, but it is suggested that the layout is tested before cutting any holes in the case. It was also found that providing a Ground connection by touching the circuit’s negative supply rail approximately doubled the meter reading, and that simply resting a finger on the metal case of the battery achieves a similar effect.

If a plastic case is used a small metal touch-plate connected to the negative supply could be provided for this contact. A metal case must not be used, of course, as this would prevent the signal from reaching the antenna.

INSTALLATION

In use, it has been found that strong signal sources such as computers can “block” the repeater unit, but apart from this limitation it works well. It certainly proved possible to demonstrate a complete lack of signal within the metal-framed hospital building and to locate a spot above a false ceiling adjacent to an outside wall where an adequate signal was available.

It also showed the strong but short-ranged nature of the output signal close to the clock, and allowed the selection of a suitable value for the series resistor used to drive the output antenna, which in some cases may be higher or lower than the 10kΩ value suggested.

It assisted with correct orientation for the antenna above the ceiling although this may also be carried out with a compass. As many readers will know, ferrite aerials give greatest output when placed at right angles to the direction in which the transmitter lies.

However, use of the meter will compensate for any local variations, something the compass method cannot do. In finding the direction of the transmitter it may prove easier to find the “null” or smallest signal orientation due to the pulsed nature of the transmission and then place the receiving antenna at right angles to this.

TRANSMITTER MAINTENANCE

Finally, it should be noted that the Rugby transmitter is occasionally switched off for maintenance, so if no signals are visible, it is worth checking this out first before assuming there may be a fault in the project.

There is a quarterly maintenance period which normally takes place on the first Tuesday of each January, April, July, and October from 1000 to 1400 hours GMT (1100 to 1500 BST in summer time). An annual maintenance period takes place over a two week period in the summer, with the signal being absent during the daytime but restored overnight (although this is not guaranteed). The period for 2001 is from 1300 BST Monday 16 July to 1300 BST Monday 30 July.

More details about the MSF transmissions can be obtained from the National Physical Laboratory (NPL), Twyford Green, Middx TW11 0LW. Tel: 0208 977 3222. Web: www.npl.co.uk.

Watch Slides on TV.

Make videos of your slides. Digitise your slides (using a video capture card) “Liesgang diav” automatic slide viewer with built in high quality colour TV camera. It has a composite video output to a phono plug (SACC & BNC adaptors are available). They are in very good condition with few signs of use. More details see www.diahv.co.uk.

£91.91 + VAT = £108.00

Board cameras all with 512 x 582 pixels 8-5mm 1/3 inch sensor and composite video output. All need to be housed in your own enclosure and have fragile exposed surface mount parts. They all require a power supply of between 10V and 12V DC 150mA. 47µF size 60 x 38 x 27mm with 6 infra red LEDs (gives the same illumination as a small torch but is not visible to the human eye) £37.00 + VAT = £43.48

300µF size 32 x 32 x 14mm spy camera with a fixed focus pin hole lens for hiding behind a very small hole £35.00 + VAT = £41.13

40MC size 39 x 38 x 27mm camera for “C” mount lens these give a much sharper image than the smaller lenses £32.00 + VAT = £37.60

Economy C mount lenses all fixed focus & fixed iris

VSL122F 12mm F1.6 2 x 15 degrees viewing angle £15.97 + VAT £18.76

VSL6022F 6mm F1.22 32 x 24 degrees viewing angle £17.65 + VAT £20.74

VSL6022F 6mm F1.22 32 x 24 degrees viewing angle £19.05 + VAT £22.38

VSL8020F 8mm F1.22 24 x 24 degrees viewing angle £19.90 + VAT £23.38

Better quality C Mount lenses

VSL614F 16mm F1.6 30 x 24 degrees viewing angle £26.43 + VAT £31.06

VSL815F 8mm F1.3 with iris 55 x 42 degrees viewing angle £77.45 + VAT £91.00

1206 surface mount resistors £12 values 10 ohm to 1M ohm £10 of 1 value £1.00 + VAT £1000 of 1 value £5.00 + VAT £5000

665 battery pack originally intended to be used with an orbitel mobile telephone it contains 10 1.4Ah sub C batteries (42 x 22 dia. the size usually used in cordless screw- drivers etc.) the pack is new and unused and can be broken open quite easily £7.46 + VAT = £8.77

Please add £1.66 + VAT = £1.95 postage & packing per order

Radio Bygones

Whether your interest is in domestic radio and TV or in amateur radio, in military, aeronautical or marine communications, in radar and radio navigation, in instruments, in broadcasting, in audio and recording, or in professional radio systems fixed or mobile, Radio Bygones is the magazine for you.

ARTICLES on restoration and repair, history, circuit techniques, personalities, reminiscences and just plain nostalgia — you’ll find them all. Plus features on museums and private collections and a full-colour photo-feature in every issue.

IT’S MOSTLY about valves, of course, but “solid-state” — whether of the coherer and spark-gap variety or early transistors — also has a place.

FROM THE DAYS of Maxwell, Hertz, Lodge and Marconi to what was the state-of-the-art just a few short years ago . . .

THERE IS ALSO a selection of free reader’s For Sale and Wanted advertisements in every issue.

Radio Bygones covers it all!

THE MAGAZINE is published six times a year, and is only available by postal subscription. It is not available at newsagents.

TO TAKE OUT a subscription, or to order a sample copy, please contact:

Radio Bygones, Wimborne Publishing Ltd.,
408 Wimborne Road East, Ferndown, Dorset BH22 9ND.
Tel: 01202 873872. Fax 01202 874562. Web sites:

JPG Electronics
276-278 Chatsworth Road, Chesterfield, S40 1BH.
Tel 01246 211202 Fax 01246 550959
Mastercard/Visa/Switch
Callers welcome 9.30 a.m. to 5.30 p.m. Monday to Saturday
VIDEOS ON ELECTRONICS

A range of videos selected by EPE and designed to provide instruction on electronics theory. Each video gives a sound introduction and grounding in a specialised area of the subject. The tapes make learning both easier and more enjoyable than pure textbook or magazine study. They have proved particularly useful in schools, colleges, training departments and electronics clubs as well as to general hobbyists and those following distance learning courses etc.

BASICS

VT201 to VT206 is a basic electronics course and is designed to be used as a complete series, if required.

VT201 54 minutes. Part One; D.C. Circuits. This video is an absolute must for the beginner. Series circuits, parallel circuits, Ohms law, how to use the digital multimeter and much more. Order Code VT201

VT202 62 minutes. Part Two; A.C. Circuits. This is your next step in understanding the basics of electronics. You will learn about how coils, transformers, capacitors, etc are used in common circuits. Order Code VT202

VT203 57 minutes. Part Three; Semiconductors. Gives you an exciting look into the world of semiconductors. With basic semiconductor theory. Plus 15 different semiconductor devices explained. Order Code VT203

VT204 56 minutes. Part Four; Power Supplies. Guides you step-by-step through different sections of a power supply. Order Code VT204

VT205 57 minutes. Part Five; Amplifiers. Shows you how amplifiers work as you have never seen them before. Class A, class B, class C, op.amps. etc. Order Code VT205

VT206 54 minutes. Part Six; Oscillators. Oscillators are found in both linear and digital circuits. Gives a good basic background in oscillator circuits. Order Code VT206

DIGITAL

Now for the digital series of six videos. This series is designed to provide a good grounding in digital and computer technology.

VT301 54 minutes. Digital One; Gates begins with the basics as you learn about seven of the most common gates which are used in almost every digital circuit, plus Binary notation. Order Code VT301

VT302 55 minutes. Digital Two; Flip Flops will further enhance your knowledge of digital basics. You will learn about Octal and Hexadecimal notation groups, flip-flops, counters, etc. Order Code VT302

VT303 54 minutes. Digital Three; Registers and Displays is your next step in obtaining a solid understanding of the basic circuits found in today's digital designs. Gets into multiplexers, registers, display devices, etc. Order Code VT303

VT304 59 minutes. Digital Four; DAC and ADC shows you how the computer is able to communicate with the real world. You will learn about digital-to-analogue and analogue-to-digital converter circuits. Order Code VT304

VT305 56 minutes. Digital Five; Memory Devices introduces you to the technology used in many of today's memory devices. You will learn all about ROM devices and then proceed into PROM, EPROM, EEPROM, SRAM, DRAM, and MM7 devices. Order Code VT305

VT306 56 minutes. Digital Six; The CPU gives you a thorough understanding in the basics of the central processing unit and the input/output circuits used to make the system work. Order Code VT306

VCR MAINTENANCE

VT102 84 minutes: Introduction to VCR Repair. Warning, not for the beginner. Through the use of block diagrams this video will take you through the various circuits found in the NTSC VHS system. You will follow the signal from the input to the audio/video heads then from the heads back to the output. Order Code VT102

VT103 35 minutes: A step-by-step easy to follow procedure for professionally cleaning the tape path and replacing many of the belts in most VHS VCR's. The viewer will also become familiar with the various parts found in the tape path. Order Code VT103

RADIO

VT401 61 minutes. A.M. Radio Theory. The most complete video ever produced on a.m. radio. Begins with the basics of a.m. transmission and proceeds to the five major stages of a.m. reception. Learn how the signal is detected, converted and reproduced. Also covers the Motorola C-QUAM a.m. stereo system. Order Code VT401

VT402 58 minutes. F.M. Radio Part 1. F.M. basics including the functional blocks of a receiver. Plus r.f. amplifier, mixer oscillator, i.f. amplifier, limiter and f.m. decoder stages of a typical f.m. receiver. Order Code VT402

VT403 58 minutes. F.M. Radio Part 2. A continuation of f.m. technology from Part 1. Begins with the detector stage output, proceeds to the 19HF amplifier, frequency doubler, stereo demultiplexer and audio amplifier stages. Also covers RDS digital data encoding and decoding. Order Code VT403

MISCELLANEOUS

VT501 58 minutes. Fibre Optics. From the fundamentals of fibre optic technology through cable manufacture to connectors, transmitters and receivers. Order Code VT501

ORDERING: Price includes postage to anywhere in the world.

OVERSEAS ORDERS: We use the VAT portion of the price to pay for airmail postage and packing, wherever you live in the world. Just send £34.95 per tape. All payments in £ sterling only (send cheque or money order drawn on a UK bank). Make cheques payable to Direct Book Service.

Visa, Mastercard, Amex, Diners Club and Switch orders accepted – please give card number, card expiry date and Switch Issue No.

Orders are normally sent within seven days but please allow a maximum of 28 days, longer for overseas orders.

Send your order to: Direct Book Service, Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND

Tel: 01202 873872. Fax: 01202 874562. E-mail: db@epemag.wimborne.co.uk

Online store: www.epemag.wimborne.co.uk/shopdoor.htm
WHETHER ELECTRONICS IS YOUR HOBBY OR YOUR LIVELIHOOD...
YOU NEED THE MODERN ELECTRONICS MANUAL and the ELECTRONICS SERVICE MANUAL

THE MODERN ELECTRONICS MANUAL

SALE 40% OFF

while stocks last Buy either Manual at 40% off regular price, Or buy both and save even more.

DON’T MISS THIS!

The essential reference work for everyone studying electronics

- Over 900 pages
- In-depth theory
- Projects to build
- Detailed assembly instructions
- Full components checklists
- Extensive data tables
- Detailed supply information
- Easy-to-use format
- Clear and simple layout
- Comprehensive subject range
- Professionally written
- Regular Supplements
- Sturdy gold blocked ring-binder

EVERYTHING YOU NEED TO GET STARTED AND GO FURTHER IN ELECTRONICS!

The revised edition of the Modern Electronics Base Manual contains practical, easy-to-follow information on the following subjects:

CIRCUITS TO BUILD: There’s nothing to beat the satisfaction of creating your own project. From basic principles, like soldering and making printed circuit boards, to circuit-building, the Modern Electronics Manual and its Supplements describe clearly, with appropriate diagrams, how to assemble radios, loudspeakers, amplifiers, car projects, computer interfaces, measuring instruments, workshop equipment, security systems, etc. The Base Manual describes 13 projects including a Theremin and a Simple TENS Unit.

ESSENTIAL DATA: Extensive tables on diodes, transistors, thyristors and triacs, digital and linear i.c.s.

EXTENSIVE GLOSSARY: Should you come across a technical word, phrase or abbreviation you’re not familiar with, simply turn to the glossary included in the Manual and you’ll find a comprehensive definition in plain English.

The Manual also covers Safety and Suppliers. The most comprehensive reference work ever produced at a price you can afford, the revised edition of THE MODERN ELECTRONICS MANUAL provides you with all the essential information you need.

THE MODERN ELECTRONICS MANUAL

Regular Supplements: Approximately 160-page Supplements of additional information which, if requested, are forwarded to you immediately on publication (four times a year). These are billed separately and can be discontinued at any time.

Presentation: Durable looseleaf system in large A4 format

Price of the Basic Work: £39.95 SALE PRICE £23.97 (to include a recent Supplement FREE)

Guarantee

Our 30 day money back guarantee gives you complete peace of mind. If you are not entirely happy with either Manual, for whatever reason, simply return it to us in good condition within 30 days and we will make a full refund of your payment – no small print and no questions asked.

(Overseas buyers do have to pay the overseas postage charge)

Wimborne Publishing Ltd., Dept Y7, 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Tel: 01202 873872. Fax: 01202 874562.
EVERYTHING YOU NEED TO KNOW TO GET STARTED IN REPAIRING AND SERVICING ELECTRONIC EQUIPMENT

SAFETY: Be knowledgeable about Safety Regulations, Electrical Safety and First Aid.

UNDERPINNING KNOWLEDGE: Specific sections enable you to Understand Electrical and Electronic Principles, Active and Passive Components, Circuit Diagrams, Circuit Measurements, Radio, Computers, Valves and manufacturers’ Data, etc.

PRACTICAL SKILLS: Learn how to identify Electronic Components, Avoid Static Hazards, Carry Out Soldering and Wiring, Remove and Replace Components.

TEST EQUIPMENT: How to Choose and Use Test Equipment, Assemble a Toolkit, Set Up a Workshop, and Get the Most from Your Multimeter and Oscilloscope, etc.

SERVICING TECHNIQUES: The regular Supplements include vital guidelines on how to Service Audio Amplifiers, Radio Receivers, TV Receivers, Cassette Recorders, Video Recorders, Personal Computers, etc.

TECHNICAL NOTES: Commencing with the IBM PC, this section and the regular Supplements deal with a very wide range of specific types of equipment – radios, TVs, cassette recorders, amplifiers, video recorders etc.

REFERENCE DATA: Detailing vital parameters for Diodes, Small-Signal Transistors, Power Transistors, Thyristors, Triacs and Field Effect Transistors. Supplements include Operational Amplifiers, Logic Circuits, Optoelectronic Devices, etc.

ELECTRONICS SERVICE MANUAL

Basic Work: Contains around 900 pages of information. Edited by Mike Tooley BA

Regular Supplements: Approximately 160-page Supplements of additional information which, if requested, are forwarded to you immediately on publication (four times a year). These are billed separately and can be discontinued at any time.

Presentation: Durable looseleaf system in large A4 format

Price of the Basic Work: £39.95 SALE PRICE £23.97 (to include a recent Supplement FREE)

ORDER BOTH MANUALS TOGETHER AND SAVE ANOTHER £8

REGULAR SUPPLEMENTS

Unlike a book or encyclopedia, these Manuals are living works – continuously extended with new material. If requested, Supplements are sent to you approximately every three months. Each Supplement contains around 160 pages – all for only £23.50+£2.50 p&p. You can, of course, return any Supplement (within ten days) which you feel is superfluous to your needs. You can also purchase a range of past Supplements to extend your Base Manual on subjects of particular interest to you.

RESPONDING TO YOUR NEEDS

We are able to provide you with the most important and popular, up to date, features in our Supplements. Our unique system is augmented by readers' requests for new information.

You can also contact the editors directly in writing if you have a specific technical request or query relating to the Manuals.

ORDER FORM

Simply complete and return the order form with your payment to the following address:

Wimborne Publishing Ltd, Dept Y7, 408 Wimborne Road East, Ferndown, Dorset BH22 9ND

We offer a 30 day MONEY BACK GUARANTEE - if you are not happy with either Manual simply return it to us in good condition within 30 days for a full refund.

Overseas buyers do have to pay the overseas postage – see below.

POSTAGE CHARGES

<table>
<thead>
<tr>
<th>Postal Region</th>
<th>Surface</th>
<th>Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainland UK</td>
<td>FREE</td>
<td>–</td>
</tr>
<tr>
<td>Scottish Highlands,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK Islands & Eire</td>
<td>£5.50 each</td>
<td>–</td>
</tr>
<tr>
<td>Europe (EU)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>£20 each</td>
<td>£26 each</td>
</tr>
<tr>
<td>Europe (Non-EU)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>£20 each</td>
<td>£26 each</td>
</tr>
<tr>
<td>USA & Canada</td>
<td>£25 each</td>
<td>£33 each</td>
</tr>
<tr>
<td>Far East & Australasia</td>
<td>£31 each</td>
<td>£35 each</td>
</tr>
<tr>
<td>Rest of World</td>
<td>£25 each</td>
<td>£45 each</td>
</tr>
</tbody>
</table>

Please allow four working days for UK delivery. NOTE: Surface mail can take over 10 weeks to some parts of the world. Each Manual weighs about 4kg when packed.

Online Shop: www.electronics-wimborne.co.uk/shop/index.htm
The Teach-In 2000 series is now available on CD-ROM, focusing on microprocessor projects. These learning aids enable the construction and testing of both demonstration and development circuits. The Micro Lab and software appeal to higher level students and those developing circuits. These learning aids bring electronics to life in an enjoyable and interesting way: you will both see and hear the electron in action! The Micro Lab microprocessor add-on system is the one that you need to know if you can’t tell your EMS from your EGA!...

Everyday Practical Electronics Books

TEACH-IN NO. 7

ANALOGUE AND DIGITAL ELECTRONICS COURSE (published by Everyday Practical Electronics)
Alan Winstanley and Keith Dye B.Eng(Tech)AMIEE
This highly acclaimed EPE Teach-in series, which includes the use of the Mini Lab and Micro Lab test and development units, has been put together in book form. An interesting and thorough tutorial series aimed specifically at those making the novice or complete beginner in electronics. The series is designed to support those undertaking either GCSE Electronics or GCE Advanced Levels, and starts with fundamental principles.

If you are taking electronics or technology at school or college, this book is for you. If you just want to learn the basics of electronics or technology you must make sure you see it. Teach-in No. 7 will be invaluable if you are considering a career in electronics or even if you are already training in one. The Mini Lab and software enable the construction and testing of both demonstration and development circuits. These learning aids bring electronics to life in an enjoyable and interesting way: you will both see and hear the electron in action! The Micro Lab microprocessor add-on system is the one that you need to know if you can’t tell your EMS from your EGA!

An introduction to amateur radio

John Poole
Radio technology is becoming increasingly important in today’s high technology society. There are the traditional uses of radio which include broadcasting and point to point radio as well as the new technologies of satellites and cellular phones. All of these developments mean there is a great need for radio engineers at all levels.

Assuming a basic knowledge of electronics, this book provides an easy to understand grounding in the topic.

Projects for radio amateurs and S.W.L.

R. A. Penfold
This book describes a number of electronic circuits, most of which are quite simple, which can be used to enhance the performance of most short wave radio systems.

The circuits covered include: An aerial tuning unit; A simple active aerial; An add-on in o.s. for portable sets; A wavetrap to combat signals on spurious responses; An audio notch filter; A periodic squelch circuit; C.W. and S.S.B. audio filters; Simple noise limiters; A speech processor; A volume expander.

Other useful circuits include a crystal oscillator, and RTTY/C.W. tone decoder, and a RTTY serial to parallel converter. A full range of interesting and useful circuits for short wave enthusiasts!

Computers and Computing

Multimedia on the PC

Ian B. Ross
In this book, you’ll find out what a CD ROM is, how it works and why it is such a perfect add-on for a PC, allowing you to buy programmes, text, graphics and sound. You’ll learn about the operation of a CD ROM drive, and a sound card, pointing out the common problems which arise, and then shows how to use them to create a complete multimedia presentation that contains all the valuable information which you can then record as a commentary, even animation and edited video.

How to build your own PC

Morris Rosenthal
More and more people are building their own PCs. They get more value for their money, they create exactly the machine they want and satisfy all their computing needs and actually fun. That is, if they have a unique begin-ner’s guide like this one, which visually demonstrates how to construct a state-of-the-art computer from start to finish.

Computers and Computing

Through 150 crisp photographs and clear but minimal text, readers will confidently absorb the concepts of computer building. The extra-big format makes it easy to see what’s going on in the pictures. For non-specialists, there’s even a graphical glossary that clearly illustrated technical terms. The author also uses the “under the hood” and shows step-by-step how to create a socket 7 (Pentium and non-intel chips) and a Slot 1 (Pentium II) computer, covering: What first-time builders need to know; How to select and purchase parts; How to assemble the PC; How to install Windows 98. The few existing books on this subject, although badly outdated, are in steady demand. This one delivers the expertise and new technology that fledging computer builders are eagerly looking for.

Understanding PC specifications

R. A. Penfold
If you require a microcomputer for business applications, or a high quality home computer, an IBM PC or compatible is often the obvious choice. They are competitively priced, and are backed up by an enormous range of applications programs, hardware add-ons, etc. The main difference between these computers lies in the architecture of the specification that will best suit his or her needs. PCs range from simple terminals to highly sophisticated complex systems that can happily run applications that would have been considered beyond the abilities of a microcomputer not so long ago. It would be very easy to choose a PC system that is suitable, but run your applications inefficiently, or one which goes beyond your needs and consequently represents poor value for money.

This book explains PC specifications in detail, and the subjects covered include the following: Differences between types of PC (XT, AT, 80386, etc.); Maths co-processors; Input devices (keyboards, mice, and digitizers); Memory, including both expanded (EMS) and extended RAM, RAM disks and cache memories; Floppy disk drive formats and compatibility; Hard disk drives (including time factors and access times); Display adapters, including all standard PC types (CGA, Hercules, High Color, Super VGA, etc.). Controlling all this to ensure that you know to need if you can’t sell your EMS from your EISA!

Multimedia on the PC

Ian B. Ross
In this book, you’ll find out what a CD ROM is, how it works and why it is such a perfect add-on for a PC, allowing you to buy programmes, text, graphics and sound. You’ll learn about the operation of a CD ROM drive, and a sound card, pointing out the common problems which arise, and then shows how to use them to create a complete multimedia presentation that contains all the valuable information which you can then record as a commentary, even animation and edited video.

How to build your own PC

Morris Rosenthal
More and more people are building their own PCs. They get more value for their money, they create exactly the machine they want and actually fun. That is, if they have a unique begin-ner’s guide like this one, which visually demonstrates how to construct a state-of-the-art computer from start to finish.
Bebop To The Boolean Boogie
By Clive (call me Max) Maxfield
Specially imported by EPE – Excellent value
An Unconventional Guide to Electronics Fundamentals, Components and Processes
This book gives the "big picture" of digital electronics. This is the INDEPENDENT book that you've been waiting for. It's a book that will help you to choose the right components for your system to suit your personal needs, and equip you to exploit that system fully.

DIGITAL ELECTRONICS – A PRACTICAL APPROACH WITH FREE Software: Number One Systems – EASY-PC Professional XM and Pulsar (Limited Functionality)
Richard Monk
Covers binary arithmetic, Boolean algebra and logic gates, combination logic, sequential logic including the design and construction of asynchronous and synchronous circuits and registers and circuits. Together with a considerable practical content plus the additional attraction of its close association with computer aided design including the free EASY-PC software.

Bebop Bytes Back
By Clive “Max” Maxfield and Alvin Brown
Specially imported by EPE – Excellent value
An Unconventional Guide To Computers
This follow-on to Bebop to the Boolean Boogie is a multimedia extravaganza of information about how computers work. It picks up where “Bebop I” left off, guiding you through the fascinating world of computer design, and you’ll have a few chuckles, if not belly laughs, along the way. In addition to over 200 megabytes of mega-cool multimedia, the accompanying CD-ROM (for Windows 95 machines only) contains a virtual microcomputer, simulating the motherboard and standard computer peripheral in an extremely realistic manner. In addition to a wealth of technical information, myriad nuggets of trivia, and hundreds of carefully drawn illustrations, the book contains a set of lab experiments for the virtual microcomputer that let you recreate the experiences of early computer pioneers.

AN INTRODUCTION TO LOUDSPEAKERS AND ENCLOSURE DESIGN
V. Capel
This book explores the various features, good points and snags of an in-depth guide to building your own loudspeakers and what to look for when selecting a commercial design. It explains the various types and features of aural effects, and then shows you how to produce the distortion you need to create an accurate picture of the sound stage in your listening position.

Equally drawn illustrations, the book contains a set of lab experiments for print-ed circuit board production and project ideas especially useful.

VIDEO PROJECTS FOR THE ELECTRONICS CONSTRUCTOR
R. A. Penfold
Written by highly respected author R. A. Penfold, this book contains a collection of electronic projects specially designed for video enthusiasts. All the projects can be simply constructed, and are suitable for the newcomer to project construction, as they are assembled on stripboard.

Computers and Music – An Introduction
R. A. Penfold
Computers are playing an increasingly important part in the world of music, and the days when computerised music was strictly for the fanatical few are long gone.

DIGITAL GATES AND FLIP-FLOPS
R. A. Penfold
This book, intended for enthusiasts, students and technicians, seeks to establish a firm foundation in digital electronics by treating the topics of gates and flip-flops thoroughly and from the beginning. The topics such as Boolean algebra and Karnaugh mapping are explained, demonstrated and used extensively, and more attention is paid to the subject of synchronous counters than to the simple but less important ripple counters.

Everyday Practical Electronics, July 2001
527
PRACTICAL ELECTRONIC FILTERS
Owen Bishop
This book deals with the subject in a non-mathematical way. It reviews the main types of filter, explaining in simple terms how each type works and how it is used.

The book also presents a dozen filter-based projects with applications in and around the home or in the commercial environment. These include a number of audio projects such as a rhythm sequencer and a multi-voiced electronic organ.

Concluding the book is a practical step-by-step guide to designing simple filters for a wide range of purposes, with circuit diagrams and worked examples.

242 pages

Temporarily out of print

£4.49

CIRCUIT SOURCE BOOK 2
R. A. Penfold
This book has been written as a designer's guide to electronic designs by combining and using the various standard "building block" circuits provided. Where applicable, advice on how to alter the circuit parameters is provided.

The circuits covered are mainly concerned with signal generation, power supplies, and digital electronics.

The topics covered in this book include: S/N oscillators; sine waves; oscillators; function generators; CMOS oscillators; voltage controlled oscillators; radio frequency oscillators; S/N monostables; CMOS monostables; CMOS multivibrators; precision timers; power supply and regulator circuits; negative supply generators and voltage boosters; digital dividers; decoders, etc; counters and display drivers; D/A and A/D converters; opto-sensors, flip-flops, noise generators, tone decoders, etc. Over 170 circuits are provided, which it is hoped will be useful to all those involved in circuit design and application, be they professionals, students or hobbyists.

192 pages

Order code BP372

£5.45

PRACTICAL FIBRE-OPTIC PROJECTS
R. A. Penfold
White fibre-optic cables may have potential advantages over ordinary electric cables, for the electronics enthusiast it is probably their novelty value that makes them worthy of exploration. Fibre-optic cables provide an innovative interesting alternative to electric cables, but in most cases they also represent a practical approach to the problem. This book provides a number of tried and tested circuits for projects that utilise fibre-optic cables.

All the components used in these designs are readily available, none of them require the constructor to take out a second mortgage.

132 pages

Order code BP374

£5.45

BOOK ORDER FORM

Full name: ... Address: ..

Post code: ... Telephone No: ...

Signature: ..

I enclose cheque/PO payable to DIRECT BOOK SERVICE for £ ...

Please charge my Visa/Mastercard/Switch for £ ... Card expiry date:

Card Number: .. Switch issue No: ..

Please send book order codes: ...

Please continue on separate sheet of paper if necessary

BOOK ORDERING DETAILS

All prices include UK postage. For postage to Europe (air) and the rest of the world (surface) please add £1 per book. For the rest of the world airmail add £2 per book. Send a PO, cheque, international money order (£ sterling only) made payable to Direct Book Service or card details, Visa, Mastercard or Switch – minimum card order is £5 – to:

DIRECT BOOK SERVICE, WIMBORNE PUBLISHING LTD., 406 WIMBORNE ROAD EAST, PERIDOWN, WINTHORPE, DORSET BH2 9ND

Books are normally sent within seven days of receipt of order, but please allow 28 days for delivery – more for overseas orders. Please check price and availability (see latest issue of Everyday Practical Electronics) before ordering from old lists. If you are interested in a further selection of books see the next two issues of EPE.

Tel 01202 873872 Fax 01202 874562. E-mail: dbs@epemag.wimborne.co.uk

Order from our online shop at: www.epemag.wimborne.co.uk/shopdoor.htm

Order code BP267

£4.00

ELECTRONIC PROJECT BUILDING FOR BEGINNERS
R. A. Penfold
This book is for complete beginners to electronic project building. It provides a complete introduction to the practical side of this fascinating hobby, including the following topics:

Component identification, and buying the right parts; resistor colour codes, capacitor value markings, etc.

132 pages

Order code BP323

£5.45

ELECTRONIC PROJECTS FOR EXPERIMENTERS
R. A. Penfold
Many electronic hobbyists who have been pursuing their hobby for a number of years seem to suffer from the dreaded "seem it all before" syndrome. This book is fairly and squarely aimed at sufferers of this complaint, plus any other electronics enthusiasts who yearn to try something a bit different. No doubt many of the projects featured have practical applications, but they are all worth a try for their interest value alone.

The subjects covered include:- Electronic field detector, Basic Hall effect compass, Hall effect audio isolator, Voice scramble/descrambler, Bal detector, Bal style echo loco; Noise cancelling, LED strobeoscope, Infra-red "torch"; Electronic breath detector; Class D power amplifier, Strain gauge amplifier, Super hearing aid.

138 pages

Order code BP371

£5.45
Printed circuit boards for most recent EPE constructional projects are available from the PCB Service, see list. These are fabricated in glass fibre, and are fully drilled and routered. All prices include VAT and postage and packing. Add £1 per board for airmail outside of Europe. Remittances should be sent to The PCB Service, Everyday Practical Electronics, Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND, Tel: 01202 873872; Fax 01202 874562; E-mail: orders@epemag.wimborne.co.uk. On-line Shop: www.epmag.wimborne.co.uk/shopdoor.htm. Cheques should be crossed and made payable to Everyday Practical Electronics (Payment in £ sterling only).

NOTE: While 95% of our boards are held in stock and are dispatched within seven days of receipt of order, please allow a maximum of 28 days for delivery – overseas readers allow extra if ordered by surface mail.

Back numbers or photostats of articles are available if required – see the Back Issues page for details.

Please check price and availability in the latest issue. Boards can only be supplied on a payment with order basis.

EPE SOFTWARE
Software programs for EPE projects marked with an asterisk * are available on 3.5 inch PC-compatible disks or free from our Internet site. The following disks are available: PIC Tutorial (Mar-May '98 issues); PIC Teach-In (May-Jun '99 issues); EPE Disk 1 (Apr '99-Dec '99 issues); EPE Disk 2 (Jan-Dec '00); EPE Disk 3 (Jan-Dec '01); EPE Disk Interface 1 (October '00 issue to current cover date). The disks are obtainable from the EPE PCB Service at £3.00 each (UK) to cover our admin costs (the software itself is free). Overseas (each): £3.50 surface mail, £4.95 each airmail. All files can be downloaded free from our Internet FTP site: ftp://ftp.epemag.wimborne.co.uk.

EPE PRINTED CIRCUIT BOARD SERVICE
Order Code	Project	Quantity	Price
Name ...
Address ...
Tel. No. ...
I enclose payment of £........... (cheque/PO in £ sterling only) to:

Everyday Practical Electronics
MasterCard, Amex, Dinners Card, Visa or Switch

Minimum order for cards £5

Switch Issue No.

Card No.

Signature... Card Exp. Date..

NOTE: You can also order p.c.b.s by phone, Fax, E-mail or via our Internet site on a secure server: http://www.epmag.wimborne.co.uk/shopdoor.htm

PROJECT TITLE
<table>
<thead>
<tr>
<th>Order Code</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Femto Loop Aerial</td>
<td>SEPT '00</td>
</tr>
<tr>
<td>Remote Control IR Decoder</td>
<td>Software only</td>
</tr>
<tr>
<td>PC Dual-Channel Virtual Scope</td>
<td>OCT '00</td>
</tr>
<tr>
<td>Handcuff Switch</td>
<td>NOV '00</td>
</tr>
<tr>
<td>PIC Pulrometer</td>
<td>Software only</td>
</tr>
<tr>
<td>Twinkling Star</td>
<td>DEC '00</td>
</tr>
<tr>
<td>Festive Padder</td>
<td>Set</td>
</tr>
<tr>
<td>PIC Monitor Dual-PSU-1 PSU</td>
<td>Monitor Unit</td>
</tr>
<tr>
<td>Static Field Detector (Multi-project PCB)</td>
<td>932</td>
</tr>
<tr>
<td>Two-Way Intercom</td>
<td>JAN '01</td>
</tr>
<tr>
<td>U.P.D Detectors and Event Recorder</td>
<td>Magnetic Anomaly Detectors</td>
</tr>
<tr>
<td>Using PicA and Keypads</td>
<td>Software only</td>
</tr>
<tr>
<td>Ice Alarm</td>
<td>FEB '01</td>
</tr>
<tr>
<td>Graphics LCD Display with PICs (Supp)</td>
<td>Software only</td>
</tr>
<tr>
<td>Using the LM3914-6 L.E.D Bargraph Drivers</td>
<td>Multi-purpose Main p.c.b.</td>
</tr>
<tr>
<td>Relay Control</td>
<td>290</td>
</tr>
<tr>
<td>L.E.D Display</td>
<td>291</td>
</tr>
<tr>
<td>PIC Audio Power Meter</td>
<td>Software only</td>
</tr>
<tr>
<td>EPE Extender - Transmitter</td>
<td>MAR '01</td>
</tr>
<tr>
<td>Receiver</td>
<td>290</td>
</tr>
<tr>
<td>PIC Graphics L.C.D. Scope</td>
<td>MAY '01</td>
</tr>
<tr>
<td>Switch Package</td>
<td>293</td>
</tr>
<tr>
<td>PIC Interface Board</td>
<td>MAY '01</td>
</tr>
<tr>
<td>PIC MIDI Sustain Pedal</td>
<td>Software only</td>
</tr>
<tr>
<td>Wireless Monitorig System</td>
<td>MAR '99</td>
</tr>
<tr>
<td>PMF Trans/Rec Adaptor</td>
<td>219, a</td>
</tr>
<tr>
<td>Time and Date Generator</td>
<td>220, a</td>
</tr>
<tr>
<td>Auto Cupboard Light</td>
<td>221,</td>
</tr>
<tr>
<td>Smoke Alarms</td>
<td>222,</td>
</tr>
<tr>
<td>Wiring Housing Board</td>
<td>223,</td>
</tr>
<tr>
<td>Voice Record/Playback Module</td>
<td>224,</td>
</tr>
<tr>
<td>Mechanical Radio (pair)</td>
<td>225,</td>
</tr>
<tr>
<td>Versatile Event Counter</td>
<td>226, a</td>
</tr>
<tr>
<td>A.M/F.M Radio Remote Control – Transmitter</td>
<td>Receiver</td>
</tr>
<tr>
<td>Robust Housing Board</td>
<td>229,</td>
</tr>
<tr>
<td>PIC to Printer Interface</td>
<td>230,</td>
</tr>
<tr>
<td>PIC Digital Camera</td>
<td>MAY '99</td>
</tr>
<tr>
<td>Multilingual Translation</td>
<td>231,</td>
</tr>
<tr>
<td>PIC Audio Frequency Meter</td>
<td>232,</td>
</tr>
<tr>
<td>Ultrasonic Puncturing Finder</td>
<td>AUG '99</td>
</tr>
<tr>
<td>Electronics Data Logger</td>
<td>233,</td>
</tr>
<tr>
<td>Buffer Amplifier (Oscillators Pl 2)</td>
<td>234,</td>
</tr>
<tr>
<td>Magnetic Field Detector</td>
<td>235,</td>
</tr>
<tr>
<td>Sound Activated Switch</td>
<td>236,</td>
</tr>
<tr>
<td>Fire Alarm (Multi-project PCB)</td>
<td>237,</td>
</tr>
<tr>
<td>Chord Generator</td>
<td>SEP '99</td>
</tr>
<tr>
<td>Variable Dual Power Supply</td>
<td>241,</td>
</tr>
<tr>
<td>MCG Power Supply</td>
<td>OCT '99</td>
</tr>
<tr>
<td>Internal Lamp Delay</td>
<td>242,</td>
</tr>
<tr>
<td>Main Board (Multi-project PCB)</td>
<td>243,</td>
</tr>
<tr>
<td>Variable Frequency Source</td>
<td>DEC '99</td>
</tr>
<tr>
<td>Demeter One-Shot</td>
<td>245,</td>
</tr>
<tr>
<td>Pinbox Stopwatch</td>
<td>246,</td>
</tr>
<tr>
<td>Monochrome TV Watch – Part 2</td>
<td>DEC '99</td>
</tr>
<tr>
<td>Giant Display</td>
<td>247,</td>
</tr>
<tr>
<td>Serial Port Converter</td>
<td>248,</td>
</tr>
<tr>
<td>Loud Guard</td>
<td>249,</td>
</tr>
<tr>
<td>Flashing Snowman (Multi-project PCB)</td>
<td>JAN '00</td>
</tr>
<tr>
<td>Find It</td>
<td>FEB '00</td>
</tr>
<tr>
<td>Micro Recap Board</td>
<td>MAR '00</td>
</tr>
<tr>
<td>EPE Icebreaker – PCB257, programmed</td>
<td>Set</td>
</tr>
<tr>
<td>PIC16F877 and Soppy disc</td>
<td></td>
</tr>
<tr>
<td>Parking Warning System</td>
<td>251,</td>
</tr>
<tr>
<td>Micro PicScope</td>
<td>252,</td>
</tr>
<tr>
<td>PIC Interface on Transmitter</td>
<td>Receiver</td>
</tr>
<tr>
<td>Versatile Micro PIC Programmer</td>
<td>PIC Light Changer</td>
</tr>
<tr>
<td>Multi-Channel Transmission System – Transmitter</td>
<td>Receiver</td>
</tr>
<tr>
<td>Electronic Transmitter</td>
<td>256, a</td>
</tr>
<tr>
<td>PIC-Gen Frequency Generator/Counter</td>
<td>257,</td>
</tr>
<tr>
<td>Macro</td>
<td>271,</td>
</tr>
<tr>
<td>EPE Modulator</td>
<td>Quiz Game Indicator</td>
</tr>
<tr>
<td>Handy-Amp</td>
<td>AUG '00</td>
</tr>
</tbody>
</table>

Everyday Practical Electronics, July 2001

529
If you want your advertisements to be seen by the largest readership at the most economical price our classified and semi-display pages offer the best value. The prepaid rate for semi-display space is £6 (+VAT) per single column centimetre (minimum 2.5cm).

For rates and information on display and classified advertising please contact our Advertisement Manager, Peter Mew as above.

The prepaid rate for classified adverts is 30p (+VAT) per word (minimum 12 words).

All cheques, postal orders, etc., to be made payable to Everyday Practical Electronics.

For more information, please contact Peter Mew at 01255 861161.

Miscellaneous

X-10® Home Automation

Why tolerate when you can automate?

An extensive range of 230V X-10 products and starter kits available. Uses proven Power Line Carrier technology, no wires required.

Products Catalogue Online. Worldwide delivery.

Laser Business Systems Ltd.

E-mail: info@laser.com

Tel: (020) 8441 9783

Fax: (020) 8449 0430

TIS – Midlbank Farm

Ryeland, Strathaven ML10 6RD

Manuals on anything electronic

Circuits – VCR £8, CTV £6

Service Manuals from £10

Radio, Receivers, £5

P&P any order £2.50

Write, or ring 01357 440298 for full details of our lending service and FREE quote for any data

BTEC ELECTRONICS

TECHNICIAN TRAINING

VCE ADVANCED ENGINEERING ELECTRONICS and ICT

HNC AND HND ELECTRONICS

NVQ ENGINEERING AND IT

Next course commences SEPTEMBER 2001

FULL PROSPECTUS FROM

LONDON ELECTRONICS COLLEGE

(Dept EPE) 20 PENNYWERN ROAD

EARLS COURT, LONDON SW5 9SU

TEL: (020) 7373 8721

THE BRITISH AMATEUR ELECTRONICS CLUB

exists to help electronics enthusiasts by personal contact and through a quarterly Newsletter.

For membership details, write to the Secretary:

Mr. F. P. Moses

5 Park View, Cwmaman,

Aberdare CF44 6PP

Space donated by

Everyday Practical Electronics

EPE NET ADDRESSES

EPE FTP site: ftp://ftp.epemag.wimborne.co.uk

Access the FTP site by typing the above into your web browser, or by setting up an FTP session using appropriate FTP software, then go into quoted sub-directories:

PIC-project source code files: /pub/PICS

PIC projects each have their own folder; navigate to the correct folder and open it, then fetch all the files contained within. Do not try to download the folder itself!

EPE text files: /pub/docs

Basic Soldering Guide: solder.txt

Ingenious Unlinked submission guidance: ing_unit.txt

New readers and subscribers info: epe_info.txt

News groups or Usernet users advice: usernet.txt

Ni-Cad discussion: nicadfaq.zip and nicad.zip

Writing for EPE advice: write-kits.txt

Shop now online: www.epemag.wimborne.co.uk/shopdoor.htm

On-line readers! Try the EPE Chat Zone – a virtually real-time Internet "discussion board" in a simple to use web-based forum!

http://www.epemag.wimborne.co.uk/chatboard

Or buy EPE Online: www.epemag.com

SALE AUDIO PANELS!! Amplifiers, 20 watt, d.c., 25 volt, with pot, heatsink, instructions, £1.99. K.I.A., 1 Regent Road, Ilkley LS29.

PROTOTYPE PRINTED CIRCUIT BOARDS one off and quantities, for details send s.a.e. to B. M. Anstruther, 38 Poyning Drive, Hove, Sussex BN3 8GR, or phone 01273 838371, Mobile 07949 593039. E-mail b.m.a@ecvnet.net

SURPLUS ELECTRONIC COMPONENTS FOR SALE – Visit our website at www.cnsfarnell.co.uk/surplus_component.htm for a full list. Pick what you want or take the lot! All offers considered.

PRINTED CIRCUIT BOARDS – QUICK SERVICE. Prototype and production artwork raised from magazines or draft designs at low cost. PCBs designed from schematics. Production assembly, wiring and software programming. For details contact Patrick at Agar Circuits, Unit 5, East Belfast Enterprise Park, 308 Albertbridge Road, Belfast, BT5 4GX. Phone 028 9073 8897, Fax 028 9073 1802. E-mail agar@argonet.co.uk.

FREE PROTOTYPE PRINTED CIRCUIT BOARDS! Free prototype p.c.b. with quantity orders. Call Patrick on 028 9073 8897 for details. Agar Circuits, Unit 5, East Belfast Enterprise Park, 308 Albertbridge Road, Belfast BT5 4GX.

PURCHASING AN AUDIO MIXING DESK? Specialists in custom-built, fully modular mixing desks, for hospital radio, talking newspapers, shopping centres, amateur dramatic groups, theatres, etc., to see our products visit us at http://www.partridgeelectronics.co.uk or contact us for our latest catalogue including all sub units for self-build. Partridge Electronics, 54-56 Fleet Road, Beaford, Essex, SS7 5IN, or phone 01268 793256, fax 01268 567795.

Z88 NOW AVAILABLE WITH

128K AND 512K – Q24

ALSO SPECTRUM AND QU.L PARTS

W. N. RICHARDSON & CO. TEL: 01445 61 61

E-mail: wnr@compuserve.com

RAVENSMEADE, CHALFONT ST PETER, BUCKS, SL9 0NB

BEAM ROBOTS

View them Online Also: Robot Arms Mobile Arms Micromic Rovers Cubbugs Robot Books

www.tecnohtindex.com

TUNES in your Digital TV

From Laser Business Systems Ltd.

TEL: (020) 7373 8721

Free prototype p.c.b. with quantity orders. Call Patrick on 028 9073 8897 for details. Agar Circuits, Unit 5, East Belfast Enterprise Park, 308 Albertbridge Road, Belfast BT5 4GX.

ENTERPRISE BOARD

Free prototype p.c.b. with quantity orders. Call Patrick on 028 9073 8897 for details. Agar Circuits, Unit 5, East Belfast Enterprise Park, 308 Albertbridge Road, Belfast BT5 4GX.

SIR-KIT Electronics, 52 Severn Road, Clacton, CO15 3RB, http://www.geocities.com/sirkuit/index.htm

PURCHASING AN AUDIO MIXING DESK? Specialists in custom-built, fully modular mixing desks, for hospital radio, talking newspapers, shopping centres, amateur dramatic groups, theatres, etc., to see our products visit us at http://www.partridgeelectronics.co.uk or contact us for our latest catalogue including all sub units for self-build. Partridge Electronics, 54-56 Fleet Road, Beaford, Essex, SS7 5IN, or phone 01268 793256, fax 01268 567795.

EPE FTP site:

ftp://ftp.epemag.wimborne.co.uk

Access the FTP site by typing the above into your web browser, or by setting up an FTP session using appropriate FTP software, then go into quoted sub-directories:

PIC-project source code files: /pub/PICS

PIC projects each have their own folder; navigate to the correct folder and open it, then fetch all the files contained within. Do not try to download the folder itself!

EPE text files: /pub/docs

Basic Soldering Guide: solder.txt

Ingenious Unlinked submission guidance: ing_unit.txt

New readers and subscribers info: epe_info.txt

News groups or Usernet users advice: usernet.txt

Ni-Cad discussion: nicadfaq.zip and nicad.zip

Writing for EPE advice: write-kits.txt

Shop now online: www.epemag.wimborne.co.uk/shopdoor.htm

On-line readers! Try the EPE Chat Zone – a virtually real-time Internet "discussion board" in a simple to use web-based forum!

http://www.epemag.wimborne.co.uk/chatboard

Or buy EPE Online: www.epemag.com

Ensure you set your FTP software to ASCII transfer when fetching text files or they may be unreadable.

Note that any file which ends in *.zip needs unzipping before use. Unzip utilities can be downloaded from:

http://www.winzip.com

http://www.pkware.com

Everyday Practical Electronics reaches twice as many UK readers as any other UK monthly hobby electronics magazine, our audited sales figures prove it. We have been the leading monthly magazine in this market for the last sixteen years.