WARNING!

The materials and works contained within *EPE Online* — which are made available by Wimborne Publishing Ltd and Maxfield & Montrose Interactive Inc — are copyrighted. You are permitted to make a backup copy of the downloaded file and one (1) hard copy of such materials and works for your personal use. International copyright laws, however, prohibit any further copying or reproduction of such materials and works, or any republication of any kind.

Maxfield & Montrose Interactive Inc and Wimborne Publishing Ltd have used their best efforts in preparing these materials and works. However, Maxfield & Montrose Interactive Inc and Wimborne Publishing Ltd make no warranties of any kind, expressed or implied, with regard to the documentation or data contained herein, and specifically disclaim, without limitation, any implied warranties of merchantability and fitness for a particular purpose.

Because of possible variances in the quality and condition of materials and workmanship used by readers, *EPE Online*, its publishers and agents disclaim any responsibility for the safe and proper functioning of reader-constructed projects based on or from information published in these materials and works. In no event shall Maxfield & Montrose Interactive Inc or Wimborne Publishing Ltd be responsible or liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or any other damages in connection with or arising out of furnishing, performance, or use of these materials and works.
Projects and Circuits

CAMCORDER POWER SUPPLY by Terry de Vaux-Balbirnie
Battery replacement with a lot more bottle!

PIC TOOLKIT Mk3 by John Becker
An enhanced PIC microcontroller programming development board, and prelude to next month's exciting new Windows-based TK3 software!

2-VALVE SW RECEIVER by Robert Penfold
A nostalgic and simple design for valve radio enthusiasts

INGENUITY UNLIMITED hosted by Alan Winstanley
Three-way Lighting

PERPETUAL PROJECTS – 4 by Thomas Scarborough
Three more solar powered projects to complete the series – Gate Sentinel; Bird Scarer; In-Out Register

Series and Features

CIRCUIT SURGERY by Alan Winstanley and Ian Bell
Heatsink calculations

NEW TECHNOLOGY UPDATE by Ian Poole
Thermocouple-based accelerometers dispense with moving parts

TRAFFIC CONTROL by Owen Bishop
SCOOT systems speed the flow of road traffic and pedestrians

NET WORK – THE INTERNET PAGE surfed by Alan Winstanley
Sircam and other worms and viruses

INTERFACE by Robert Penfold
Single-chip 32-bit output port

Regulars and Services

EDITORIAL
NEWS – Barry Fox highlights technology's leading edge
Plus everyday news from the world of electronics

BACK ISSUES Did you miss these? Many now on CD-ROM!
READOUT John Becker addresses general points arising

ELECTRONICS VIDEOS Our range of educational videos

SHOPTALK with David Barrington
The essential guide to component buying for EPE projects

CD-ROMS FOR ELECTRONICS
A wide range of CD-ROMs for hobbyists, students and engineers

ELECTRONICS MANUALS
Essential reference works for hobbyists, students and service engineers

DIRECT BOOK SERVICE
A wide range of technical books available by mail order

PRINTED CIRCUIT BOARD AND SOFTWARE SERVICE
PCBs for EPE projects. Plus EPE software

ADVERTISERS INDEX

© Wimborne Publishing Ltd 2001. Copyright in all drawings, photographs and articles published in EVERYDAY PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.
SPECIAL SUPPLEMENT
PIC TOOLKIT TK3 FOR WINDOWS

The long-awaited sequel to Toolkit Mk2, crafted for PIC programming enthusiasts by a PIC programming addict. PIC Toolkit TK3 for Windows is the most sophisticated EPE PIC microcontroller code assembler and programmer ever published.

Designed explicitly for running in the “desk-top PC” environments of Windows 95 and 98, TK3 is intuitively easy to use, fast in operation, has many extra features that are probably not found elsewhere, and is the ideal programming aid for all who love to play with reprogrammable PICs.

The PIC families catered for are principally the PIC16x84 and PIC16F87x EEPROM-based series, whose members include C84, F84, F873, F874, F876 and F877. It is likely that TK3 can be used with other PICs that also have 14-bit program codes, including F83, F84A and no doubt some other devices.

Written in Visual Basic 6, TK3 is run as a fully stand-alone program, and can be used with the new Toolkit Mk3 programming board published in this current issue, or with the well-established Toolkit Mk2 board of May-June ’99.

TEACH-IN 2002

Our new 10-part educational series Teach-In 2002: Making Sense of the Real World, gives you an insight into the world of sensors. More than ever before, sensors are being deployed to measure environmental parameters, so Teach-In 2002 demonstrates what sensors are all about and how to use them effectively.

Also described are some of the key circuits generally involved in sensing and measuring, including amplifiers, filters, comparators and analogue-to-digital converters (ADCs), as well as specific circuits for various sensor applications.

We aim to give Teach-In 2002 a broad appeal, so that every reader will gain something from the series in one way or another. We know that the theory will be highly relevant to schools and university students.

Each part includes practical “Lab Work” based on the sensors, circuits and concepts discussed within it. The experiments can be monitored by a multimeter, or more fully demonstrated via the recommended Picoscope ADC40 PC-based oscilloscope which will be offered to readers at a special price. These labs help reinforce practical principles that you can then incorporate into your own future project designs.

CAPACITANCE METER

Although some modern multimeters have capacitance-measuring capability, this is often limited to a maximum of around 10 microfarads and is often inaccurate at both ends of the scale.

The circuit described next month allows all types of capacitor, including non-polarised, electrolytic and tantalum, to be measured accurately and over a wide range. It measures capacitance from a few picofarads to 10,000 microfarads in three sub-scales (10nF, 100µF, and 10,000µF) and is accurate across the whole range.

PLUS ALL THE REGULAR FEATURES

NO ONE DOES IT BETTER

NOVEMBER 2001 ISSUE ON SALE THURSDAY, OCTOBER 11
SURVEILLANCE
High performance surveillence bugs. Transmitters supplied with own electret microphone & battery holder. All transmitters can be received on an ordinary HF Wyatt field between 28-30MHz. Available in Kit (KT) or Assembled & Tested (AT). ROOM SURVEILLANCE
- MICRO MINI TRANSMITTERS
- TRANSMITTERS
- RECEIVER SYSTEMS
- TELEPHONE SURVEILLANCE
- HIGH POWER TRANSMITTERS
- TELEPHONE PICK-UP AMPLIFIER WIRELESS PHONE
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- TELEPHONE PICK-UP AMPLIFIER WIRELESS PHONE
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
- INFRARED SECURITY BEAM
- ULTRASONIC MOVEMENT DETECTOR
- microphone
- VHF TRANSMITTER (PRE-ASSEMBLED & TESTED)
‘PICALL’ PIC Programmer

Kit will program ALL 8, 16, 28 and 40 pin serial AND parallel programmed PIC micro controllers. Connects to PC parallel port. Supplied with fully functional pre-registered PICCALL DOS and WINDOWS AVR software packages, all components and high quality DSPTH PCB. Also programs certain ATMEAL AVR, serial EPROM 24C and SCENIX SX devices. New PICs can be added to the software as they are released. Software shows you where to place your PIC chip on the board for programming. New has blank chip auto sensing feature for super-fast bulk programming. *A 40 pin wide ZIF socket is required to program 8 & 16 pin devices (available at £15.95).

<table>
<thead>
<tr>
<th>Order Ref</th>
<th>Description inc. VAT ea</th>
</tr>
</thead>
<tbody>
<tr>
<td>3117XT</td>
<td>‘PICALL’ PIC Programmer Kit £55.95</td>
</tr>
<tr>
<td>AS3117</td>
<td>Assembled ‘PICALL’ PIC Programmer £59.95</td>
</tr>
<tr>
<td>AS3117ZIF</td>
<td>Assembled ‘PICALL’ PIC Programmer c/w ZIF socket £84.95</td>
</tr>
</tbody>
</table>

ATMEL AVR Programmer

Powerful programmer for Atmel AT90Sxxxx (AVR) micro controller family. All fuse and lock bits are programmable. Connects to serial port. Can be used with ANY computer and operating system. Two LEDs to indicate programming status. Supports 20-pin DIP AT90S1200 & AT90S2313 and 40-pin DIP AT90S4414 & AT90S8515 devices. NO special software required – uses any terminal emulator program (built into Windows). The programmer is supported by BASCOM-AVR Basic Compiler software (see website for details).

NB ZIF sockets not included.

<table>
<thead>
<tr>
<th>Order Ref</th>
<th>Description inc. VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>3122XT</td>
<td>ATMEL AVR Programmer £34.95</td>
</tr>
<tr>
<td>AS3112</td>
<td>Assembled 3122 £39.95</td>
</tr>
</tbody>
</table>

Atmel 89CXX51 and 89xxx programmers also available.

PC Data Acquisition & Control Unit

With this kit you can use a PC parallel port as a real world interface. Unit can be connected to a mixture of analogue and digital inputs from pressure, temperature, movement, sound, light intensity, weight sensors, etc. (not supplied) to sensing feature for super-fast bulk programming. *A 40 pin wide ZIF socket is required to program 8 & 16 pin devices (available at £15.95).

<table>
<thead>
<tr>
<th>Order Ref</th>
<th>Description inc. VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>3093KT</td>
<td>PC Data Acquisition & Control Unit £99.95</td>
</tr>
<tr>
<td>AS3093</td>
<td>Assembled 3093 £124.95</td>
</tr>
</tbody>
</table>

ABC Mini ‘Hotchip’ Board

Currently learning about microcontrollers? Need to do something more than flash a LED or sound a buzzer? The ABC Mini ‘Hotchip’ Board is based on Atmel’s AVR 8535 RISC technology and will interest both the beginner and expert alike. Beginners will find that they can write and test a simple program, using the BASIC programming language, within an hour or two of connecting it up.

Experts will like the power and flexibility of the ATMEL microcontroller, as well as the ease with which the little Hot Chip board can be “designed-in” to a project. The ABC Mini Board Pack includes just about everything you need to get up and experimenting right away. On the hardware side, there’s a pre-assembled micro controller board with both parallel and serial cables for connection to your PC. Windows software included on CD-ROM features an Assembler, BASIC compiler and in-system programmer. The pre-assembled boards only are also available separately.

<table>
<thead>
<tr>
<th>Order Ref</th>
<th>Description inc. VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCMNISP</td>
<td>ABC Mini Starter Pack £64.95</td>
</tr>
<tr>
<td>ABCMNIB</td>
<td>ABC Mini Board Only £39.95</td>
</tr>
</tbody>
</table>

Advanced Schematic Capture and Simulation Software

‘Hotchip’ Board is based on Atmel’s AVR 8535 RISC technology and will interest both the beginner and expert alike. Beginners will find that they can write and test a simple program, using the BASIC programming language, within an hour or two of connecting it up.

Experts will like the power and flexibility of the ATMEL microcontroller, as well as the ease with which the little Hot Chip board can be “designed-in” to a project. The ABC Mini Board Pack includes just about everything you need to get up and experimenting right away. On the hardware side, there’s a pre-assembled micro controller board with both parallel and serial cables for connection to your PC. Windows software included on CD-ROM features an Assembler, BASIC compiler and in-system programmer. The pre-assembled boards only are also available separately.

<table>
<thead>
<tr>
<th>Order Ref</th>
<th>Description inc. VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCMINISP</td>
<td>ABC Mini Starter Pack £64.95</td>
</tr>
<tr>
<td>ABCMNIB</td>
<td>ABC Mini Board Only £39.95</td>
</tr>
</tbody>
</table>

Serial Port Isolated I/O Controller

Kit provides eight 240VAC/12A (110VAC/15A) rated relay outputs and four optically isolated inputs. Can be used in a variety of control and sensing applications including load switching, external switch input sensing, contact closure and external voltage sensing. Programmed via a computer serial port, it is compatible with ANY computer & operating system. After programming, PC can be disconnected. Serial cable can be up to 35m long, allowing remote control. User can easily write batch file programs to control the kit using simple text commands. NO special software required – uses any terminal emulator program (built into Windows). All components provided including a plastic case with pre-punched and silk screened front/rear panels to give a professional and attractive finish (see photo).

<table>
<thead>
<tr>
<th>Order Ref</th>
<th>Description inc. VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>3108KT</td>
<td>Serial Port Isolated I/O Controller Kit £54.95</td>
</tr>
<tr>
<td>AS3108</td>
<td>Assembled Serial Port Isolated I/O Controller £69.95</td>
</tr>
</tbody>
</table>

See opposite page for ordering information on these kits.
Watch Screens on TV. Make videos of your screens. Digitise your screens (using a video capture card) “Lie-daz-thi” automatic slide viewer with built-in high quality colour TV camera. It has a composite video output and a phone plug (SCART & BNC adaptors are available). They are very good in conditions with any signs of use. More details see www.diatv.co.uk.

£91.91 + VAT

Board cameras all with 512 x 582 pixels 8·5mm 1/3 inch sensor and composite video output. All need to be housed in your own enclosure and have exposed surface mount parts. They all require a power supply of between 10V and 12V 150mA. 47MMR 30 x 30 x 12mm 27cm with 6 infra red LEDs (gives the same illumination as a small torch but is not visible to the human eye) £37.00 + VAT = £43.48 30MP 32 x 32 x 12m aqmy camera with a fixed focus pin hole lens for hiding behind a very small hole £35.00 + VAT = £41.13 40MC 39 x 38 x 27mm camera for ‘C’ mount lenses this give a much sharper image than with the smaller lenses £32.00 + VAT = £37.60 Economy C mount lenses all fixed focus & fixed iris.

VSL1220F 12mm F 1.6 15 x 12 degrees viewing angle £15.97 + VAT £18.76

VSL0422F 4mm F 1.6 23 x 19 degrees viewing angle £17.65 + VAT £20.24

VSL0820F 8mm F 1.2 32 x 24 degrees viewing angle £19.90 + VAT £23.38

Better Quality C Mount lenses. VSL1614F 16mm F 1.6 30 x 24 degrees viewing angle £26.43 + VAT £31.06

VWL813M 8mm F 1.3 with iris 56 x 42 degrees viewing angle £77.45 + VAT £89.28

VWL812T 8mm F 1.2 with iris 37 x 37 degrees viewing angle £96.71 + VAT £113.60

VWL812EF 8mm F 1.2 with iris 37 x 37 degrees viewing angle £96.71 + VAT £113.60

Please add £1.66 + vat = £1.95 postage & packing per order

JPG Electronics

Shaws Row, Oldfield, Chesterfield, S40 2RB.

Tel: 01246 211202 Fax: 01246 550959

Mastercard/Visa/Switch

Callers welcome 9.30 a.m. to 5.30 p.m. Monday to Saturday

VARIABLE VOLTAGE TRANSFORMERS

<table>
<thead>
<tr>
<th>INPUT 220/240V AC</th>
<th>METER OUTPUT 0-240V</th>
<th>PANEL MOUNTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5KVA 3 phase max</td>
<td>P50</td>
<td>£38.00</td>
</tr>
<tr>
<td>1.5KVA 3 phase max</td>
<td>P55</td>
<td>£36.00</td>
</tr>
<tr>
<td>2.5KVA 3 phase max</td>
<td>P80</td>
<td>£45.75</td>
</tr>
<tr>
<td>3.5KVA 3 phase max</td>
<td>P90</td>
<td>£48.25</td>
</tr>
<tr>
<td>5KVA 3 phase max</td>
<td>P120</td>
<td>£63.10</td>
</tr>
</tbody>
</table>

SILICONES

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSL1220F</td>
<td>£15.97</td>
</tr>
<tr>
<td>VSL0422F</td>
<td>£17.65</td>
</tr>
<tr>
<td>VSL0820F</td>
<td>£19.90</td>
</tr>
</tbody>
</table>

*Fixing bolt supplied."

PRICES inc. p&p & VAT:

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>120V/240V, Secondary 0V-260V</td>
<td></td>
<td>Ultra Violet Black Light Blue UV Lamp</td>
</tr>
<tr>
<td>120V/240V, Secondary 0V-260V</td>
<td>0-30V + 0-30V</td>
<td>600VA</td>
</tr>
<tr>
<td></td>
<td>0-240V AC</td>
<td>Primary 0-240V AC</td>
</tr>
<tr>
<td></td>
<td>0-30V + 0-30V</td>
<td>Secondary 0-240V AC</td>
</tr>
<tr>
<td></td>
<td>0-30V</td>
<td>600VA</td>
</tr>
</tbody>
</table>

Input lead 240V AC. Output via 3-pin 13A socket. 240V AC 4KVA 20 amp max. 5KVA 25 amp max. 1KVA 5 amp max. 0·5KVA 2·5 amp max.

£65.00 £8.50

£45.25 £7.00

£25.00 £5.00

£25.00 £5.00

£14.00 £2.50

£6.05 £1.40 (£8.75 inc VAT)

£86.36 inc VAT

£62.57 inc VAT

£47.00 inc VAT

£45.84 inc VAT

Future Technologies - Order Line 01253 751858

THE ELECTRONICS SURPLUS TRADER – This is a listing of new first class components, books and electronic items at below trade prices. Includes manufacturers’ surplus and overstocks. Also obsolete semiconductors, valves and high voltage caps and components, audio components and accessories.

Send two first class stamps for large catalogue.

Frusturated!

Looking for ICs TRANSISTORS? A phone call to us could get a result. We offer an extensive range and with a world-wide database at our fingertips, we are able to source even more. We specialise in devices with the following prefix (to name a few but not all).

2N 2SA 2SB 2SC 2SD 2SP 2SK 2NJ 3N 3N3 4N 6N 74 40 AD ALC91 AM AY BA BD BDV BDB BDX BF BFR BFS BFT BFX BFY BLX BLX BS BRX BRY BS BSV BSW BSX BT BTA BTB BRU BW BUX BUZ BUZ CA CD CX CXA DAC DG DM DS DTA DTC GC GL GM HA HCF HD HEF H1C JCM 1RF I KA KIA L LB LC LD LF LM M MSU MAB MAX MB MCA MDA MJE MJF MM MN MPS MPSA MPSH MPSU MRF NIM NE OM OP PA PAL PIC PN RC R S SAA SAB SAD SAI SAS SDA SG SI SN STO STK STR STRM STS SV1 SV2 T A TA TAG TBA TC TCA TDA TDB TEA TIC TIP TEI TEA TL TLC TMP TMS TPU U UAA UCA UD CE ULN UM UPA UPC UD VN XR XZN ZTS + many others

We also can offer equivalents (at customers’ risk) We also stock a full range of other electronic components, Mail, phone, Fax Credit Card orders and callers welcome.

Cricklewood Electronics Ltd

40-42 Cricklewood Broadway London NW2 3ET

Tel: 020 8452 0161 Fax: 020 8208 1441
PIC Training & Development System

The heart of our system is a real book which lies open on your desk while you use your computer to type in the programme and control the hardware. Start with four very simple programmes. Run the simulator to see how they work. Test them with real hardware. Follow on with a little theory.....

The best place to start learning about microcontrollers is the PIC16F84. This is easy to understand and very popular with construction projects. Then continue on using the more sophisticated PIC16F877 family.

Our complete PIC training and development system consists of our universal mid range PIC programmer, a 306 page book covering the PIC16F84, a 212 page book introducing the PIC16F877 family, and a suite of programmes to run on a PC. The module is an advanced design using a 28 pin PIC16F872 to handle the timing, programming and voltage switching requirements. The module has two 21F sockets and an 8 pin socket which between them allow most mid range 8, 16, 28 and 40 pin PICs to be programmed. The plugboard is wired with a 5 volt supply. The software is an integrated system comprising a text editor, assembler disassembler, simulator and programming software. The programming is performed at normal 5 volts and then verified with plus and minus 10% applied to ensure that the device is programmed with a good margin and not poised on the edge of failure. Requires two PP3 batteries which are not supplied.

Universal mid range PIC programmer module
+ Book Experimenting with PIC Microcontrollers
+ Book Experimenting with the PIC16F877
+ Universal mid range PIC software suite
+ PIC16F84 and PIC16F872 test PICs .. £157.41
UK Postage and insurance .. £ 7.50
(Europe postage & insurance .. £13.00. Rest of world £22.00)

Experimenting with PIC Microcontrollers

This book introduces the PIC16F84 and PIC16C711, and is the easy way to get started for anyone who is new to PIC programming. We begin with four simple experiments, then having gained some practical experience we study the basic principles of PIC programming, learn about the 8 bit timer, how to drive the liquid crystal display, create a real time clock, experiment with the watchdog timer, sleep mode, beeps and music, including a rendition of Beethoven’s Für Elise. Finally there are two projects to work through, using the PIC16F84 to create a sine wave generator and investigating the power taken by domestic appliances.

Experimenting with the PIC16F877

We start with the simplest of experiments to get a basic understanding of the PIC16F877 family. Then we look at the 16 bit timer, efficient storage and display of text, principles of PIC programming, learn about the 16 bit timer, how to drive the liquid crystal display, create a real time clock, experiment with the watchdog timer, sleep mode, beeps and music, including a rendition of Beethoven’s Für Elise. Finally there are two projects to work through, using the PIC16F84 to create a sine wave generator and investigating the power taken by domestic appliances.

Ordering Information

Telephone with Visa, Mastercard or Switch, or send cheque/PO for immediate despatch. All prices include VAT if applicable. Postage must be added to all orders. UK postage £2.50 per book, £1.00 per kit, maximum £7.50. Europe postage £3.50 per book, £1.50 per kit. Rest of World £6.50 per book, £2.50 per kit.

Web site: www.brunningsoftware.co.uk

Mail order address: Brunnings Software 138 The £ ć e , Li, le Ca l- - ea, E e , CO16 9LS. Tel 01255 862308

NEW 32 bit PC Assembler

Experimenting with PC Computers with its kit is the easiest way ever to learn assembly language programming. If you have enough intelligence to understand the English language and you can operate a PC computer then you have all the necessary background knowledge. Flashing LEDs, digital to analogue converters, simple oscilloscope, charging curves, temperature graphs and audio digitising.

Kit now supplied with our 32 bit assembler with 84 page supplement detailing the new features and including 7 experiments PC to PIC communication. Flashing LEDs, writing to LCD and two way data using 3 wires from PC’s parallel port to PIC16F84.

Book Experimenting with PCs £21.50
Kit 1a ‘made up’ with software £52.00
Kit 1u ‘unmade’ with software £45.00

C & C++ for the PC

Experimenting with C & C++ Programmes teaches us to programme by using C to drive the simple hardware circuits built using the materials supplied in the kit. The circuits build up to a storage oscilloscope using relatively simple C techniques to construct a curve that is by no means simple. When approached in this way C is only marginally more difficult than BASIC and infinitely more powerful. C programmers are always in demand. Ideal for absolute beginners and experienced programmers.

Book Experimenting with C & C++ £24.99
Kit CP2a ‘made up’ with software £32.51
Kit CP2u ‘unmade’ with software £26.51
Kit CP2i top up’ with software £12.99

The Kits

The assembler and C & C++ kits contain the prototyping board, lead assemblies, components and programming software to do all the experiments. The ‘made up’ kits are supplied ready to start. The ‘top up’ kit is for readers who have already purchased kit 1a or 1u. The kits do not include the book.

Hardware required

All systems in this advertisement assume you have a PC (386 or better) and a printer lead. The experiments require no soldering.

Part built PIC Training System

This has the same specification as the complete system but is supplied without the keypad, 40 pin ZIF socket and plugboard, with just one book Experimenting with PIC Microcontrollers, and with software to programme the PIC16F84 & PIC16C711. Can be upgraded later to the full specification.

Part built universal PIC programmer module
+Book: Experimenting with PIC Microcontrollers
+84/711 software suite and PIC16F84 £92.50
+84/711 software suite and PIC16F84 £92.50
+84/711 software suite and PIC16F84 £92.50

UK postage and packing £ 5.00
(Europe postage £7.50. Rest of World £13.00)
EPE MICROCONTROLLER
P.I. TREASURE HUNTER
The latest MAGENTA DESIGN – highly stable & sensitive – with I.C. control of all timing functions and advanced phase separation techniques.
- High stability
- High efficiency
- Easy to build
- Easy to use
- No ground effect, works in seawater
- Efficient quartz controlled microcontroller pulse generation.
- Full kit with headphones & all hardware

KIT 847 £63.95

PORTABLE ULTRASONIC
PéST SCARER
A powerful 23kHz ultrasound generator in a compact hand-held case. MOSFET output drives a special sealed transducer with intense pulses via a special tuned transformer. Sweeping frequency output is designed to give maximum power to the transducer. Kit comes complete with sensor cups, weatherproof sensing head. A novel wind speed indicator with LED readout. Kit comes with simple assembly and testing and provides high level dual output drive.

KIT 842 £22.56

68000 DEVELOPMENT TRAINING KIT
- NEW PCB DESIGN
- 68000 16-BIT BUS
- TRANSMITTER
- 16C84/18F84/16C71
- 2 SERIAL PORTS
- CASE & ALL COMPONENTS
- COMPLETELY INAUDIBLE

KIT 826 £99.95

1000V & 500V INSULATION TESTER
Superb new design. Regulated output, efficient circuit. Dual-scale meter, compact case. reads up to 200 Megohms. Kit includes wound coil, cut-out case, meter scale, PCB & ALL components.

KIT 848 £32.95

EPE PROJECT
PICS
Programmed PICs for all EPE Projects
16C84/18F84/16C71
At $5.19 each
PIC16F877 now in stock

Kit No. 845 £64.95

ULTRASONIC PEST SCARER
Keep pets/pests away from newly sown areas, flower beds, children’s play areas, etc. uses power source from 9 to 24 volts. Designed for simple assembly and testing and provides high level dual output drive.

KIT 866 £32.90

12V EPROM ERASER
A safe low cost eraser for up to 4 EPROMS at a time in less than 20 minutes. Operates from a 12V supply (400mA). Used extensively for mobile work - updating equipment in the field etc. Also in educational situations where mains supplies are not allowed. Safety interlock prevents contact with UV.

KIT 790 £29.90

PICO PIPE DESCALER
- 1000V & 500V INSULATION TESTER
- COMPLETELY INAUDIBLE
- VISUAL MONITORING
- HIGH PERFORMANCE
- HIGH FREQUENCY
- MINI DESIGN

KIT 865 £28.00

16C84/18F84/16C71

NEW PCB DESIGN
- 16-BIT BUS
- TRANSMITTER
- 2 SERIAL PORTS
- PCB & ALL COMPONENTS
- COMPLETELY INAUDIBLE

KIT 849 £16.99

MICRO PÉST SCARER
Our latest design – The ultimate scarer for the garden. Uses special microchip to give random delay and pulse time. Easy to build reliable circuit. Keeps pests away from newly sown areas, play areas, etc. uses power source from 9 to 24 volts.

KIT 867 £19.99

MOSFET MkII VARIABLE BENCH POWER SUPPLY 0-25V 2-5A
Based on our Mk1 design and preserving all the features, but now with switching pre-regulator for much higher efficiency. Panel meters indicate Volts and Amps. Fully variable down to 0V. Uses a Toroidal mains transformer. Kit includes printed and printed case and all parts. As featured in April 1994 EPE. An essential piece of equipment.

KIT 849 £64.95

MAGENTA ELECTRONICS LTD
135 Hunter Street, Burton-on-Trent, Staffs. DE14 2ST
Tel 01283 565435 Fax 546932
http://www.magenta2000.co.uk
E-mail: sales@magenta2000.co.uk
MAIL ORDER ONLY ● CALLERS BY APPOINTMENT

EPE TEACH-IN
2000
Full set of top quality NEW components for this educational series. All components as specified by EPE. Kit includes breadboard, wire, croc clips, pins and all components for experiments, as listed in introduction to Part 1.

KIT 879 £44.95
MULTIPLIER £14.45

EPE TEACH-IN
WINDICATOR

KIT 856 £28.00

SUPER BAT DETECTOR
1 WATT O/P. BUILT IN SPEAKER, COMPACT CASE
120kHz-140kHz
NEW DESIGN WITH 40kHz MIC.
A new circuit using a ‘full’bridge audio amplifier i.e., internal speaker, and/ or headphone sockets. The latest sensitive transducer, and ‘double balanced mixer’ give a stable, high performance superheterodyne design.

KIT 861 £24.99
ALSO AVAILABLE Built & Tested... £39.99

EPE TEACH-IN
REAL TIME PIC PROBE
Class A full-wave high gain amplifier. Has all the features of a normal real time scope. Also accurate in the audio frequency range. Has all the features of a normal real time scope. Also accurate in the audio frequency range. Has all the features of a normal real time scope. Also accurate in the audio frequency range.

KIT 860 £44.95

*Batteries and tools not included.
PIC 16F84 MAINS POWER 4-CHANNEL CONTROLLER & LIGHT CHASER

- With programmed 16F84 and disk
- Source code in MPASM
- Zero volt switching
- Multiple chase patterns
- Opto isolated
- 5 AMP outputs
- 12 keypad control
- Speed/dimming pot.
- Hard-fired triacs

Kit 855 £39.95

LOTs OF OTHER APPLICATIONS

PIC Real Time In-Circuit Emulator

- Icebreaker uses PIC16F877 in circuit debugger
- Links to Standard PIC Serial Port with lead supplied
- Windows™ (95+) Software included
- Works with MPASM and MPLAB Microchip software
- 16 x 2 LCD, Breadboard, Relay, I/O devices and patch leads supplied

As featured in March ’96 EPE. Ideal for beginners AND advanced users.

Programs can be written, assembled, downloaded into the microcontroller and run at full speed (up to 20MHz), or one step at a time.

Full emulation means that all I/O ports respond exactly and immediately, reading and driving external hardware.

Features include: Reset; Hold on external pulse; Set Breakpoint; Examine and Change registers, EEPROM and program memory; Load program, Single Step with display of Status, W register, Program counter, and user selected ‘Watch Window’ registers.

KIt 900 . . . £34.99

POWER SUPPLY £3.99 STEPPING MOTOR £5.99

Tel: 01283 565435 Fax: 01283 546932 E-mail: sales@magenta2000.co.uk
2002

Two thousand and two is upon us – well our Teach-In 2002 will be next month. It hardly seems any time at all since we were all worrying about how to celebrate the new millennium and now the numbers have moved on by two. Of course, regular readers will know that every other year we publish a Teach-In series with the intention of providing a wide range of educational material on electronics. 7F 2002 will be all about interfacing to the outside world and will look in some depth at sensors, how they work, how to use them and the data they can supply.

This new series is being produced by a team of writers co-ordinated by Alan Winstanley and drawing from the vast range of knowledge of the electronics department at Hull University. Some months have been spent planning the content and working on demonstration projects for readers to build and test. The course will employ a Pico Technology PC-based oscilloscope to provide PC displays of the various parameters to be measured. The scope will be available to readers at a Special Offer price.

SUBJECTS

The course is planned to cover the following areas: Temperature; Light and Colour; Sound and Ultrasonics; Time; Humidity; Gases, Smoke and pH; Electric and Magnetic Fields; Radiation; Movement, Acceleration, Strain and Vibration; Optical/ Digital Presence, Distance and Position; Weather. It will look at a range of circuit topics from Basic Principles through Op.Amps, Instrumentation Amplifiers, Filters, Comparators, ADC, Data Logging etc. Each part will have associated labs and projects.

The new series will assume some basic knowledge of electronics, so if you want to start right at the very beginning with a series that requires no previous knowledge, you will need to look at the previous Teach-In, which is available on CD-ROM (Teach-In 2000) – see page 731 for details.

FREE PIC'INGS

Thanks to John Becker we are now on version three of his highly acclaimed PIC Toolkit (see page 700), we know readers will find this totally new design very useful and next month we will publish a free 16-page supplement describing the new Toolkit TK3 for Windows software.

Don’t miss next month’s issue, place an order with your newsagent or take out a subscription now!

VOL. 30 No. 10 OCTOBER 2001

COMPONENT SUPPLIES

We do not supply electronic components or kits for building the projects featured, these can be supplied by advertisers (see ShopTalk). We advise readers to check that all parts are still available before commencing any project in a back-dated issue.
Battery replacement with a lot more bottle!

Many camcorder users manage perfectly well with the battery supplied with their machine. If they need to extend the operating time, they simply buy another battery and carry them both around.

A typical camcorder battery provides an operating time of 45 minutes, including using the zoom lens and rewinding the tape every so often to review the results. Two batteries would still only give 90 minutes of operation.

However, “serious” users often need much more than this between charges, possibly even up to 12 hours. Although high-capacity batteries are available, they are an expensive option.

Circuit Overview

The circuit described here is a high-capacity supply with integral charger. With the author’s camcorder it provides over 11 hours of operation. Charging may be effected either from the mains or a 12V d.c. source, such as plugging it into the car cigar lighter socket, and takes around 15 to 20 hours to recharge.

The author’s unit is housed in a camera bag, large enough to accommodate the connecting leads and various pieces of camcorder equipment.

On the front panel there are mains and 12V d.c. input plugs, output socket and mode switch. This latter toggles between charging (CH/OFF) and camera operation (CAM).

While charging, one of a pair of light-emitting diodes (l.e.d.s) indicates whether a mains or 12V supply is connected. In camera mode, a further l.e.d. operates to confirm the output. In addition, three “charge level” l.e.d.s provide an indication of the state of charge of the battery pack, green for high, yellow for medium and red for low.

The unit may be used to power camcorders having an operating voltage between 6V and 9.6V d.c. If you measure it, the voltage will be somewhat higher than the stated nominal value when the battery is fully charged. Note that a 9.6V output may not be available when the battery pack is in a poor state of charge.

The maximum current which may be drawn from the unit is 2.5A. However, for the sake of battery life, this should be regarded as a peak figure. A better practical limit is 1.5A. The author’s camcorder never requires more than 900mA and it seems unlikely that any amateur equipment would need 1.5A.

If the power (in watts) is stated in the user’s manual, divide this by the nominal battery voltage to arrive at the average current. Another method would be to work from the battery’s stated amp-hour (Ah) capacity, dividing this by the known operating time in hours. Multiply the average current by 1.5 to give a safety margin and to take account of instantaneous demands.

It is not advisable to measure the current directly unless you are certain of being able to maintain the correct polarity and avoid short-circuiting the battery.

Battery Choice

Lead-acid batteries have been chosen for this circuit because they provide a high capacity for a relatively small cost. Two 6V batteries are used rather than a single 12V one because these may be charged simultaneously from a 12V car supply. A single 12V battery would not be satisfactory because, when the battery was well-charged, there would be no voltage difference to drive the current through.

The specified batteries have a capacity of 7Ah but others could be used with a proportional change in operating and charging time. However, do not use a capacity less than 4Ah. Note that a pair of 7Ah units provides the equivalent of about 10Ah for a 6V camcorder because the circuit delivers around 80 per cent of the total energy to the load.

The disadvantage of lead-acid batteries is that they can be damaged if allowed to discharge below their “low point” (say, 5V for a nominal 6V unit) and especially if left like that for a prolonged period. The “charge level” l.e.d.s should therefore be checked from time to time to make sure the batteries have sufficient charge.

Unlike nickel-cadmium cells, lead-acid batteries may be “topped-up” with charge as the opportunity arises because they do not suffer from the memory effect. In fact, doing this extends their service life. Lead-acid batteries also hold their charge much better than the nickel-cadmium type. If
lead-acid batteries are left charged, they will not self-discharge significantly over a period of several months.

CIRCUIT DESCRIPTION

The complete circuit for the Camcorder Power Supply is shown in Fig.1.

The mains supply is connected via transformer T1. The 12V a.c. secondary voltage is rectified by bridge rectifier REC1. With mode switch S1 set to “CH/OFF”, current flows via diode D4 to smoothing capacitor C1.

The capacitor charges to the transformer’s peak output voltage less the forward voltage drop of the bridge rectifier diodes and D4. With the specified transformer this gives about 15V d.c. under full load.

When a 12V d.c. supply is connected instead of the mains, current flows into C1 via diode D3, which gives reverse-polarity protection to the 12V input. Diodes D3 and D4 also provide isolation between the two input sources so that current from one cannot possibly drain into the other.

Light-emitting diodes D1 (Mains) and D2 (12V) draw current direct from their respective supply, with current-limiting effected by resistors R1 and R2.

CHARGING VOLTAGE

The rectified voltage at C1 is fed to the input (pin 1) of voltage and current regulator IC1. This is configured to provide the correct output voltage to charge the battery pack.

A voltage higher than that required appears at the output, pin 5. Current then flows through three resistors (all labelled R3) connected in parallel and the excess voltage is developed across them. This forms the current-limiting aspect of the regulator. If the current tends to rise, the voltage across resistors R3 will increase. Pin 2 senses this change and “turns down” IC1 to reduce it.

With a battery in a poor state of charge, the difference between its own voltage and that of the charger output is significant and this drives current through the battery. Without current-limiting, the current would be quite high due to the very small resistances involved, and could be destructive to circuit components or to the batteries themselves.

The “as required” voltage is obtained at the junction of R3/R5 and is determined by the voltage difference between IC1’s limit and reference pins (2 and 4). This is set at 7.7V by the potential divider formed by R4, R5 and preset VR1.

Three resistors are used for R3 rather than a single unit because they are easily-obtainable values and also allow for some “trimming” of the limiting current during setting up. With the values specified, the theoretical limit is approximately 1A. However, taking into account “stray” resistance (that of connecting copper tracks, soldered joints and so on), it is likely to be in the region of 900mA.

The 7.7V regulator output is applied to the pair of Schottky diodes, D5 and D6. These route current to the individual 6V batteries, B1 and B2, at a maximum of about 450mA each.

Schottky diodes are used as these have a smaller forward voltage drop than “ordinary” silicon diodes. This varies to some extent with the load but will be typically 0.4V rather than 0.7V. Thus, the voltage appearing across B1 and B2 will be about 7.3V. The diodes also prevent the batteries...
from discharging back into IC1 when the supply is switched off. As charging progresses, the current flowing into the batteries reduces, to about 50mA when the charging is nearly complete. Some 90 per cent of the required charge is delivered before the current reduces significantly. With the specified batteries, this takes 15 to 20 hours approximately and in most cases the batteries will then be regarded as fully charged.

While charging, switch S1c disconnects the subsequent circuit so current does not drain into this unnecessarily.

ON CAMERA

Camcorder operation is selected by moving switch S1 to “CAM”. Switch S1a now disconnects the charging supply if it has been left on switched on. Switch S1b connects the two 6V batteries in series so that nominally 12V appears across them, which S1c then connects to the following part of the circuit.

As the batteries discharge, their combined terminal voltage falls slightly. At 10V, they may be regarded as dangerously “flat”. The voltage (and hence charge) is monitored by three sections of quad op'am IC3, configured as comparators.

All three non-inverting inputs (pins 2, 6 and 9) are connected together and are set at 5V by voltage reference IC2. Resistor R10 limits the current flow though IC2 to ensure its correct operation. The non-inverting inputs (pins 3, 5 and 10) are connected to points along the potential divider chain which comprises resistors R6 to R9 joined in series across the supply. When the voltage at any of these inputs is higher than the reference voltage, the comparator’s output will be high, and its associated l.e.d. (D7 to D9) turned on.

Respectively, the “turn on” voltages for IC3a to IC3c (and their I.e.d.s) are 10V, 11-0V and 11-7V. The I.e.d.s represent the charge states: high (D7 – green), medium (D8 – yellow) and low (D9 – red).

As the battery voltage falls, so does the voltage at each comparator’s non-inverting input. When the voltage falls below each threshold the relevant output goes low and its associated l.e.d. is turned off.

If all three I.e.d.s are off, the voltage is below 10-4V and the batteries must be charged as soon as possible. In use, it will be found that high and medium charge are shown for a relatively long time but low charge is shown for only a short period.

CAMERA VOLTAGE

The correct camcorder operating voltage is obtained from the battery supply using switching regulator IC4. Compared with the linear regulator used for charging the batteries, the switching type is much more efficient, by around 80 per cent or more. This allows as much useful energy as possible to be “squeezed” from the batteries and so maximise the camcorder operating time. At the same time, less waste heat is produced.

The regulator contains an on-chip oscillator which produces a stream of pulses. Their frequency is determined by the value of resistor R15 and capacitor C7 connected in parallel to pin 5 (oscillator). With the values specified it is about 100kHz.

The output appears at pin 7 and is smoothed by inductor L1 in conjunction with twin capacitors (both labelled C8) connected in parallel. During each pulse, current rises relatively slowly in L1 (as energy is “soaked up” to create the magnetic field) and charge flows into the capacitors and load.

During this time, diode D10 is reverse-biased and has no effect. When the output pulse falls, the resulting negative-going current is conducted through diode D10 rather than from the inductor and the load current is maintained from the stored energy. The process then repeats.

The specification of D10 and capacitor(s) C8 is especially important. Due to the rapid switching involved, the diode must be capable of switching on and off at high speed. It must therefore be of the fast recovery type and have a generous current rating (8A minimum). Capacitor(s) C8 must have a low impedance at 100kHz and a working voltage of 50V d.c. minimum. Two capacitors in parallel are regarded as better than a single unit of double the value because this also reduces the impedance. These facts must be remembered if different components to those specified are used.

VOLTAGE STABILISATION

The output voltage is connected across the potential divider consisting of fixed resistors R16 and R17 and preset potentiometer VR2. The voltage appearing at the output is connected to IC4’s feedback input, pin 2. This is one input of an on-chip comparator (the error amplifier). Its other input is internally connected to a 5V reference source.

The difference between the two voltages is the “error” and this controls the mark/space ratio of the oscillator’s output, the regulator varying its operation to reduce the error to zero. Preset VR2 is adjusted so that the output voltage is at the required value. If it rises, the voltage at the wiper will exceed the reference value and the oscillator “on” times will be reduced in relation to the “off” periods. If the output voltage falls, the “on” times will be increased. The regulator has

COMPONENTS

<table>
<thead>
<tr>
<th>Resistors</th>
<th>See SHOP TALK page</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1, R2, R11 to R13, R16</td>
<td>680Ω (6 off) plus 41Ω7 (see text)</td>
</tr>
<tr>
<td>R3</td>
<td>1Ω (2 off)</td>
</tr>
<tr>
<td>R4, R5</td>
<td>1k (2 off)</td>
</tr>
<tr>
<td>R6</td>
<td>9k1</td>
</tr>
<tr>
<td>R7, R8, R15</td>
<td>5k8 (2 off)</td>
</tr>
<tr>
<td>R9</td>
<td>7k5</td>
</tr>
<tr>
<td>R10</td>
<td>6k8</td>
</tr>
<tr>
<td>R14</td>
<td>15k</td>
</tr>
<tr>
<td>R17</td>
<td>4k7</td>
</tr>
<tr>
<td>R24</td>
<td>270ΩQ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1000µF radial electrolytic (25V)</td>
</tr>
<tr>
<td>C2, C3</td>
<td>100n ceramic (2 off)</td>
</tr>
<tr>
<td>C4</td>
<td>100µF radial electrolytic (25V)</td>
</tr>
<tr>
<td>C5</td>
<td>33n ceramic (see text)</td>
</tr>
<tr>
<td>C6</td>
<td>2x2 radial electrolytic (16V)</td>
</tr>
<tr>
<td>C7</td>
<td>2n2 polystyrene</td>
</tr>
<tr>
<td>C8</td>
<td>220µF YXF series electrolytic (50V, 0.122μF at 100kHz) (2 off) (see text)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potentiometers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VR1</td>
<td>1k min. multturn preset, top adjust</td>
</tr>
<tr>
<td>VR2</td>
<td>5k multturn preset, top adjust</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semiconductors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>REC1</td>
<td>W005 15A bridge rectifier</td>
</tr>
<tr>
<td>D1, D2</td>
<td>150V 1A rectifier diode</td>
</tr>
<tr>
<td>D7, D12</td>
<td>3mm green I.e.d. (4 of) (see text)</td>
</tr>
<tr>
<td>D3, D4</td>
<td>1N4004 3A rectifier diode (2 off)</td>
</tr>
<tr>
<td>D5, D6</td>
<td>1N5822 3A Schottky diode (2 off)</td>
</tr>
<tr>
<td>D8</td>
<td>3mm yellow I.e.d.</td>
</tr>
<tr>
<td>D9</td>
<td>3mm red I.e.d.</td>
</tr>
<tr>
<td>D10</td>
<td>BYW80 fast recovery diode (see text)</td>
</tr>
<tr>
<td>DC11</td>
<td>5W Zener diode (see text)</td>
</tr>
<tr>
<td>IC1</td>
<td>L2050 2.5A switching regulator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>150µH, 3A rating minimum</td>
</tr>
<tr>
<td>FS1, FS3</td>
<td>20mm 2A quick-blow fuse (2 off)</td>
</tr>
<tr>
<td>FS2</td>
<td>20mm 1A ceramic fuse, mains rated</td>
</tr>
<tr>
<td>B1, B2</td>
<td>6V 7Ah sealed lead acid battery (2 off) (see text)</td>
</tr>
<tr>
<td>S1</td>
<td>3-pole 2-way toggle switch, 3A</td>
</tr>
<tr>
<td>TB1</td>
<td>5-way p.c.b. screw terminal block, 5mm pitch</td>
</tr>
<tr>
<td>TB2</td>
<td>4-way p.c.b. screw terminal block, 5mm pitch</td>
</tr>
<tr>
<td>TB3</td>
<td>2-way p.c.b. screw terminal block, 5mm pitch</td>
</tr>
<tr>
<td>PL1/SK1</td>
<td>5-way p.c.b. socket plug and line plug (for output) (see text)</td>
</tr>
<tr>
<td>PL2/SK2</td>
<td>5-way chassis socket and line plug (for output) (see text)</td>
</tr>
<tr>
<td>PL3</td>
<td>IEC mains connector, male, chassis mounting</td>
</tr>
<tr>
<td>T1</td>
<td>230V mains transformer, twin 6V secondaries, 4VA min.</td>
</tr>
</tbody>
</table>

Printed circuit board, available from the EPE PCB Service, code 318; aluminium case, 102mm x 76mm x 38mm; 14-pin d.i.l. socket; fuseholder, 20mm, p.c.b. mounting (2 off); fuseholder, 20mm, panel mounting; i.e.d. clip, panel mounting (5 off); sheet aluminium, 15mm x 40mm (2 off) (see text); transformer primary insulating shield; insulating boots for mains input plug and fuse FS2; mains lead; p.c.b. supports, plastic (4 off); test bulb and holder (see text); solder tags (2 off); battery spade connectors (2 pairs); materials for battery bracket; 3A mains rated wire; connecting wire; 4.7Ω 3W test resistor (optional – see text); solder, etc.
in-built short-circuit protection and it will “turn down” when approximately 2.5A is exceeded.

Resistor R14 and capacitor C5 connected in series to pin 3 (frequency compensation) determine the regulation loop gain characteristics. The values specified are those recommended by the manufacturer. Capacitor C6 connected to pin 6 (soft start) prevents a current surge when the regulator is switched on.

FINAL PROTECTION

Optional “last ditch” protection is provided by Zener diode D11, which is connected across the output after fuse FS3. This provides protection in the event of some catastrophic circuit failure resulting in a sudden rise in output voltage.

The Zener breakdown voltage is selected to be about 25 per cent higher than the output voltage so that it does not normally conduct. If the voltage tries to rise for some reason, the Zener diode clamps this at its breakdown voltage and a large current can flow through it. The current would be much greater than could be handled continuously but the fuse should blow quickly enough to prevent destruction of the Zener.

This is not guaranteed to be effective but to provide the best chance of success, a fast-blow fuse should be used for FS3. Also, the value of the fuse should be only a little greater than the maximum load on the output. Great care should be taken over all aspects of construction to prevent faults occurring in the first place.

Because of their rapid on-off action, switching regulators tend to generate radio-frequency interference (r.f.i.) which can flow into power supply lines or be radiated from the connecting wires. This can cause noises from the loudspeakers of radio equipment connected to the same supply or in the vicinity of the circuit.

This is not a problem here because the mains supply is disconnected when the regulator is operating. Also, interference cannot be radiated because the circuit is enclosed in an earthed metal box.

CONSTRUCTION

Construction is based on a single-sided printed circuit board (p.c.b.). The topside component layout and full size underside copper foil track master are shown in Fig.2.
This board is available from the EPE PCB Service, code 318.

Assemble the board in order of component size, observing the correct orientation of polarity-conscious components.

Note that the 4-7 ohm (47Ω) resistor in the R3 group may need to be changed in value after the unit has been tested (to adjust the limiting current). To enable this to be done more easily, it could be soldered between a pair of solder pins or short wire "stalks". It would then be a simple matter of de-soldering it and replacing it with one of a different value.

The value of capacitor C5 (33nF) may not be readily available. Provision has therefore been made to solder two capacitors in parallel, 10nF and 22nF, to give nearly the same value.

There are different manufactured styles for voltage reference device IC2. Some have three leads instead of two, in which case refer to the pin-out of the particular device (which your component supplier should have available) and cut off the unwanted lead.

Note that IC1, IC2 and IC3 are static-sensitive, so touch something which is earthed (such as a metal water tap) before handling their pins.

Leave the test point, TP1/TP2, link unmade at this time.

The l.e.d.s can be mounted directly to the p.c.b. with their leads bent at right angles to line up with holes in the case front panel. If the leads are too short, extension leads can be added, as was the case with the prototype.

A heatsink is needed for diode D10 (but not shown in the photograph) and this may be a piece of sheet aluminium having minimum dimensions of 15mm by 40mm bent through right angles and attached so as to maintain a clear gap with all internal parts. The diode’s integral tab must not make metallic contact with anything else so, as a precaution, fit a mounting kit so that the tab is electrically isolated from the heatsink.

Solder 15cm pieces of stranded connecting wire of 3A rating minimum to switch S1 pads. Use different colours to avoid errors later.

BOXING UP

This circuit must be mounted in an Earthed metal box. Note that the metalwork is used as a heatsink for the regulators so these must be placed flat against the box. It is very important that no part of the circuit makes contact with the case.

The 12V input and output connectors may be of any polarised type but must be sufficiently rated for the expected load. The 12V and camcorder connectors must be of a different pattern so that the cables cannot be interchanged.

Mount the p.c.b. vertically on plastic stand-off insulators as shown in the photographs.

Using a suitable mounting bracket, attach the batteries securely in position. Make sure there is a clear space between the terminals and everything else. Partially discharged batteries should be used initially to allow correct testing of the charging circuit.

Refer to Fig.3 and complete the wiring, using stranded mains-type wire of 3A rating minimum. Insulate all mains connections so that they cannot be touched.

Make up a lead (or use a ready-made one) to connect the car cigar lighter socket to the 12V input observing the correct polarity. It is essential for an in-line fuse-holder and 3A fuse to be included in this lead.

![Diagram of circuit board wiring](image.png)

Fig.3. Intenwiring between circuit board and off-board components. Use stranded mains-type wire of 3A rating minimum.

692 Everyday Practical Electronics, October 2001
ADJUSTMENTS

Initial testing should be made using a 12V car battery or bench power supply.
Whenever a mains supply is plugged in, the case must be fully enclosed so that there is no access to internal parts.
Switch S1 to “CH/OFF” and connect the supply. The “12V” l.e.d. should operate. Adjust VR1 to give a voltage at test point TP1 of 7.7V.
Connect an ammeter between test points TP1 and TP2 and switch to “CH/OFF”. If the ammeter reads less than 950mA, no action is needed. If it is too high, experiment by increasing the value of the 4Ω7 resistor in the R3 group until a satisfactory reading is achieved.
With the current limit set, permanently link TP1 to TP2.
Once the batteries have reached a reasonable charge level, set switch S1 to “CAM”. Adjust preset VR2 until the correct voltage is obtained across the output terminals (SK2). If fuse FS3 blows, or regulator IC4 becomes hot, switch off immediately. Investigate and correct the fault before proceeding.
Note that the presence of Zener diode D11 will limit the maximum output voltage. It will also increase the current flow if IC4 tries to raise the voltage above the Zener threshold.
Make checks on the circuit using a filament bulb (6V rating for up to 7.2V and 12V for more than this) and run the battery pack down to “low”. Check all aspects of operation and make certain the unit and camcorder operate correctly.
Disconnect the 12V test supply and plug into the mains. Check that the output voltage at SK2 is still the same.

FINALLY

When the unit is not in use, remember to return the mode switch to “CH/OFF”. When in use, the batteries need recharging when only the red l.e.d. remains on (or when all l.e.d.s. are off!).
The unit should be removed from the camera bag while charging. This is because the bag would insulate the case and could cause the unit to overheat.

KEEP YOUR MAGAZINES SAFE – RING US NOW!

This ring binder uses a special system to allow the issues to be easily removed and re-inserted without any damage. A nylon strip slips over each issue and this passes over the four rings in the binder, thus holding the magazine in place.
The binders are finished in hard-wearing royal blue p.v.c. with the magazine logo in gold on the spine. They will keep your issues neat and tidy but allow you to remove them for use easily.
The price is £5.95 plus £3.50 post and packing. If you order more than one binder add £1 post and packing for each binder after the initial £3.50 postage charge (overseas readers the postage is £6.00 each to everywhere except Australia and Papua New Guinea which costs £10.50 each).
Send your payment in £’s sterling cheque or PO (Overseas readers send £ sterling bank draft, or cheque drawn on a UK bank or pay by card), to Everyday Practical Electronics, Wimborne Publishing Ltd, 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Tel: 01202 873872. Fax: 01202 874562.
E-mail: editorial@epemag.wimborne.co.uk. Web site: http://www.epemag.wimborne.co.uk
We also accept card payments. Mastercard, Visa, Amex, Diners Club or Switch (minimum card order £5). Send your card number and card expiry date plus Switch Issue No. with your order.
PIEZOELECTRIC SOUNDER, also operates efficiently as a microphone. Approximately 30mm diameter, easily mountable, 2 for £1. Order Ref: 1084.

LIQUID CRYSTAL DISPLAY on p.c.b. with i.c.s etc. viewable to 6 figures or letters with data. Order Ref: 1085.

30A PANEL MOUNTING TOGGLE SWITCH. Double pole, single throw. Order Ref: 208.

HIGH POWER 3in. SPEAKER (11W 8ohm). Order Ref: 246.

MEDIUM WAVE PERMEABILITY TUNER. It’s a complete radio with circuit Order Ref: 247.

MAINS MOTOR encased. Order Ref: 8. Mains voltage 100W, brass

MAINS TRANSFORMER. 12V-0V-12V, 6W. Order Ref: 12. **LEVER-OPERATED MICROSWITCHES**, each with 4mm BRIDGE RECTIFIER, **HALL EFFECT DEVICES**, Order Ref: 685.

LUMINOUS ROCKER SWITCH, sockets. Good length flexible lead. Order Ref: D86.

3-CONTACT MICROSWITCHES, 12V d.c. or 24V a.c., **HIGH CURRENT RELAY**, **TRANSISTOR DRIVER TRANSFORMER**. Order Ref: 811.

SLIDE SWITCHES. Pack of 3. Order Ref: 373. **SWITCHED RELAYS**. £1 each less 10% if ordered in quantities of 10, same or mixed values.

BLADE FUSES. 3.5A x 4mm x 15mm, for D.C. motors for voltages up to 12V and any power

MINI MOTOR SPEED CONTROLLER. These are suitable for D.C. motors for voltages up to 12V and any power up to 16W. They reduce the speed by intermittent full voltage pulses so there should be no loss of power. In kit form £1.00 each Order Ref: 1/2R7. **MINI D.C. MOTOR WITH GEARBOX**. Order Ref: 2P459.

SHOCK PROOF FUSE holder. This has an output, complete with a set of 10, same or mixed values.

FUSE BASE. Price £10. Order Ref: 6.5P7. For dielectric fuses this plugs into a 13A socket, is really nicely boxed. Order Ref: 1.5P50.

MINI BLADE FUSES. For p.c.b. mounting, size 28mm x 25mm x 12mm, all have 16A changeover contacts for up to 250V. Four versions available, they all look the same but have different costs.

6V Order Ref: FR17

24V Order Ref: FR18

24V Order Ref: FR19

48V Order Ref: FR20

Price £1 each less 10% if ordered in quantities of 10, same or mixed values.

relays

MINI BLOWER HEATER. It is 55W so that is over 4A which is normal working, intermittently it would be a much higher amperage. Beautiful transformer, well made and very well insulated. Terminals are in a plastic frame so can’t be accidentally touched. Price £3.50. Order Ref: 3SP3.

RECHARGEABLE NICAD BATTERIES. AA size, 25p each, which is a real bargain considering many firms charge as much as 95p each. These are in packs of 10, coupled together with an output lead so are a 12V unit or 2 x 6V or 1 x 12V £2.50 per pack. 10 packs for £25 including carriage. Order Ref: 2SP4.

SOLDERING IRON. Price £1.50. Order Ref: 2P44.

CASED POWER SUPPLIES. They all enable you to check voltages, for D.C. motors for voltages up to 12V and any power up to 750; d.c. current 15A or more. They are all in a case size 80mm wide, 130mm high and 35mm deep. Prices include base

REJECTION 400V TRANSFORMER. Coils 80mm long, 33mm diameter. Very powerful, operates on any voltage between 6V and 24V D.C. Speed 6V is 200 rpm, speed controller available. Special price £3 each. Order Ref: 1/2R7.

FLASHING BEACON. Ideal for putting on a van, a tractor or a vehicle which is not always seen. Uses a Xenon tube and has an amber coloured dome. Sufficient fixation is included so unit can be put away if put away. Price £3. Order Ref: EP5. Order Ref: 2PSP27.

MOTOR SPEED CONTROL. This is proper BT TELEPHONE EXTENSION WIRE. This is in a heavy duty cable, suitable for use on a p.c.b. Price £1 each, 10 for £9.50 each.

IT IS A DIGITAL INSULATION TESTER WITH MULTIMETER. Internally generates voltages which enable you to check insulation resistance of components. The multi-meter uses a Xenon tube and has an amber coloured dome. Slightly less than the standard 6.3V pilot bulb so they would be ideal for making displays for night lights and similar applications.

MINI BLOWER HEATER. It is 55W so that is over 4A which is normal working, intermittently it would be a much higher amperage. Beautiful transformer, well made and very well insulated. Terminals are in a plastic frame so can’t be accidentally touched. Price £3.50. Order Ref: 3SP3.

BUY ONE GET ONE FREE

ULTIMATE WEIGHT DETECTOR. Nicely cased, free standing, has internal alarm which can be silenced. Also has connections for external speaker or light. £25 each.

CASED POWER SUPPLIES. Write for small examples and a list of modifying, would give £12 at 10A. Originally £5.50 each, now 2 for £10. Order Ref: 9.R8.

RECHARGEABLE NICAD BATTERIES. AA size, 25p each, which is a real bargain considering many firms charge as much as 95p each. These are in packs of 10, coupled together with an output lead so are a 12V unit or 2 x 6V or 1 x 12V £2.50 per pack. 10 packs for £25 including carriage. Order Ref: 2SP4.

FOR QUICK HOOK-UPS. You can’t beat leads with a croc clip each end. You can make a set of 10 leads, 2 each of 5 assorted colours with insulated crocodile clips on each end. Lead length 36cm, £2 per set. Order Ref: 2P459.

MINI BLOWER HEATER. It is 55W so that is over 4A which is normal working, intermittently it would be a much higher amperage. Beautiful transformer, well made and very well insulated. Terminals are in a plastic frame so can’t be accidentally touched. Price £3.50. Order Ref: 3SP3.

1.5-6V MOTOR WITH GEARBOX. Motor is mounted on the gearbox which has惋changeable gears giving a range of speeds and motor torques. Comes with full instructions for changing gears and calculating speeds. £7. Order Ref: 7P26.

MINI BLOWER HEATER. Ideal for under desk or on a cupboard etc., needs only a simple mounting frame, price £5. Order Ref: SP23.

TERMS

Send cash, PO, charge or quote credit card number – orders under £25 add £4.50 service charge. Send cash, PO, cheque or quote credit card number – orders under £25 add £4.50 service charge. Send cash, PO, cheque or quote credit card number – orders under £25 add £4.50 service charge.
V92 MODEMS

By Barry Fox

If you are buying a new modem, be sure it carries the telltale mark “V92 Ready”. Otherwise you will miss out on the chance to access the Internet more quickly, and do so with a single conventional phone line without blocking speech calls.

A V92 modem with Quick Connect can halve tiresome logon times. Modem on Hold pauses the PC while it is Internet surfing, to let the user take an incoming speech call on the same phone line. When the talking stops, the PC clicks back to the Internet without the need to redial.

The International Telecommunications Union sets the V standards which ensure that modems round the world talk to each other. V90, as now widely used, pushes the data capacity of phone lines to their practical limit, by receiving at up to 56Kbps and sending at up to 33.6Kbps.

Because reliable working speed varies with line quality, existing V90 modems waste up to a minute each time a connection is made by “handshaking” with line test signals. If the phone line has a call-waiting service, which sends bleep tones down the line to warn that someone is trying to make a voice call while the line is engaged, existing modems often mistake call-waiting for a disconnect tone and hang up on the Internet, without giving the surfer any choices.

A V92 modem solves both these problems with non-volatile memory which builds a library of previous settings. When the modem dials an Internet service with matching software they quickly recognise a known situation and skip the rest of the handshake.

The V92 modem also recognises a call-waiting tone for what it is, puts the Internet connection on hold and then uses the stored settings to reconnect quickly when the speech caller hangs up.

Adept Scientific has announced the introduction of Commsim, a new product from Electronics Workbench. Commsim is a powerful and easy to use Windows-based simulation environment for modelling analogue, digital or mixed-signal networks.

Commsim offers hundreds of communication and maths blocks for powerful yet intuitive design, so modelling and simulation can be performed, say Adept, without having to write a single line of code. The product reflects the new system level approach currently being taught in colleges and universities throughout the world to introduce electronics and its real world applications to engineering students.

Consistent with the approach taken by other renowned Electronics Workbench products, Commsim offers both hierarchical modelling and embedded compound blocks, facilitating rapid prototyping. Once designed the system can be simulated to determine its performance under a variety of operating conditions.

For more information contact Anna Moorhouse, Dept. EPE, Adept Scientific plc, Amor Way, Letchworth, Herts SG6 1ZA. Tel: 01462 480055, Fax: 01462 480213.

E-mail ewb@adeptscience.co.uk. Web: www.adeptscience.co.uk.

COMMSIM FOR EWB

Adept Scientific has announced the introduction of Commsim, a new product from Electronics Workbench. Commsim is a powerful and easy to use Windows-based simulation environment for modelling analogue, digital or mixed-signal networks.

Commsim offers hundreds of communication and maths blocks for powerful yet intuitive design, so modelling and simulation can be performed, say Adept, without having to write a single line of code. The product reflects the new system level approach currently being taught in colleges and universities throughout the world to introduce electronics and its real world applications to engineering students.

Consistent with the approach taken by other renowned Electronics Workbench products, Commsim offers both hierarchical modelling and embedded compound blocks, facilitating rapid prototyping. Once designed the system can be simulated to determine its performance under a variety of operating conditions.

For more information contact Anna Moorhouse, Dept. EPE, Adept Scientific plc, Amor Way, Letchworth, Herts SG6 1ZA. Tel: 01462 480055, Fax: 01462 480213.

E-mail ewb@adeptscience.co.uk. Web: www.adeptscience.co.uk.

LEICESTER SHOW

The 30th Leicester Amateur Radio Show (LARS) will be held at Donington Park, on 21 and 22 September 2001.

LARS is claimed to be the UK’s largest amateur radio, computing and electronics event. For further information contact LARS committee member G. W. Dover G4AFJ, 31 Newbold Road, Kirkby Mallory, Leics LE9 7QG.

Tel: 01455 823344. Fax: 01455 828273.

E-mail: g4afj@argonet.co.uk.

Web: www.lars.org.uk.

Please mention EPE when contacting.

ENERGY FACTS

The Department of Trade and Industry has recently sent information on Energy Statistics for period February to April 2001. It is interesting to note that the production of primary fuels such as coal and other solid fuels, petrol, gas and electricity, is actually down by 6·9 per cent compared to the same period last year. As to quite how this squares with the 3·9 per cent rise in consumption of the same fuels in that period is unclear, presumably it means we are importing more.

For more information, browse www.dti.gov/energy/energystats/energystats.htm.

ELECTROMAIL CEASES MAIL ORDER

Electromail (a division of RS Components) have confirmed that they have ceased to provide a mail order service. However, it is still possible to purchase RS goods on credit card (only), either via the web site http://rswww.com or via telephone to 01536 444079.
MUSICAL DRIVE-BY
Barry Fox

If you are driving along and your car suddenly starts singing, you can probably thank Gert van der Merwe of South Africa. His international patent filing WO 01/32989 tells how it’s done.

A series of small metal ridges is built into the road, like miniature sleeping policeman speed humps. The ridges are around 15mm apart and in a pattern that matches the peaks of a musical waveform. So the car vibrates to play a tune. If slightly different sets of ridges are formed, to the left and right of the road, the car vibrates in stereo sympathy. The ridges can be temporary, on a mat laid on the road alongside an advertising sign, to play a matching jingle.

NRPB VIDEO

“Mobile Telephony and Health” is the title of a 30-minute VHS video produced by NRPB (National Radiological Protection Board). It provides a timely, digestible review of the current state of knowledge about possible health effects of mobile phone handsets and the associated mobile transmission masts.

There are documentary style interviews with leading scientists in the field, and members of the Independent Expert Group on Mobile Phones whose report was published last year.

The video has been produced professionally and contains graphics and other material to illustrate points made. For example, there are useful graphic sequences showing how mobile phones work, what the possible heating effects could be in the head and how people are exposed to transmissions from masts.

NRPB felt there was a need for a video giving straightforward, factual information about mobile phones and health issues. There is a charge of £6.00 and copies can be obtained from Information Services, NRPB, Chilton, Didcot, Oxon OX11 0RQ, or by telephoning Jane True/Jill Cook on 01235 822742 to order by major credit cards.

The NRPB’s web site is at www.nrpb.org.uk.

SONY’S TECHNOLOOK

Sony has announced the development of a comprehensive range of TechnoLook products, following the successful introduction of its first video microscope last year. The expanded TechnoLook range includes higher magnification and semi-digital models, taking the first step towards a fully digital microscope.

Rudy Cosjins, Sony General Manager for Visual Solutions Marketing Europe, comments, “Sony tackled a number of major issues faced by users of traditional microscopes with the introduction of the TechnoLook. Our aim was to create an easy to use product that could be connected to a PC, eliminate eyestrain and reduce neck and back problems.”

For more information contact Sony United Kingdom, Pippa Copeman-Hill, Corporate Communications. Tel: 01932 816488. Fax: 01932 817029. E-mail: pippa.copeman-hill@eu.sony.com. Web: www.sony.com.

TETRA AND HEALTH

In the National news recently, concerns have been raised about possible health effects of exposure to radio frequency (r.f.) radiation via TETRA (Terrestrial Trunked Radio) cables. TETRA is the new digital radio system for use by commercial organisations and the emergency services. Its operation results in pulse modulation of the r.f. signal at a low frequency (17.6Hz).

The National Radiological Protection Board (NRPB) has sent us the following statement on behalf of AGNIR, the NRPB Advisory Group on Non-ionising Radiation:

“AGNIR has reviewed the features of operation of the TETRA system, the likely levels of exposure of people, and studies relevant to the assessment of any biological effects. It has noted that the signals from base stations are not pulsed whereas those from handportables and from terminals built into vehicles are.

“AGNIR has concluded that although areas of uncertainty remain about the biological effects of low-level r.f. radiation in general, including modulated signals, current evidence suggests that it is unlikely that the special features of signals from TETRA handportables and terminals mounted in vehicles pose a hazard to health.”

For more information contact NRPB, Chilton, Didcot, Oxon, OX11 0RQ. Tel: 01235 822744. Fax: 01235 822746. Web: www.nrpb.org.uk.

YOU CAN NOW BUY ANTEX EQUIPMENT ON-LINE

www.antex.co.uk

An animation of iron rods being heated.
LAST month we outlined some of the basic considerations related to the power and heat dissipated by components. Without doubt some parts (e.g. mains transformers) can become very hot indeed even in normal operation, especially if they are mounted on plastic cases which don’t dissipate heat very well at all. Hopefully, adequate ventilation will be available to help with the throughflow of air. Obviously, bolting such parts to a steel or aluminium chassis will help dissipate heat.

The point was made last month that heatsinks are often necessary on certain devices – regulator chips or power transistors for example – but if the heatsinks become very hot it’s usually just a sign that the heatsink is doing its job of conveying heat from the regulator. If the heatsink system has been correctly designed, it will prevent the semiconductor junction from exceeding the manufacturer’s maximum temperature rating.

Although a wide variety of parts (e.g. 3-pin regulators) have built-in thermal overload protection, relying on this feature is not a good way of compensating for the use of inadequate heatsinking; thermal cycling between extremes of temperature may ultimately “stress” the device leading to premature failure over time.

Thermal Resistance

In this month’s Circuit Surgery we describe the basic procedure for selecting the correct heatsink for a device. The idea is to carry heat away from the part that matters most – the semiconductor junction or i.c. die. Just as electric current flows through a conductor, heat flows from a semiconductor chip to the outside ambient air also through a path of “conductors” – air, metals and alloys which carry the heat away through a thermal conduction action. Hence, anything getting in the way of this path adds to the system’s overall thermal resistance, preventing the heat from being conveyed so efficiently.

Thermal resistance is measured in °C/Watt – it indicates how much the temperature will increase across a “thermal resistor” for a given power dissipation. A large, expensive heatsink rated at 1°C/Watt increases temperature by only one degree per watt of power dissipated, and is far more efficient (because it has a much lower thermal resistance) than a small heatsink of, say, 25°C/W.

A typical heatsink system contains the elements described in the photo. This could represent any power transistor containing a junction, or say a voltage regulator chip such as a the TO-3 type opened up for the photograph. The requirement is to ensure that the semiconductor junction temperature (symbol T_J) does not exceed a figure of 125°C usually, a typical value specified by data sheets. The junction is at the heart of the package, but unfortunately for us, various elements of the system hinder the passage of heat and have to be accounted for. Everything possesses a thermal resistance, symbol θ (theta), which can be sub-defined as follows:

- θ_JC – thermal resistance between junction and the case;
- θ_CS – thermal resistance between the case and heatsink;
- θ_SA – thermal resistance between heatsink and ambient.

The electronics designer will hopefully see a number of “thermal resistors” in series: each resistor prevents heat from flowing to ambient, so heatsink design implies calculating to ensure that the overall thermal resistance of the system is not so large as to prevent heat flowing away efficiently, or this will result in the semiconductor junction producing more heat than can be carried away effectively.

Out consultant troubleshooters take a look at basic heatsink calculations this month

A TO-3 can style regulator sawn off to reveal the i.c. chip inside.

A typical assembly showing how the thermal resistance is divided between the device and heatsink.
On the Case

The first item \(\theta_{JC} \) corresponds to the material between the junction and the case wall. The junction of a TO-3 device will be fixed to a steel base, but the case might also be packed with thermal conductive grease to help improve (reduce) the thermal resistance; it is usually just full of fresh air though.

A junction mounted in a TO-202 or TO-220 device will be embedded in a plastic resin, not known for its heat conducting properties but the metal tab is there to help with heatsinking.

Manufacturers’ data sheets give the values for the thermal resistances of different case types. For comparison National values for the thermal resistances of different TO-3 LM320 regulator, 4°C/W for the TO-220 and 12°C/W for the TO-202 version. The differences in thermal efficiencies are obvious.

The next parameter \(\theta_{SA} \) relates to the thermal resistance between the case and sink (heatsink). This means an insulating washer as shown in the photo, perhaps with a smear of thermal conductive grease. You might want to allow say 0.5°C/W for this.

Lastly \(\theta_{JA} \) – the thermal resistance between the heatsink and ambient temperature which is actually the thermal resistance of the heatsink itself. In some catalogues, it is shown as \(R_{th} \). Some typical heatsinks are shown in the photo, including types intended for integrated circuits.

Choose a Heatsink

Let’s now look at a typical design example. A semiconductor is calculated to be dissipating 10 watts (some quick V \times I calculations told us that). The first question is, what is the device’s ambient temperature \(T_{a} \) likely to be? This directly affects our calculation and it depends on ventilation and the proximity of any other hot devices. For now let us say that it is 40°C. Therefore, if the maximum junction temperature permitted is 125°C, the total permissible thermal resistance from end to end is \((125 - 40)/10 \text{ Watts} = 8.5 \text{°C/W} \). Suddenly, those heatsink ratings need scrutinising carefully!

Breaking it down further, we would firstly pick a semiconductor package with an appropriate thermal resistance \(\theta_{JC} \). If we were using an LM320 regulator we could rule out the TO-202 package, a 12°C/W device. Choosing a TO-3 package, that accounts for 3°C/W already of our total permitted thermal resistance.

You might also add in say 0.5°C/W for silicone grease and a washer \(\theta_{CS} \) leaving us with a value of 5°C/W remaining for the heatsink. If this value is exceeded then heat may not be dissipated efficiently enough to prevent the junction overheating.

Stay Cool

Clearly the likely ambient temperature surrounding the assembly directly affects the heatsink specification. This factor relates to ventilation and cabinet or circuit board layout. A cooler ambient figure of 25°C makes life easier for the semiconductor, it means the overall thermal resistance allowed can be raised to 10°C/W. A higher ambient – 65°C say – and you are left with a total value of 6°C/W, implying a higher heatsink rating of 2.5°C/W. What effect would using the smaller TO-220 package have instead? The higher thermal resistance means that a better heatsink would be required.

There is often the need to compromise somewhere along the line. Larger heatsinks are costlier and take up more space, implying a larger and more expensive cabinet. Looking at it another way, if a TO-3 device is used on a 2.5°C/W heatsink with silicon grease, then the maximum permissible ambient temperature allowed is 65°C. Heatsinks might be mounted on the outside of a box with a lower ambient temperature, rather than being fixed within, at a much higher temperature. All these aspects should be borne in mind by the budding designer.

Some really purposeful-looking heatsinks are available which include 10in. diameter fan-assisted cooling to lower their thermal resistance to a staggering 0.03°C/Watt: unfortunately they cost nearly £250 ($350) without the fan! Computer enthusiasts will be well aware of the need to fan-cool processor and video chips and a wide variety of very impressive-looking processor fans with heatsinks are now available.

AW

CIRCUIT THERAPY

Circuit Surgery is your column. If you have any queries or comments, please write to: Alan Winstanley, Circuit Surgery, Wimborne Publishing Ltd, 408 Wimborne Road East, Ferndown, Dorset, BH22 9ND. E-mail (no attachments) alan@epmag.co.uk. Please indicate if your query is not for publication. A personal reply cannot be guaranteed but we will try to publish representative answers in this column.

ORDER YOUR COPY NOW!

Signed...

Name and Address...

Everyone Practical Electronics is published on the second Thursday of each month and distributed S.O.R. by COMAG. Make sure of your copy of EPE each month—cut out or photocopy this form, fill it in and hand it to your newsagent.
By popular demand – an enhanced PIC microcontroller programming development board.

This PIC-programming printed circuit board has been designed for use with the software for the new Windows-based Toolkit TK3, to be described next month, and the DOS-based Toolkit V2.4, originally released in May/June ’99.

The board has been introduced following readership suggestions about how the original Mk2 board could be beneficially extended to allow its greater use as a PIC design development facility.

The Mk2 board was principally designed as a platform on which various PIC types could be programmed via the accompanying software. Whilst it provided limited access to the pins of an on-board PIC16F84 microcontroller, allowing it to be used in situ as the rudimentary heart of a developing hardware circuit, it did not offer direct access to all pins of the larger PIC16F87x family that could be programmed on it.

This new board design is intended to rectify this situation, allowing the four PIC sizes that it can accept to be hard-wired not only to additional on-board hardware, but also external components in conjunction with an optional plug-in breadboard. In this context, it is not only a programmer, but its options are also closely allied to the facilities available on the highly successful EPE PIC Tutorial board of Mar-May ’98.

Direct connection of the programming lines can be made to external PIC-controlled circuits under development or final completion (such as published EPE PIC-based designs).

The notable difference between the PIC Tutorial board and that of Toolkit Mk3 is that the latter, like its Mk2 predecessor, is under complete programming control by the connected PC-compatible computer. The Tutorial board, you may recall, had to be manually switched at different stages of the programming procedure.

TOOLKIT Mk3 CIRCUIT

The main circuit diagram for the PIC Toolkit Mk3 board is shown in Fig.1.

Electronically, the circuit is essentially the same as that for the Mk2 board. Connections between the PC-compatible computer and the board are made via the parallel printer port and a standard connector cable. The connections are buffered by IC2a to IC2e, ensuring that the input and output signals are maintained at optimum logic levels.

The input signals also have ballast and pull-down resistors, R1 to R8. The ballast resistors protect the connected computer output lines when the board is unpowered. The pull-down resistors provide a 0V bias to the buffer inputs when the computer is unpowered, or the port connector is unplugged.

Data and clock signals are brought in via printer port lines DA0 and DA1. Reset control of the PIC is via port line DA3, and programming mode control via DA4.

A fifth port line connection, ACK, sends signals back to the computer during PIC data reading, such as is required in code verification and disassembly modes.

A new sixth connection has been added, between IC2 pin 2 and the BUSY line at connector pin 11. This allows the software to check that the printer port cable is connected and the p.c.b. power is switched on.

MULTIPLEXER

Multiplexer IC3 is a 3-channel 2-way “changeover switch” and routes the PIC’s data and clock connections according to the programming or non-programming mode, which is controlled by port line DA4. The logic is illustrated in the block diagram in Fig.2.

During programming, the PIC’s data and clock lines are connected to the Port’s DA0 and DA1 lines. At other times they are disconnected from the port and routed as PIC data lines to any development circuit connected to them. This prevents the two PIC lines, and the computer, from being adversely affected by external circuit loads during programming.

The third 2-way path in IC3 controls the on-board voltage converter IC1, via its SHDN (shutdown) pin. When this pin is held low, during non-programming mode, IC1 outputs +5V via its Vout pin to the MCLR pins of the PIC(s), allowing the PIC to run its loaded program.

During programming mode, the SHDN pin is held at +5V and IC1 generates a Vout voltage of +12V, as required by the PIC at this time. Visual advice that the PIC is in programming mode is provided by i.e.d. D8, being turned on during programming and data read back.

When the PIC needs to be reset, port line DA3 is set high and turns on npn transistor TR1. This pulls the PIC MCLR pin.

Typical main screen display of the controlling software described in the 16-page Free supplement to be published next month.
Fig. 1. Main circuit diagram for the PIC Toolkit Mk3 printed circuit board.

*See text
low, which is held in reset mode until DA3 goes low again. Ballast resistor R12 prevents IC1 Vdd from being shorted to 0V during reset.

The PIC may also be reset manually by pushbutton switch S1. This facility is useful during code development, allowing the PIC to be repeatedly reset in order that some programmed actions can be observed from the beginning.

CONNECTION POINTS

The board has four PIC-insertion sockets, catering for 8-pin, 18-pin, 28-pin and 40-pin PICs (see Fig.3). The PICs are notated as IC5 to IC8 and their data input/output pins are variously combined onto five bus lines, as shown in Fig.1. The bus lines are terminated at pin header strips or terminal pins to which external circuit components can be connected.

The three larger sockets are intended for use with PIC16x84 and 'F87x devices, although it is likely that some other PIC types can also be programmed via them. The 8-pin socket has been included at reader suggestion. There are several small PICs that are likely to be suitable for programming via this socket, although none have been tested. Consult data sheets for PIC types not specifically mentioned here by name.

It is recommended that ZIF sockets are installed in any PIC position which is likely to be regularly used (but they are not made in 8-pin size so far as is known).

L.C.D. CONNECTION

An additional pin-header strip is connected to PIC port pins RB0 to RB5, which is intended for the plugged connection of an optional alphanumeric liquid crystal display (l.c.d.), whose typical pinouts are shown in Fig.4.

Also connected to this pin header are VR2, the l.c.d. contrast setting preset, and the +5V and 0V connections as required. All connections at this header are the same as specified in all the author’s recent (since 1998) alphanumeric l.c.d. based PIC designs.

Magenta Electronics supply 2-line x 16-character (per line) l.c.d.s which have pre-connected sockets intended for plugging low, which is held in reset mode until DA3 goes low again. Ballast resistor R12 prevents IC1 Vdd from being shorted to 0V during reset.

The PIC may also be reset manually by pushbutton switch S1. This facility is useful during code development, allowing the PIC to be repeatedly reset in order that some programmed actions can be observed from the beginning.

CONNECTION POINTS

The board has four PIC-insertion sockets, catering for 8-pin, 18-pin, 28-pin and 40-pin PICs (see Fig.3). The PICs are notated as IC5 to IC8 and their data input/output pins are variously combined onto five bus lines, as shown in Fig.1. The bus lines are terminated at pin header strips or terminal pins to which external circuit components can be connected.

The three larger sockets are intended for use with PIC16x84 and 'F87x devices, although it is likely that some other PIC types can also be programmed via them. The 8-pin socket has been included at reader suggestion. There are several small PICs that are likely to be suitable for programming via this socket, although none have been tested. Consult data sheets for PIC types not specifically mentioned here by name.

It is recommended that ZIF sockets are installed in any PIC position which is likely to be regularly used (but they are not made in 8-pin size so far as is known).

L.C.D. CONNECTION

An additional pin-header strip is connected to PIC port pins RB0 to RB5, which is intended for the plugged connection of an optional alphanumeric liquid crystal display (l.c.d.), whose typical pinouts are shown in Fig.4.

Also connected to this pin header are VR2, the l.c.d. contrast setting preset, and the +5V and 0V connections as required. All connections at this header are the same as specified in all the author’s recent (since 1998) alphanumeric l.c.d. based PIC designs.

Magenta Electronics supply 2-line x 16-character (per line) l.c.d.s which have pre-connected sockets intended for plugging...
onto this header. It is the same l.c.d. as supplied with the p.c.b. for PICtutor, the CD-ROM based PIC Tutorial and development kit.

If ordering this l.c.d. from Magenta, you MUST specify that it is this l.c.d. version required (you will otherwise be supplied with a connector-less l.c.d.).

Oscillator Components

The Mk3 board includes facilities for crystal and RC (resistor-capacitor) oscillator components. Crystal X1 is used in conjunction with capacitors C8 and C9. It is recommended that a crystal socket is used on the p.c.b. so that a crystal of any required frequency may be inserted.

The RC oscillator generation is controlled by capacitor C7 and the total resistance across R11 and preset VR1. It is also recommended that a p.c.b. socket is used for C7 so that its value can be readily changed as needed.

Switch S2 allows crystal or RC oscillation mode to be selected. It should be noted that the PIC requires its Configuration bits set to different logic values in relation to the oscillator type used.

Uncommitted Components

Several “uncommitted” components can be included on the p.c.b. The components are shown in Fig.5. They comprise four npn transistors (TR2 to TR5) with 10kΩ ballast resistors (R13 to R16) on their bases (Fig.5a).

Their emitters are grounded and you may connect their open-collectors to other circuits that require currents greater than the PIC can provide (about 100mA maximum per transistor, compared to about 25mA per PIC pin – see PIC data sheets for more information on the currents permitted).

The bases can be connected to any PIC pin as required, via the ballast resistors provided.

Eight uncommitted l.e.d.s (Fig.5b) can be included, D7 to D0 (numbered in this way to simplify PIC connection numbering when all are connected to the same port). They all have 470Ω ballast resistors (module RM1) in series, providing enough current for adequate brilliance without overloading the PIC.

Referring to Fig.5c, four uncommitted parallel switches (S3 to S6) can also be added. They are normally-open pushbuttons, with 10kΩ resistors (R17 to R20) in series. Their commoned outer

Fig.5. The “uncommitted” component options.
Fig. 6. Printed circuit board component layout and full size master track pattern for PIC Toolkit Mk3, showing positioning of optional breadboard.
terminations can be connected to the 0/5V power lines, with the polarity order as required. The “active” switch pins can be connected to any PIC DIP pin.

Lastly (Fig.5d), a 10kΩ preset (VR3) is provided, with its outer connections across the 0/5V power lines. Its wiper can be used to provide a reference voltage to an A-to-D (analog-to-digital) pin of any PIC that provides A-to-D conversion (the PIC16F87x family, for instance).

EXTERNAL BREADBOARD
There are terminal pin connections (not electrically connected to anything) which allow the p.c.b. to be mounted firmly onto a prototyping board (of the same type, for example, as used in the EPE Teach-In series of Nov ’99 to Oct ’00). This allows additional components to be breadboarded alongside the Toolkit Mk3 board for extended circuit development use.

Connections between the two boards can be made via solid-core connecting wires, soldered or “pinned” as required.

POWER SUPPLY
The Toolkit Mk3 board can be powered by any d.c. supply of between about +7V and +12V. IC4 in Fig.1 regulates this supply down to +5V. A 7805 1A device (IC4) is recommended to provide enough current to power the board and other development circuits connected to it.

The external power supply should be chosen so that it can satisfactorily handle the power required of it. Also note that regulator IC4 may require a heatsink at higher input voltages and output currents.

CONSTRUCTION
Printed circuit connection and tracking details are shown in Fig.6. This board is available from the EPE PCB Service, code 319.

It is suggested that you assemble the board in order of wire links (don’t forget the one underneath IC3), i.e. sockets, and the other components in order of size or convenience.

Thoroughly check the board for assembly errors before inserting the d.i.l. devices and applying power. Next check the powered board with only regulator IC4 in circuit, then check the power line voltages with voltage

A COMPLETE RANGE OF INVERTERS
150W TO 2500W - 12V & 24V
These inverters generate a modified sine wave, which are considerably superior to the square waves which are produced by most other inverters. Due to this superior feature they are capable of powering electrical equipment such as TVs, videos, desktop & notepad computers, microwave ovens, electrical lamps, pumps, battery chargers, etc.

Low Battery Alarm
The inverters give an audible warning signal when the battery voltage is lower than 10.5V (21V for the 24V version). The inverter automatically shuts off when the battery voltage drops below 10V (20V for the 24V version). Fuse protected input circuitry.

<table>
<thead>
<tr>
<th>Order Code</th>
<th>Power</th>
<th>Voltage</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>651.581</td>
<td>150W Continuous</td>
<td>12V</td>
<td>£36.39</td>
</tr>
<tr>
<td>651.578</td>
<td>150W Continuous</td>
<td>24V</td>
<td>£36.39</td>
</tr>
<tr>
<td>651.582</td>
<td>300W Continuous</td>
<td>12V</td>
<td>£50.64</td>
</tr>
<tr>
<td>651.585</td>
<td>300W Continuous</td>
<td>24V</td>
<td>£50.64</td>
</tr>
<tr>
<td>651.593</td>
<td>600W Continuous</td>
<td>12V</td>
<td>£101.59</td>
</tr>
<tr>
<td>651.593</td>
<td>600W Continuous</td>
<td>24V</td>
<td>£101.59</td>
</tr>
<tr>
<td>651.587</td>
<td>1000W Continuous</td>
<td>12V</td>
<td>£177.18</td>
</tr>
<tr>
<td>651.597</td>
<td>1000W Continuous</td>
<td>24V</td>
<td>£177.18</td>
</tr>
<tr>
<td>651.602</td>
<td>1500W Continuous</td>
<td>12V</td>
<td>£314.52</td>
</tr>
<tr>
<td>651.593</td>
<td>1500W Continuous</td>
<td>24V</td>
<td>£314.52</td>
</tr>
<tr>
<td>651.589</td>
<td>2500W Continuous</td>
<td>12V</td>
<td>£490.54</td>
</tr>
<tr>
<td>651.599</td>
<td>2500W Continuous</td>
<td>24V</td>
<td>£490.54</td>
</tr>
</tbody>
</table>

All prices are inclusive of V.A.T. Carriage £6.00 Per Order

Illustration shown is 651.583 600W version

DELIVERY CHARGES ARE £5.00 PER ORDER. OFFICIAL ORDERS FROM SCHOOLS, COLLEGES, GOVT. BODIES, PLC, ETC. PRICES ARE INCLUSIVE OF V.A.T. SALES COUNTER. VISA AND ACCESS ACCEPTED BY POST, PHONE OR FAX, OR EMAIL US AT SALES@BKELEC.COM ALTERNATIVELY SEND CHEQUE OR POSTAL ORDERS MADE PAYABLE TO BK ELECTRONICS.

For Full Specifications View our web site at:- WWW.BKELEC.COM/INVERTERS.HTM
ACCELEROMETERS are used in many areas of testing. Usually their operation depends on a solid mass that is allowed to move under the differing conditions of acceleration and its position monitored to give an indication of the acceleration.

These devices have a number of disadvantages including the difficulty of manufacturing them and using integrated circuit technology. Although in recent years new micro-machining techniques have been introduced that allow for accelerometers to be manufactured as integrated items.

However, these processes involve many masks and etching steps in the manufacturing process. Not only is this complicated but it is also very expensive.

New Development

In a new development organised by the American National Institute of Standards and Technology in Gaithersburg in Maryland, USA, researchers have overcome the problems of incorporating an accelerometer into an integrated circuit. The idea is based around a concept that has recently been proposed using the effect of acceleration on natural heat convection. The device uses heat generated from conductors that is transferred into the gas surrounding the device. It is hermetically sealed to ensure that it is not influenced by external pressure or airflow.

The new implementation of this idea uses standard CMOS circuitry and micro-machined thermocouple or thermistor sensors for temperature sensing. In view of this it is possible to have a completely integrated sensor on a single chip including all the sensing and drive circuitry.

This can give significant cost advantages over existing sensors. Not only this but the sensors show significant performance advantages over other types. These manifest themselves in terms of much lower power consumption and a higher frequency response, extending up to figures of a few hundreds of Hertz rather than a few tens of Hertz when compared to other convective sensors.

Construction

The basic device consists of a suspended polysilicon micro-heater, see Fig.1. When a current is passed through this heated element the thermal difference between the element and the surrounding gas generates a convective flow of gas.

When the device experiences some acceleration the change in the convection flow of the gas causes a temperature difference between the sides of the heated element. Temperature sensors placed on either side of the heater element then detect a temperature difference. The acceleration is proportional to that applied to the device.

The temperature sensors can be either thermocouples or thermistors. Both types are equally compatible with CMOS fabrication technology and the interfacing requirements for both types can be accommodated equally as well. However, there are a few differences in the actual construction of the devices.

The temperature sensors can be either thermocouples or thermistors. Both types are equally compatible with CMOS fabrication technology and the interfacing requirements for both types can be accommodated equally as well. However, there are a few differences in the actual construction of the devices.

Test Conditions

The accelerometers were tested under a variety of conditions. One crucial test was that of investigating how the devices operated when they were inclined to the horizontal. Their operation was tested between plus and minus 90 degrees and for accelerations between zero and 7g.

They were also tested over a range of vibration frequencies from 30Hz to 3KHz.

Results

The accelerometers showed very good levels of linearity. Errors of less than 0.5% were achieved under tilt conditions of up to ±90 degrees, and less than two per cent for accelerations of less than 7g. The sensitivity was also good and was found to be almost a linear function of the heater power.

Using a heater running at 100mW, sensitivity levels of just over 100μV per g were achieved for the thermocouple devices. Values of 25μV per g were obtained for thermistor devices.

Sensitivity is of considerable importance. If values fall too low then the output voltage can become lost in the noise. A typical thermocouple device with a resistance of 64 kilohms produced a noise voltage of 32nV/Hz1/2 (32 nanovolts per square root Hertz) and for a thermistor device with a resistance of 4 kilohms the value was about a quarter of this.

It was also found that the thermistor device had a higher frequency response than the thermocouple. This is thought to result from the significantly smaller spacing between the sensing devices.

Summary

In manufacture these devices only use one additional mask post-processing step. This makes them ideal for easy introduction into production. This will also result in their cost not being significantly above many other specialist devices, and considerably cheaper than other accelerometers.

A further advantage is their robustness as they have no mechanically moving parts.

Further development work is still required. The devices can be further optimised and their performance needs to be characterised using different gases, pressures and temperatures. Other geometries internal to the device also need to be investigated.

This new technology shows a significant amount of promise and should enable accelerometers to become cheaper, smaller and more flexible in their use.
A great way to buy EPE Back Issues – our wallet-sized CD-ROMs contain back issues from our EPE Online website plus bonus articles, all the relevant PIC software and web links. All this for just £12.45 each including postage and packing.

VOL 1 CONTENTS
BACK ISSUES – November 1998 to June 1999 (all the projects, features, news, IUs etc. from all eight issues). Note: No advertisements or Free Gifts are included.
PIC PROJECT CODES – All the available codes for the PIC based projects published in issues from November 1998 to June 1999.

VOL 2 CONTENTS
BACK ISSUES – July 1999 to December 1999 (all the projects, features, news, IUs, etc. from all six issues). Note: No advertisements or Free Gifts are included.
PIC PROJECT CODES – All the available codes for the PIC-based projects published in issues from July to December 1999.

VOL 3 CONTENTS
BACK ISSUES – January 2000 to June 2000 (all the projects, features, news, IUs etc. from all six issues). Note: No Free Gifts are included.
PIC PROJECT CODES – All the available codes for the PIC-based projects published in issues from January to June 2000.

VOL 4 CONTENTS
BACK ISSUES – July 2000 to Dec. 2000 (all the projects, features, news, IUs etc. from all six issues). Note: No Free Gifts are included.
PROJECT CODES – All the available codes for the programmable projects from July to Dec. 2000.

EXTRA ARTICLES – ON ALL VOLUMES
BASIC SOLDERING GUIDE – Alan Winstanley's internationally acclaimed fully illustrated guide.
UNDERSTANDING PASSIVE COMPONENTS – Introduction to the basic principles of passive components.
HOW TO USE INTELLIGENT L.C.D.s, By Julyan illett – An utterly practical guide to interfacing and programming intelligent liquid crystal display modules.
PhyzzY COMPUTERS BONUS ARTICLE 2 – Creating an Event Counter. By Clive “Max” Maxfield and Alvin Brown.
INTERGRAPH COMPUTER SYSTEMS 3D GRAPHICS – A chapter from Intergraph's book that explains computer graphics technology in an interesting and understandable way with full colour graphics.

EXTRA ARTICLE ON VOL 1 & 2
The Life & Works of Konrad Zuse – a brilliant pioneer in the evolution of computers. A bonus article on his life and work written by his eldest son, including many previously unpublished photographs.

NOTE: This mini CD-ROM is suitable for use on any PC with a CD-ROM drive. It requires Adobe Acrobat Reader (available free from the Internet – www.adobe.com/acrobat)

BACK ISSUES CD-ROM ORDER FORM

Please send me (quantity) BACK ISSUES CD-ROM VOL 1
Please send me (quantity) BACK ISSUES CD-ROM VOL 2
Please send me (quantity) BACK ISSUES CD-ROM VOL 3
Please send me (quantity) BACK ISSUES CD-ROM VOL 4

Price £12.45 each – includes postage to anywhere in the world.

Name ...
Address ...
...
...
Post Code ...

☐ I enclose cheque/P.O./bank draft to the value of £

☐ Please charge my Visa/Mastercard/Amex/
Diners Club/Switch

£ ...

Card No. ...
Expiry Date ...
Switch Issue No.

SEND TO: Everyday Practical Electronics, Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND.
Tel: 01202 873872. Fax: 01202 874562.
E-mail: orders@epemag.wimborne.co.uk

Payments must be by card or in £ Sterling – cheque or bank draft drawn on a UK bank.
Normally supplied within seven days of receipt of order.
Send a copy of this form, or order by letter if you do not wish to cut your issue.
TRAFFIC CONTROL
OWEN BISHOP

SCOOT systems speed the flow of road traffic and pedestrians.

We hear much about air traffic controllers, but more important to our daily lives are those relatively inconspicuous systems and people who control the flow of traffic in our busy cities. This article describes how electronics and computers are used to make their work possible.

INCONSPICUOUS CONTROL

Anyone standing on the pavement outside the Norfolk County Council Urban Traffic Control Centre in Norwich would probably not notice the inconspicuous semi-basement entrance. Yet behind this door lies the UTCC, under the control of a DEC ALPHAnet 255 computer, running at 300MHz.

This computer keeps the traffic flowing (or at least minimises the delays) not only for Norwich city but also for the whole of the county of Norfolk. It keeps the pedestrians flowing too, out of 256 signals linked to the system, about 50 per cent are pedestrian crossings.

The control centre is manned during the day but the computer is able to function unassisted during the evenings and night. Fortunately for the motorists, the computer can call on an engineer to handle emergencies out of hours. Fortunately for the engineer, this can be done through a remote link to a PC in the engineer’s own home.

INDEPENDENT LIGHTS

It makes sense for the signal lights situated in the more remote parts of Norfolk (happily, there are still a few such parts!) to be independently controlled. A single road junction might have the layout shown in Fig.1.

Vehicles approaching the junction are detected by inductive loops. Essentially, an inductive loop is a loop of cable embedded just beneath the road surface. The loop is connected into an a.c. bridge circuit set up to measure the self-inductance of the loop. This changes when a massive ferromagnetic object such as a vehicle is situated above the loop.

Changes in inductance change the input to the control computer that is located beside the road junction. Information from the inductive loops can tell the computer the length of the traffic queue at the lights and also the speed and approximate size of vehicles approaching the lights. The computer is programmed to read this data and to use it to decide which lights are to be switched to GO and which to STOP and for how long.

In the centre of a small town there may be two sets of lights with a link road joining them. Each junction has its own independent set of inductive loops, traffic lights and computer. However, their programs are designed so that the action of the two computers is coordinated. They are linked by a data cable and they both run according to clocks driven by the mains frequency. Thus their action is synchronised and takes into account the time delay of traffic leaving one junction and proceeding along the link road to the other junction.

Although their local computers independently control these single and double junctions, their action is monitored remotely by dedicated BT telephone line to the UTCC. Here the operator can call up the data for any particular junction.

The monitor screen displays a plan of the junction or junctions and pedestrian crossing too. The plan shows the state of the inductive loops, the state of the lights and the state of the pedestrians’ pushbutton on the crossing. Sitting in the UTCC in Norwich, an operator can check that all of the signals systems in Norfolk are operating correctly.

SCOOT

In a larger town, where there are more than two junctions close together, the junction computers are connected to and controlled by the central computer at the UTCC. Connection is through an Outstation Transmission Unit (OTU) which comprises a modem wired to BT telephone lines. The kerbside computer controls the lights at the junction but is under the supervision of the control computer in the UTCC.

The main computer runs traffic control software known as SCOOT. This program is written in C and its name is short for Split Cycle and Offset Optimisation Technique. The difference between SCOOT and an ordinary pre-planned light sequencing controller is that the SCOOT computer responds instantly to current traffic demands.

SCOOT also depends on sensing traffic by means of inductive loops. These are additional loops on the exits from junctions, where traffic leaves the junction to pass along a stretch of roadway to the next junction. In some places there may be two loops close together to allow the speed of the vehicles to be measured.

Other kinds of sensor are used where appropriate. On the faster roads there may be Doppler-effect microwave sensors to detect the presence and speed of vehicles. These register vehicles at a distance of about 50 metres.

Doppler-effect sensors are also used on pedestrian crossings to detect the presence of people waiting to cross or actually crossing. Active infrared detectors are also used on pedestrian crossings, as well as sensor mats on the waiting area on the pavement.

ENGINEERING DATA

Data collected by the control computer is available to the engineers in several ways. As mentioned earlier, the controller can call up a display to check the operation...
of lights at all road junctions. This information is also presented for all the junctions in an area in tabular form. The computer also displays a running log of events on the system. Fig. 2 shows a typical abstract from this and illustrates the kinds of event reported just after 9.52, one Friday morning in September.

A few minutes after the last entry in the figure, the log reported the failure of a Wait lamp at the junction of High Street and Baker Street in Gorleston. The maintenance contractor was automatically alerted to the failure. The log went on to show that the lamp was replaced nine minutes and 33 seconds later. The data is used only for monitoring and is not stored.

In addition to monitoring the system, the controller can call up visuals from a number of remotely controlled video cameras mounted at strategic points in the Norfolk road system. These cameras have full aiming and zooming features. This allows the operator to sort out any serious problems such as might arise from a traffic accident or football crowd.

For an overall view of the situation, the controller watches the map that covers a large-scale map showing the same wall are subsidiary maps for the status of the lights at each junction. On one entire wall of the control room controller manages traffic data at a given junction over a period of time and then amends the green times on different branches so as to minimise waiting times. Changes of the current sequencing plan at each junction are noted on the log as they come into effect.

AUTOMATIC CONTROL

Each junction in the system has a basic plan for the sequencing and timing of the lights. Because that sequencing is done by software, rather than by mechanical means or logic circuits, it opens up all kinds of possibilities.

SCOOT allows for a large number of different plans to be available for each junction and to switch from one plan to the other as the situation demands. The selected plan at each junction may change automatically at different times of day to cope with daily variations in traffic flow. However, under SCOOT, the plan may be changed or modified automatically second by second.

For instance, if signals from the inductive loops show that a vehicle (perhaps an HGV) is moving slowly toward a junction, SCOOT can extend the green period to allow the vehicle to clear the junction. On the other hand, if further data input shows that the vehicle is speeding up, the extension of green time can be automatically cancelled.

In the longer term, SCOOT also accumulates traffic data at a given junction over a period of time and then amends the green times on different branches so as to minimise waiting times. Changes of the current sequencing plan at each junction are noted on the log as they come into effect.
The Offset Optimiser delays or advances the whole red-green timing in units of four seconds during each cycle, so as to optimise traffic flow.

Finally, the Cycle Time Organiser operates once every five minutes (or every two and a half minutes when necessary). It identifies the most critical road junction in a region and attempts to adjust the cycle time of the lights to reduce congestion. Cycle time can be increased or decreased by amounts of four, eight or 16 seconds.

By this combination of relatively small changes in the timings, SCOOT is able to respond rapidly to the current demands of traffic.

BENEFITS

The benefits of using a computer-controlled system based on electronic sensors have been demonstrated by surveys in several urban areas, including Worcester, Southampton, Glasgow and Coventry. SCOOT systems have always improved journey times when compared with fixed-time systems. On average it has been estimated that using SCOOT reduces traffic delays by 20 per cent.

It takes months of work to collect the data and produce the plan for a fixed-time system. The SCOOT system continuously updates itself to take account of present and future changes in traffic conditions.

ACKNOWLEDGEMENT

Thanks are due to Peter Lock of the NCCUTCC for demonstrating and explaining the system to the author.

The contents of this kerbside traffic control box are described in the text.

READ MORE ABOUT IT

Video Surveillance

- C-MOS B/W Camera 15mm/15mm £29.00
- C-MOS Colour Camera 15mm/15mm £65.00
- PCB B/W Camera 32mm/32mm £24.00
- PCB Colour Camera w/Audio 32mm/32mm £65.00
- 23cm (1.3GHz) Video/Audio Transmitter £35.00
- 13cm (2.4GHz) Video/Audio Transmitter £35.00
- 1-2 Watt 2-4GHz Video/Audio Transmitter £120.00
- 4" TFT Boxed Colour Monitor w/Audio £110.00
- Video to VGA Converter £65.00
- VGA to Video Converter £90.00
- External USB Video Capture Box £55.00

All prices exclude VAT.

Many more products on our website:

www.bitztechnology.com

Tel: 01753 522 902 Fax: 01753 571 657
Despite continuing advances in semiconductor technology the humble valve refuses to totally stand aside in favour of modern technology. Audio equipment having the true “valve sound” has a strong following, as do olde worlde electronic music equipment and radios. I wish I could say that I do not remember the days when this type of receiver was the normal introduction to the shortwave bands, but it is very much the type of set that I built as a lad in the 1960s. I still remember the HAC two-valve set with its pre-war valves the size of 100W light bulbs, and the RCS “Telstar” with its miniature “acorn” valves that really were more or less acorn shaped.

BATTERY POWER

The design featured here follows along the same general lines as these sets, with its simple chassis and front panel method of construction and regenerative detector. It covers an approximate tuning range of 5MHz to 13MHz using a simple home constructed tuning coil. This provides coverage of several popular shortwave broadcast bands.

Sets of this type were almost invariably powered from batteries, and required about 90 volts for the main supply and around 1.5 to 6 volts for the heaters. These were respectively the HT (high tension) and LT (low-tension) supplies.

Suitable HT batteries are no longer produced, but the design featured here will work well using three or four “bog standard” PP3 size 9V batteries wired in series. A single 1.5V cell is needed to power the heaters. By the standards of battery powered valve sets the unit is quite economic to run. When HT batteries were available they were far from cheap.

In the “old days” the normal aerial for a set of this type was the longest piece of wire that your garden could accommodate. Band conditions have changed somewhat over the years, and there are now many more stations on air. Also, they are using higher output powers and more efficient aerials than in the past.

Going for the strongest possible aerial signal these days tends to overload a simple receiver and give poor results. A short indoor antenna consisting of about one to five metres of wire is perfectly adequate for use with this receiver. The output will drive practically any type of headphones at good volume.

BIASED VIEW

Valve circuits are substantially different to those using bipolar transistors, but have strong similarities to field effect transistor (f.e.t.) circuits. A typical f.e.t. amplifier has the configuration shown in Fig.1a. Unlike a bipolar transistor, which requires a forward bias for linear amplification, a f.e.t. normally conducts strongly between its drain (d) and source (s) terminals. A small reverse bias must be applied to its gate (g) in order to make it conduct less heavily so that it can provide linear amplification.

This bias is provided by resistor R1, which ties the gate to the 0V rail, in conjunction with the positive bias provided to the source (s) by resistor R2. The gate is therefore negative of the source, and the required reverse bias is obtained. Capacitor C1 removes the negative feedback that would otherwise be introduced by R2.

The valve equivalent, shown in Fig.1b, operates in the same manner. Resistor R1 biases the control grid (g) to the 0V rail. With f.e.t.s and valves there is very little current flow at the input. Consequently, in both cases resistor R1 can have a high value and the circuit as a whole can have a high input impedance. Also as before, resistor R2 provides...
a positive bias, but this time to the cathode (k). The output signal is developed across anode (a) load resistor R3.

Circuit Operation

The full circuit diagram for the 2-Valve SW Receiver is shown in Fig. 2. Valve V1 is used in the regenerative detector and V2 operates as an audio amplifier. A valve type DP91 is used for both stages, and these are pentodes that are specifically designed for battery operation.

Inductor coil L2, tuning capacitor VC1, and bandspread capacitor VC2 form the tuned circuit. Bandspread capacitor VC2 has a low value so that it covers only a limited range of frequencies, facilitating easier fine-tuning. Because the input impedance at the control grid of V1 (pin 6) is very high it is acceptable to couple the tuned circuit directly to the grid.

Coil L2 effectively provides the grid bias resistance for V1. The aerial is normally coupled to a low impedance tap on L2, but SK2 provides a more direct coupling for use with very short aerials.

Noting the output signal is developed across anode (a) load resistor R3. For reasons that will be explained shortly, optimum results are produced with the amount of feedback just below the point at which oscillation occurs.

The audio load for valve V1 is resistor R1 or inductor L4. Both components are shown in the circuit diagram of Fig. 2, but only one or the other is actually needed. Using a resistor saves money and significantly reduces the cost of the receiver, but it also reduces the efficiency of the circuit very noticeably. It is certainly worthwhile using an inductor if available funds permit.

Sound Regeneration

On the face of it there will be no audio output from the detector. Capacitor C3 provides smoothing of the r.f. signal so that the audio output signal is equal to the average voltage in the r.f. signal. With no rectification the positive and negative half cycles should cancel out one another to produce zero output.

In practice there is less than perfect linearity through a valve or any other amplifying device, and one set of half cycles receives more amplification than the other. This gives a very inefficient form of rectification, but does provide some audio output from an a.m. (amplitude modulation) broadcast signal.

Negative feedback is often used to reduce distortion, and the positive feedback utilized here has the opposite effect. As the amount of regeneration is increased, the gain of the circuit is boosted, but the increase is much larger on the set of half cycles that originally received only slightly higher gain. Advancing the Regeneration control VR1 therefore produces a much higher output level, with both the gain and detection efficiency being boosted.

Another advantage of the regeneration is that it provides a greater boost in gain at the centre of the receiver's passband where the gain is already higher, and less towards the edges where the gain is lower. As the regeneration is increased, the selectivity of the set is therefore greatly improved. Instead of receiving two stations on adjacent channels simultaneously, with the enhanced selectivity the tuning controls can be used to pick out one station or the other.

This factor is very important with the plethora of stations that are often to be found on the shortwave broadcast bands. High sensitivity alone is not sufficient to guarantee good results.

It is clearly essential to have some means of accurately adjusting the level of feedback so that it can be set just below the point of oscillation, where optimum results are obtained. Trimmer capacitor VC3 is used to provide a preset amount of feedback, but potentiometer VR1 is the Regeneration control. This component provides a variable bias voltage to the screen grid of V1 (pin 3).

The gain obtained at the control grid depends on the bias voltage at the screen grid, with higher voltage giving increased gain. Control VR1 therefore controls the regeneration by altering the gain of V1 rather than adjusting the amount of feedback. This method gives very precise control and avoids problems with tuning shifts that can occur with other systems.

Audio Stage

Valve V2 is used in a straightforward audio amplifier set up. Resistor R2 is the grid bias resistor and capacitor C4 couples the output of the detector to the input of the amplifier.

The original sets of this type where mainly used with high impedance (about 2kΩ to 4kΩ) headphones, but these have not been produced for many years. A genuine valve output transformer might still be available from a specialist supplier of valve components, but the simpler and cheaper alternative is to use a small mains transformers.

Fig. 2. Complete circuit diagram for the 2-Valve SW Receiver. Note only L4 or R1 is required, not both – see text.
transformer for T1. Either way, the receiver can then be used with ordinary 8 ohm impedance headphones.

Although the valves are designed to operate from 90 volts, they will actually work very well on much lower supply potentials. Four 9V batteries, B1 to B4, connected in series to give a nominal 36V supply are shown in the circuit diagram Fig.2. This is obviously well short of the designed operating voltage of the valves, but it actually gives very good results.

In fact, adding a fifth battery to take the supply to 45V did not bring any obvious increase in performance. It was found that the circuit will actually work reasonably well from three batteries giving a nominal 27V supply.

The HT supply current is only about 2.5mA to 3mA, so there is no need to use any form of “high power” battery. Ordinary zinc chloride PP3 batteries can be obtained for less than a pound each and are perfectly adequate. A single 1.5V cell powers the heaters, and it is advisable to use a high capacity type such as a D-size cell as the current consumption is around 100mA.

COMPONENTS

In a retro design such as this it is inevitable that some of the components require further explanation. The DF91 valves are available from any specialist valve supplier, as are B7G chassis mounting valveholders. An equivalent valve for the DF91 is the 1T4 and is also suitable for this circuit. Inductor L3 is a Maplin r.f. choke (see Shoptalk), but any inductor of about this value and for high frequency use should work just as well.

An audio frequency inductor having a value of a few Henries is required for L4. If a suitable component can be found it is likely to be very expensive. The cheaper alternative is to use the primary winding of a small mains transformer. Several types were tried and there was no obvious difference in performance between them. The secondary voltage is irrelevant since it is unused, so simply use the cheapest mains transformer you can find.

A small mains transformer is also used for T1, but in this case the secondary voltage is very important. A very high step-down ratio is needed in order to give good performance, and a 3V-0V-3V type was found to give the best results. The full secondary winding is used to drive the headphones with the centre-tap being left unused.

VARIABLE CAPACITORS

Ideally the tuning and bandspread capacitors would be high quality air-spaced types, but these are now very expensive. If you can, salvage suitable components from the spares box or obtain surplus components. Any value from about 200pF to 400pF should be all right for VC1, and a value of around 10pF to 30pF will suffice for VC2.

The alternative is to use modern miniature components having a solid dielectric. For VC1 the two a.m. gangs are wired in parallel and should provide a maximum value of 250pF or more. The component used for VC2 must be a type that includes low value sections (about 20pF) intended for use in a.f.m. receiver. Either of these sections can be used for VC2 and the other three sections of the component are left unused.

Trimmer capacitor VC3 can be any type having a maximum value of around 40pF to 65pF. A 10/40pF ceramic component is used on the prototype but a 5/65pF foil type was found to work just as well.

COIL DETAILS

Plug-in coils are no longer made, and those coils that are still available are not well suited for use with valves. Coil formers and ferrite cores would seem to be unobtainable these days. The most practical solution is to use a simple home-made coil of the air-cored variety. These were often used with valve receivers and give surprisingly good results.

The coil used in this set is wound on a 32mm diameter plastic former about 65mm long. The former is actually cut from a “32mm Trap-Inlet Height Adjuster”, which should be available from...
the plumbing department of your local DIY superstore. However, any rigid plastic tube of about the right size will suffice.

Details of the coil are provided in Fig.3. Both windings are made using 24s.w.g. (0.56mm) enamelled copper wire. The windings will tend to unwind and spring apart, and the simplest method of resisting this is to drill holes of about 1mm in diameter to take the leads from the coil. This provides a simple but effective means of holding the ends of each winding in place.

Tuned winding L2 starts about 10mm or so from one end of the former. Start by threading the free end of the wire through the appropriate hole (5) in the former to leave a lead about 250mm in length. Then wind two turns around the former and produce a small loop (4) in the wire. This will act as a connection point for the tapping on coil L2.

To complete the winding add a further seven turns of wire, cut the wire to leave a lead about 250mm long, and then thread the lead through the appropriate hole (3) in the former.

Try to keep the wire taut with the turns of wire closely bunched together. Even with the ends of the winding held in place it is likely that the turns will tend to spring apart slightly, but some pieces of tape can be used to hold them in place. Use the blade of a penknife or a miniature file to scrape the insulation from the small loop of wire and then tin (coat) it with solder.

FEEDBACK WINDING

The feedback winding L1 is made in the same way, but it has 14 turns and no tapping. The feedback winding will look rather large if you are used to semiconductor radio circuits, but valves generally have much higher output impedances than semiconductor equivalents. Hence the feedback winding is much larger than it would be for a regenerative set based on transistors.

The completed coil can be mounted on the chassis vertically or horizontally, and the simplest method is to bolt it in place in a horizontal position, see photographs. However, a small gap is needed between the metal chassis and the coil, so some spacers must be used between the chassis and the coil former. A gap of around 15mm to 20mm is more than adequate.

CONSTRUCTION – CHASSIS DETAILS

Sets of this type traditionally use an open aluminium chassis construction, but an outer casing is easily added if preferred. A chassis measuring approximately 203mm × 63mm × 152mm will comfortably accommodate everything. What is intended to be the base plate is used here as the front panel.

The general layout of the receiver can be seen from the photographs, and the exact positioning of the main components is not critical. Switch S1, potentiometer VR1, and telephone jack socket SK4 are effectively used to bolt the front panel to the chassis.

Tuning capacitor VC1 and bandspread capacitor VC2 are mounted on the front panel above the chassis. Some variable capacitors have ordinary 10mm mounting bushes, but most types use two or three mounting bolts. If mounting bolts are used it is essential that they do not penetrate more than about three or four millimetres into the capacitor. With greater penetration there is a real risk that the bolts will foul the plates and ruin the component.

The valveholders require main mounting holes about 16mm in diameter. The holders themselves can be used as templates when marking the positions of the smaller mounting holes. These take either metric M3 or 6BA mounting bolts. Solder-tags are mounted on three of these bolts on the underside of the chassis to provide chassis connection points.

Hard wired construction is used throughout, and this requires some additional anchor points for the components. These points are provided by a five-way tagstrip mounted on the underside of the chassis just to the rear of the two valveholders. Note that the centre tag connects to the chassis via the tagstrip’s mounting bracket, and that it can only be used as a chassis (Earth/0V) connection point.

Sockets SK1 to SK3 are mounted on the rear panel of the chassis, as is L4 if it is used. Transformer T1 is mounted on the right-hand side panel, and the plastic holder for B5 is glued or bolted to the left-hand side panel. A couple of holes about 3mm or 4mm in diameter are drilled in the top panel of the chassis, just in front of the valveholder for V2. These enable the components above the chassis to be wired to the main assembly on the underside.

![Fig.3. Details of the home-made tuning coil. The plastic coil former measures 32mm diameter by about 65mm length. Strips of tape can be used to stop the windings unravelling – see photograph right.](image)
All the interwiring on the underside of the chassis is shown in Fig.4, which should be used in conjunction with Fig.3 and Fig.5. The latter shows the connections to VC1 and VC2, and is correct for most miniature solid dielectric components. With other types, or different styles of solid dielectric capacitor it may be necessary to experiment a little to find the correct method of connection. One side of a variable capacitor connects internally to the chassis, so getting the connections around the wrong way will place a short circuit across coil L2 and prevent the circuit from working.

Getting all the wiring installed is not too difficult. As with any "hard wiring", strong joints are more or less guaranteed if the tags and ends of the leadout wires are solder-tinned prior to making a connection.

Pin 4 of valve holder V1 is used as an anchor point for C1 and socket SK2. Do not use pin 5 as this does have an internal connection to the valve.

There are three connections between the 9V batteries, and these must all be insulated with tape or sleeving to make sure that they cannot accidentally come into electrical contact with each other or other parts of the circuit. The batteries can be fixed to the right-hand side panel of the chassis using adhesive pads. The unused leads of T1 and L4 should be cut short, and any exposed wire must be insulated to ensure that no unwanted connections occur.

WIRING-UP

Components soldered directly to the valveholder pins and wiring to the 5-way tagstrip. Note the "earthing" solder tags secured to the chassis by the mounting bolts of the valve bases.

HEADPHONES

Low impedance mono headphones can be used with a standard jack socket used for SK4. Stereo headphones will also work, but only one phone will be driven. For operation with stereo headphones it is preferable to use a stereo jack socket, and it does not seem to make much difference whether the phones are driven in series or parallel.

The circuit will also work quite well with medium impedance headphones of the type sold as replacements for personal stereo units. Socket SK4 should then be a 3.5mm jack type and results are best with the phones driven in parallel.

TESTING AND USE

Give the wiring a thorough check before testing the finished receiver. In particular, make sure that the HT and LT supplies have not been accidentally swapped over at the On/Off switch S1.
The valves should plug into the holders quite easily. Do not try forcing them into place if fitting them proves to be difficult. Examine the pins and carefully straighten any that are significantly bent out of position.

Long aerials do not generally work well with a set of this type. They tend to load the tuned circuit making it difficult to obtain sufficient regeneration, and very strong signals overload the detector. About 0.5 to 1 metre of wire connected to socket SK2 or about 2 to 5 metres connected to SK1 is sufficient to give good results.

If you were looking forward to a nostalgic wait for the valves to warm up followed by a glow from the filaments you will be disappointed. The combined heaters and cathodes give an almost instant warm up and there is no obvious light output from the valves.

It is important to realise that VR1 is not a volume control. It can be backed off slightly if the volume becomes excessive, but it must otherwise be adjusted close to the point at which oscillation occurs. It is readily apparent when the detector is oscillating, because there is a change in the background noise level and notes of varying pitch will be heard as the set is tuned across stations.

With some regenerative receivers there is a tendency for the detector to slide into oscillation, and the regeneration control then has to be well backed off in order to take the set out of oscillation. This makes accurate control of the regeneration level almost impossible. There is no such problem with this design, and the feedback can be carefully adjusted to the optimum setting.

Unfortunately, with sets of this type it is not possible to find a universal setting that is suitable for all reception frequencies. Significant changes in the settings of the tuning controls may necessitate re-adjustment of VR1. This clearly makes regenerative receivers more difficult to use, but it is all part of their charm!

Try experimenting with trimmer capacitor VC3 at various settings. Best results will be obtained with a setting that enables oscillation to be achieved at any settings of the tuning controls, but with VR1 well advanced.

With too little feedback through VC3 it may be impossible to obtain sufficient regeneration on some bands. With too much feedback through VC3, valve V1 will be operating at relatively low gains and this might adversely affect performance.

If VC1 and VC2 have built-in trimmers, coverage will probably be best if they are set for minimum value. However, there is no harm in trying various settings to find the ones that provide the most useful coverage.

PERFORMANCE

The simple valve receivers used in the 1960s all seemed to suffer from a lack of audio output. The high volume levels available from this receiver, with its greatly reduced HT voltage, surprised the author. With most headphones it was found to be necessary to back off VR1 on strong signals in order to keep the volume down to a reasonable level. A two-transistor receiver would be unlikely to provide a similar problem.

The precision with which the regeneration level can be set aids the level of performance, which is certainly very credible for such a simple receiver. The shortwave broadcast bands have plenty of English language transmissions from countries all over the world.

Some dabbling with the 2-Valve SW Receiver over a weekend produced stations from across Europe and into Asia and North America. With skill, patience, and the right propagation conditions it would probably be possible to receive broadcasts from anywhere in the world.
MORE ON ELECTRONICS SHORTAGE
Dear EPE,

I fully concur with your Readout Aug ’01 correspondent Brian Whittle. When I was made redundant in the early seventies I found it impossible to gain employment in my field. I was a qualified Electrical Engineer with an HND and a Post Advanced Diploma. Redundancy carried a stigma and perhaps it still does today.

I was fortunate to meet up with an American who offered me a trial in Algeria. He asked me what I knew of SCRs, large d.c. motors and drilling rigs. I said I had no experience of these but Electricity was Electricty. I grossly over simplified the subject by stating that there were only three faults: open circuits, short circuits, and inter-mittent faults and only the intermittent were really difficult to troubleshoot.

On this basis I got a start in the Petroleum industry, and after three weeks I was offered a full time position. I have since spoken to many experienced people we had were making their name, fame and fortune working overseas. Americans in the UK recruited on the basis that if you think you can do the job, try and I will fire you if you cannot. No one can ask for anything more.

This is where I believe the UK management goes wrong, they are far too cautious in offering employment. Give your applicants a chance, would be my advice. Do not offer low pay until you have taken yourself, which I must confess I have accepted many years ago. Do not employ via agencies, which many do and the agency takes a good proportion of what should go to the employee. Simply give one a chance to prove oneself.

My son faced the same problem as many UK University graduates. He has a first class Honours degree in Computer Science from a prestigious University. He had many interviews, sometimes even up to three and some months later the positions were still being advertised. The usual response was he had no experience or that he was overqualified for the position. He took the opportunity to work on a very short contract in Switzerland and shortly afterwards found another position. He is still there after some eleven years.

My original qualifications were in power engineering and I have always wanted to be able to troubleshoot down to component level and only at the age of 63 when I had to leave the North Sea because of ill health did I get a suitable opportunity. I signed up for a City and Guilds diploma in Digital Electronics and Computer maintenance. The course was excellent but I found that I was the only one there of my own volition, everyone else had been sent by the DSS. And much as I applaud the Government for giving others and me the opportunity, forcing people to sign up for courses is not the way to train specialists.

As a final point, one chap who was indeed very good actually found work, Making, installing, and fault finding computer systems. He was offered a derisory wage of £150 and he was told that the DSS could give him extra to bring him to the level at which he was then receiving from the DSS. He would have had to travel, buy meals etc., look after his disabled wife, and incur the entire extra costs involved in accepting the position. Needless to say, he is still unemployed. I would suggest that it is not that the DSS payments are too low but the rewards for working are too low. We do ourselves no good by being a low wage economy.

Jim from Derby, via the Net

LETTER OF THE MONTH

PIC TO DISK?

Dear EPE,

I found the PIC to Printer Interface in the July issue very interesting – a good use for redundant printers.

On a similar vein – is it possible to interface a PIC to a 3-5 inch floppy disk drive? With all those old PC’s that got outdated, there must be a lot of drives about and the additional (long term) storage would be very useful for any number of PIC projects.

Obviously it would be best if the data recorded was readable on a PC and in that event a PIC could be used for formatting.

Roger Warrington, via the Net

Thank you Roger, it probably would be feasible but I can’t offer to do it as I do not have a spare drive, nor indeed do I know the command protocol for accessing drives. Does anyone know how easy it might be?

SURROUND SOUND

Dear EPE,

Some additional comments and information that some readers might find interesting, on your Stereo/Surround Sound Amplifier (July ’01).

The technique of extracting a disparity or ambience signal from a stereo pair has been around for some time, it having appeared (under the trade name Dynaquad, I seem to remember?) in the 1960s.

It’s actually exactly the same process used by the non-ProLogic Dolby Surround system, which goes a bit further in adding a delay of typically 20ms to the surround signal (because in most home environments the listener is closer to the rear speakers than to the front speakers) and adding a bit of noise reduction, based on a modified Dolby B-type processor, to the L-R signal. Even Pro-Logic uses this technique to extract the surround information, but goes even further by generating steering vectors to dynamically control the levels of the surround and centre levels derived.

The article refers to a “pseudo surround” signal, but the L-R signal in fact contains the true surround component. Dolby’ing essentially takes the surround signal, and phase shifts it by +90° and -90° before adding it to the original left and right signals respectively, to maintain a two-channel recording. By taking the difference of the two signals on playback, you get the true surround signal, plus/minus the ground connection.

Returning to the project: for most home installations, if the reader already has a stereo setup, the use of an additional amplifier is entirely unnecessary. Exactly the same effect can be achieved by wiring an additional loudspeaker system to the “hot” outputs of the power amplifiers, ignoring the ground connection.

With respect to the rear speakers, the amplifiers are then operating in bridged mode, but the phase inversion usually required for bridged mode is inherent in the recording itself. This wiring method works because almost all stereo amplifiers use a common speaker ground connection for both channels.

If the stereo system normally uses 8Ω loudspeakers, then a pair of rear speakers also rated 8Ω and wired in series (to provide 16Ω to the “bridge” amplifier) provides a more-or-less correct sound volume in relation to the front speakers.

The rear speakers should not be wired in parallel, but in series, and in the same phase. If the surround volume is too high and the ambience effect intrusive, a large (10W or so) resistor or rheostat of around 8Ω to 16Ω can be inserted to correct this.

The added load on the amplifier shouldn’t be a problem to any self-respecting commercial hi-end amplifier. Most of these are rated for 8Ω but can happily drive a 4Ω load without stress except at close to their clipping threshold when they may overheat.

Because very little bass information comes through the surround channel (bass is usually mono’d at the recording stage – that used to be done to make LPs more trackable, but they seem to still do it on CDs) the surround speakers can be of a considerably lower power handling capacity than the front speakers. Since directional hearing doesn’t work at bass frequencies, this bass-mono characteristic is never a problem. The exception is THX videodiscs, some of which carry a very large bass disparity component – watch out for distortion or overdubbing.

I have been using this technique on a ReVox B250 and a Teac A70 amplifier for over 10 years in a home environment and have never had any overheating. In fact the overall sound quality provided by this setup far exceeds that of a big-name amp I unfortunately bought, with its in-built Dolby Pro Logic and multitude of “digitally sampled” surround modes.

David Tilech M.Sc., via the Net

Thank you for the interesting information. We are pleased to share it with readers.

READOUT
E-mail: editorial@epemag.wimborne.co.uk

John Becker addresses some of the general points readers have raised. Have you anything interesting to say? Drop us a line!

WIN A DIGITAL MULTIMETER

A 3½ digit pocket-sized l.c.d. multimeter which measures a.c. and d.c. voltage, d.c. current and resistance. It can also test diodes and bipolar transistors. Every month we will give a Digital Multimeter to the author of the best Readout letter.
Radio Power

Dear EPE,

I found both the Mechanical Radio (April ‘99) and L.E.D. Torch (Oct ‘00) very interesting but wondered if some readers would be put off by having to build the generator. My local electronics shop sells old-fashioned DynoTorches (squeeze a lever) for £10. They have a diode that drives a 2.5V 0.15A bulb, but my digital multimeter showed it would output approximately 5V to 6V a.c. into a 68Ω resistor.

There is not enough room in the front of the torch for much circuitry so either a suitable box would need to be attached to the front of the torch or the DynoTorch could be fitted with a power-out socket and the radio/L.E.D. torch fitted with a power-in plug (this would allow them to share a generator).

Note that the radio would require a protective 5V 1.5W Zener diode across the C4 supercap and I think D1 to D4 should be upgraded to fast recovery types and further types of microprocessor 1N5802.

Also the torch’s D1 should be similarly upgraded (and only one bridge would be required).

The DynoTorch is manufactured for Fascinations, Seattle, WA 98148 NB.

Alan Bradley, via the Net

Thanks for the info Alan. Readers can search for Fascinations via the excellent web search engine www.google.com.

More Language Debate

Dear EPE,

So far as the arguments have been on the merits and functionality of various languages C, Delphi etc. However, this is not in my opinion the major point. As the old saying goes, “open”, the diode is now in circuit putting the iron when not in use is hung on a rest. Mine

The clock has been developed a bit since it was installed and now adds/subtracts the BST, rings the angelus one, two or three times each day and can ring the bell three times on command from the pulpit about 30 metres below. The control system drives an a.c. motor to ring the bell and a photo switch counts the rings, one per rev. The fingers (about four metres diameter) are driven from a small a.c. motor through a worm box, a photoswitch gives one count per rev, which is 30 seconds on the fingers. Every 30 seconds the control system starts the motor until one count has occurred.

The clock has only malfunctioned twice in the last two years. Both times when the MSF signal from Rugby was down for maintenance and an update took place with no Rugby signal, just on noise, and a purely random time resulted.

It would seem that the checksum cannot always validate the data and, given enough reads, the occasional good data bit will be given on just the noise signal.

Jim Fell, via the Net

As I recall, the software validates incoming data according to information supplied by the National Physical Laboratory. Your problem has not been reported by other readers and I have not experienced it myself.

The only simple suggestion I can make is that the MSF receiver is switched off during Rugby maintenance periods, allowing the clock to run purely under its own crystal control.

P.I.C. Division

Dear EPE,

Many amateur programmers who do not fully understand binary numbers often find binary arithmetic daunting and may resort to cheating, i.e. using multiple additions and subtractions to perform multiplication and division.

The following routine divides two 16-bit numbers, the dividend by the divisor, which have been pre-loaded into divisL,H and dividL,H respectively. It is based on the result (quotient) in dividL,H with the remainder in remdrL,H. The original dividend is lost, being overwritten by the quotient.

Readers who are familiar with arithmetic routines will not find anything unusual in the listing, in fact it is based on a standard algorithm, optimised for the PIC instruction set. Note the lines that show how to compare two 16-bit numbers using the limited instructions of the PIC.

However, it is worth noting that a bug exists in Microchip’s standard division routine. It’s the carry (or borrow) out from double precision addition or subtraction which is not guaranteed to be correct for all possible input values. The double precision addition and subtraction codes are standard ones published in various Microchip documents and must have been used an unimaginable number of times by PIC programmers around the world. The good news is that my division routine is OK because a borrow out from the double precision subtraction is guaranteed not to occur.

Peter Hensley, via the Net

Thank you Peter, that’s great. This code has been added to our PIC Tricks folder, which is available on EPE Disk 4 and from our FTP site (see EPE PCB Service page for details).

Readers, we now have several hints and code routines of use to PIC programmers in our PIC Tricks folder. If you have any short hints or bits of code you think might be useful to add as well, send it to me for possible inclusion.
PLCs AND SCHOOLS

Regarding your July '01 Editorial, I rather get the impression that Editor Mike was apologising for the inclusion of the PLC article in that edition. Well, he need not be so concerned — I for one found it useful.

PLC control is making its way into the AS level syllabus, as is PIC programming and the usual suspects — A, Systems and Components. As the teacher, I found the PIC article very useful as it gives details of practical solutions. I have a PLC to demonstrate with, although Ladder Logic is not supported on V. I can display a PLC diagram on a computer and will show the PLC control is making its way into the AS level.

I have recently invested in a pre-assembled PIC Logicator (as reviewed by the teacher, I found the PLC article very useful as it introduced the PLC article in that edition). In his lengthy letter, Alan gave a lot of detail about the tests he had run, the above is merely a summary.

BASIC IS EASIER

Dear EPE,

I agree wholeheartedly with Roger Warrington (Readout July '01). I too have around 25 years of programming, mostly in various dialects of Basic and a little assembler. I used Visual Basic but prefer Delphi for Windows style programs. I too find Basic easier to pick up again after a number of years.

My coding skills are not great but I usually pull through. Recently I tried to learn C as a means of programming PICs because I needed to time the reactions of various systems. I was in a fast moving machine and thought Basic might be a bit slow. Unfortunately I hardly got off of the starting blocks, partly because of problems with the environment I was using but mainly because at the age of 50 my powers of learning are some what diminished, or as I tell my colleagues “after 45 years of cramping my brain with information it is full and cannot take anymore”.

Trevor Wilson, Aberdeen, via the Net

Well, Trevor, one of my colleagues suggests that from time to time we should all have a “half-price clearance sale” of any no longer required mental information, thus making room for more — a sort of “defrag” in computing terms! The trouble is you never really know what might become useful and personally I’d hate to discard anything. Perhaps evolution might one day give us the equivalent of “disk data compression” with a computer that can increase our brain size.

But there are many examples of people in excess of 50 years taking up adult education and acquiring new skills and knowledge. And for all those PIC projects I’ve designed, they’re from a brain considerably more ancient than yours and which still loves the challenge of safety!

Whatever your age, don’t ever think that you are past learning!

Mike says that he was simply pointing out that we can't do more than we can already do more deeply into his PIC, it is interesting to learn that they are part of the AS level syllabus. Thank you for your observations.

Ivan Roussin, The King’s School, Ottery St Mary, Devon, via the Net

LOW VOLTAGE PCs

Dear EPE,

I recently invested in a pre-assembled PIC Tutorial (Mar-May '98) book and have a problem — I can’t re-program the PIC on it. The installation has been followed correctly, yet the PIC continues to run the TEST program as pre-loaded by Magenta. I have checked the software installation, power supply and PIC printer port correctness, and I have tested that the pins can correctly change their logic levels, although the voltage for Logic 1 is around 3.3-5V for both the pins 12 and 13, dropping back correctly to 0V. The 12V programming voltage has been changed, and is found to be 11.8V d.c.

The computer I am using is a Gateway Pentium III running Windows 98, but the PIC software still refuses to work when the computer is booted straight into DOS mode.

Alan Whallin, via the Net

In his lengthy letter, Alan gave a lot of detail about the tests he had run, the above is merely a summary.

The programming voltage being at 11.8V should be no problem — I’ve programmed PICs with a Vpp as low as 9V! Alan’s reference to 5-V came as an amusing surprise. I am sure that whatever he had done was correct.

Thanks for your help! The problem was as you said, the voltage was too low to program the PIC. As I don’t live near a supplier I decided to try out a circuit to take the power levels from my computer (3.3V) and change them to 5.0V. I placed the circuit on strippboard and fitted it to one side of a 25-way D-type connector and then connected the other end to the Centronics printer cable.

An interesting solution but, Readers, if your PC does only deliver a 3V (or so) Logic I output, using the PIC would seem to be the better option.

I appreciate wholeheartedly with Roger Warrington (Readout July '01). I too have around 25 years of programming, mostly in various dialects of Basic and a little assembler. I used Visual Basic but prefer Delphi for Windows style programs. I too find Basic easier to pick up again after a number of years.

My coding skills are not great but I usually pull through. Recently I tried to learn C as a means of programming PICs because I needed to time the reactions of various systems. I was in a fast moving machine and thought Basic might be a bit slow. Unfortunately I hardly got off of the starting blocks, partly because of problems with the environment I was using but mainly because at the age of 50 my powers of learning are some what diminished, or as I tell my colleagues “after 45 years of cramping my brain with information it is full and cannot take anymore”.

Trevor Wilson, Aberdeen, via the Net

Well, Trevor, one of my colleagues suggests that from time to time we should all have a “half-price clearance sale” of any no longer required mental information, thus making room for more — a sort of “defrag” in computing terms! The trouble is you never really know what might become useful and personally I’d hate to discard anything. Perhaps evolution might one day give us the equivalent of “disk data compression” with a computer that can increase our brain size.

But there are many examples of people in excess of 50 years taking up adult education and acquiring new skills and knowledge. And for all those PIC projects I’ve designed, they’re from a brain considerably more ancient than yours and which still loves the challenge of safety!

Whatever your age, don’t ever think that you are past learning!
VIDEOS ON ELECTRONICS

A range of videos selected by EPE and designed to provide instruction on electronics theory. Each video gives a sound introduction and grounding in a specialised area of the subject. The tapes make learning both easier and more enjoyable than pure textbook or magazine study. They have proved particularly useful in schools, colleges, training departments and electronics clubs as well as to general hobbyists and those following distance learning courses etc.

BASICS

VT201 to VT206 is a basic electronics course and is designed to be used as a complete series, if required.

VT201 54 minutes. Part One: D.C. Circuits. This video is an absolute must for the beginner. Series circuits, parallel circuits, Ohms law, how to use the digital multimeter and much more.

VT202 62 minutes. Part Two: A.C. Circuits. This is your next step in understanding the basics of electronics. You will learn about how coils, transformers, capacitors, etc are used in common circuits.

VT204 56 minutes. Part Four: Power Supplies. Guides you step-by-step through different sections of a power supply.

VT205 57 minutes. Part Five: Amplifiers. Shows you how amplifiers work as you have never seen them before. Class A, class B, class C, op.amps, etc.

VT206 54 minutes. Part Six: Oscillators. Oscillators are found in both linear and digital circuits. Gives a good basic background in oscillator circuits.

DIGITAL

VT301 54 minutes. Digital One; Gates begins with the basics as you learn about seven of the most common gates which are used in almost every digital circuit, plus Binary notation.

VT302 55 minutes. Digital Two; Flip Flops will further enhance your knowledge of digital basics. You will learn about Octal and Hexadecimal notation groups, flip-flops, counters, etc.

VT303 54 minutes. Digital Three; Registers and Displays is your next step in obtaining a solid understanding of the basic circuits found in today's digital designs. Gets into multiplexers, registers, display devices, etc.

VT304 59 minutes. Digital Four; DAC and ADC shows you how the computer is able to communicate with the real world. You will learn about digital-to-analogue and analogue-to-digital converter circuits.

VT305 56 minutes. Digital Five; Memory Devices introduces you to the technology used in many of today's memory devices. You will learn all about ROM devices and then proceed into PROM, EPROM, EEPROM, SRAM, DRAM, and MBB devices.

VT306 56 minutes. Digital Six; The CPU gives you a thorough understanding in the basics of the central processing unit and the input/output circuits used to make the system work.

VCR MAINTENANCE

VT102 84 minutes: Introduction to VCR Repair. Warning, not for the beginner. Through the use of block diagrams this video will take you through the various circuits found in the NTSC VHS system. You will follow the signal from the input to the audio/video heads then from the heads back to the output.

VT103 35 minutes: A step-by-step easy to follow procedure for professionally cleaning the tape path and replacing many of the belts in most VHS VCR's. The viewer will also become familiar with the various parts found in the tape path.

RADIO

VT401 61 minutes. A.M. Radio Theory. The most complete video ever produced on a.m. radio. Begins with the basics of a.m. transmission and proceeds to the five major stages of a.m. reception. Learn how the signal is detected, converted and reproduced. Also covers the Motorola C-QUAM a.m. stereo system.

VT402 58 minutes. F.M. Radio Part 1, F.M. basics including the functional blocks of a receiver. Plus r.f. amplifier, mixer oscillator, i.f. amplifier, limiter and f.m. decoder stages of a typical f.m. receiver.

VT403 58 minutes. F.M. Radio Part 2. A continuation of f.m. technology from Part 1. Begins with the detector stage output, proceeds to the 19kHz amplifier, frequency doubler, stereo demultiplexer and audio amplifier stages. Also covers RDS digital data encoding and decoding.

MISCELLANEOUS

VT501 58 minutes. Fibre Optics. From the fundamentals of fibre optic technology through cable manufacturer to connectors, transmitters and receivers.

VT502 57 minutes. Laser Technology A basic introduction covering some of the common uses of laser devices, plus the operation of the Ruby Rod laser, HeNe laser, CO2 gas laser and semiconductor laser devices. Also covers the basics of CD and bar code scanning.

VIDEOS ON TECHNOLOGY

VT201 84 minutes: Introduction to VCR Repair. Warning, not for the beginner. Through the use of block diagrams this video will take you through the various circuits found in the NTSC VHS system. You will follow the signal from the input to the audio/video heads then from the heads back to the output.

VT202 35 minutes: A step-by-step easy to follow procedure for professionally cleaning the tape path and replacing many of the belts in most VHS VCR's. The viewer will also become familiar with the various parts found in the tape path.

ORDERING: Price includes postage to anywhere in the world.

OVERSEAS ORDERS: We use the VAT portion of the price to pay for airmail postage and packing, wherever you live in the world. Just send £34.95 per tape. All payments in £ sterling only (send cheque or money order drawn on a UK bank). Make cheques payable to Direct Book Service.

Visa, Mastercard, Amex, Diners Club and Switch orders accepted — please give card number, card expiry date and Switch Issue No.

Orders are normally sent within seven days but please allow a maximum of 28 days, longer for overseas orders.

Send your order to: Direct Book Service, Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND

Tel: 01202 873872. Fax: 01202 874582. E-mail: dbs@epemag.wimborne.co.uk

Online store: www.epemag.wimborne.co.uk/shopdoor.htm
Arise, Sircam

What an eventful month this has been for Internet users. Much press and TV could have done everyday Internet users a service by covering a much more troublesome nuisance, a plague in the shape of the Sircam worm. This nifty little creature burrows its way towards your Windows Address Book in search of tasty E-mail addresses. The Sircam worm also has an appetite for computer files stored on your hard disk: it likes to share them with your friends, so the worm attaches itself to any one of your files – private ones stored in the My Documents folder will do nicely.

Then using its built-in SMTP engine, Sircam will E-mail the file to your network and sundry, often without the hapless owner ever knowing. Being a gregarious sort of worm, Sircam propagates itself using the recipient's address book, but as a supplementary diet Sircam is also said to find E-mail addresses lurking in your web browser. It could also do more severe damage to host computers – filling a hard disk with junk and trashing essential files, delivering its nasty payload sometime in October. In practice, Sircam has caused an awful lot of damage, easily trouncing every known anti-virus tool. The Symantec's Sircam Removal Tool – a familiar sight for all too many.

The Worm has Turned

One of the benefits of using a fairly obscure E-mail package (Turnpike) is that it uses a proprietary address book that is immune to Windows address book attacks. No worm-holes to be found there. So what about all those incoming files? My first bout of Sircam mania happened in July when strange E-mails started arriving from Argentina, then from Brazil a few days later, then Mexico, and then the USA. Mails then arrived from Korea, Japan, South Africa and eventually mainland Europe.

Each mail contained the same message and Turnpike made it easy to spot that an unsolicited file was attached. Some files were very large – several megabytes long which reduced my mailbox to a crawl at times. A quick scan with anti-virus software soon revealed the sinister truth, and from then on it was a case of circling the wagons: I sensed something big was about to break out.

The trickle of files turned into a minor deluge, files of every description arriving from people I'd never heard of. Spreadsheets, images and .doc files all tried to wriggle their way onto my hard disk. In the early stages, I would E-mail the senders, thanking them for their generosity, but as a supplementary diet Sircam is also said to find E-mail addresses lurking in your web browser. It could also do more severe damage to host computers – filling a hard disk with junk and trashing essential files, delivering its nasty payload sometime in October. In practice, Sircam has caused an awful lot of damage, easily trouncing every known anti-virus tool. The Symantec's Sircam Removal Tool – a familiar sight for all too many.

Infra DIG

Things took a turn for the worse when I fired up my new infra-red phone (see last month) and a new laptop, in order to fetch some E-mail. You guessed it, Sircam was soon trying to wriggle its way through the airwaves via my mobile phone. In fact, it attached itself to a quarter-megabyte file which took an eternity to fetch via the mobile, which wasn’t quite the flying start to mobile communications I had hoped for. Sad to say, Sircam finally found its way onto my new laptop, costing me quite a few pounds in phone charges in the process.

Somehow or other an infected file was opened accidentally. Call it lack of familiarity with Outlook Express. Symantec Anti Virus did a good job of isolating the worm, but what it could not do was repair any infected files. In the case of my new laptop, Sircam attacked itself to two files stored in the _restore folder of Windows ME, and only by disabling the System Restore function could the infected files be quarantined, losing them in the process.

Back to the desktop PC system then: by now Sircam worms were being picked off every few hours but, due to an oversight lasting several "ehno-seconds", I accidentally double-clicked an offending filename (a single push of the mouse roller, actually) instead of scanning it, and with one bound Sircam was free to roam around my network. Naturally I was kicking myself at this point, but I supposed that if NASA could crash a satellite into the surface of Mars due to an unfortunate mix-up over units of measurement, then mere mortals like myself would double-click an infected filename occasionally.

At least, that was my excuse!

The day's work came to an abrupt halt – offending files such as Sircam32.exe were deleted but when the PC was rebooted, Sircam complained about that missing file and crippled the machine. When the Sircam files were restored as a workaround, the worm jumped in and prevented all other programs (Applications) from launching – so the system was totally paralysed.

The Whys? after the Event

Hot-footing it to another PC, mercifully the Symantec web site (www.symantec.com) offered a Sircam removal tool for download. This was loaded onto a floppy disk and after running it I was eventually back in business, a whole lot wiser! A month later, I am amazed to see that the Sircam Worm is still being E-mailed to me, presumably by neophyte Internet users.

What are the lessons to be learned? It should go without saying that anti-virus software is crucial: Symantec and McAfee are two of the respected brands available. Subscribe! Do us all a service and pay for the regular downloads to keep your virus definitions up to date.

Obviously, if you don’t scan all files “on-the-hoof” then all suspicious file attachments should be quarantined for scanning before they are opened. A corporate service, MessageLabs (www.messagelabs.com) offers a 30 day free trial of their service which intercepts any infected mail en-route before it can be delivered.

Worms and viruses are a fact of Internet life and they will only get worse, especially with the gradual uptake of always-on Internet access (cable, satellite and DSL). This will make it much easier for worms to propagate quickly without the knowledge of the user.

Another essential tool is an anti-intrusion program such as the freeware Zone Alarm (www.zonelabs.com) to guard against “Internet background noise” (to quote Steve Gibson of grc.com). Note that in the writer’s system, as an added bonus Zone Alarm also “padlocked” Sircam-infected files ready for scanning/quarantining.

Intrusion attempts are commonplace – expect a few dozen every day. Check your system today, and get your anti-virus and anti-intrusion software up to date this minute! You can contact the writer at alan@epemag.co.uk.
The printed circuit board is available from the EPE PCB Service, code 319 (see page 745). Incidentally, if you browse through our component advertisers’ pages you will soon find that PICs are now widely stocked and should not cause any sourcing problems.

2-Valve SW Receiver

Being a little out of touch with valve circuit requirements, we asked Gerald Myers of Chevet Supplies (01253 751058 or E-mail chevet@globalnet.co.uk) regarding the availability of the DF91 valve used in the 2-valve SW Receiver project. We were informed that it is becoming in short supply—they only have two in stock at present, but gave us some equivalents, i.e. IT4, W17, CV785 and CV197. We have not been able to check these out. You could also try contacting Bull Electrical (0871 671 1200), Cricklewood (020 8445 0126), J&N Factors (01444 881965) or Greenwell (01277 811042), who may be able to help.

For the tuning capacitors we suggest you also contact the above companies plus Mainline Surplus Sales (0870 241 0810), who sometimes have these components ‘on special offer’, including the cheaper solid-dielectric “transistor radio” types mentioned in the article.

A small mains transformer was used for the audio output transformer and one with a high step-down ratio is needed to give good results. One with 3V-0V-3V secondary windings was found to give the best results and was purchased from Maplin (0870 264 6000 or www.maplin.co.uk) code YN12N. Note the full secondary winding is used, the centre-tap not being required.

The above company also supplied the aluminium case (code X868/1), open style 6·35mm mono jack socket (code HEF91Y) and the 4·7mH r.f. choke for the Register project. We were informed that it is becoming in short supply, plus

WE commence this month with the news that Electromail, the mail order arm of RS Components, no longer exists. However, the good news is that RS components can still be purchased on a “one-off” order basis via their “RS New Business Reception” by telephone on 01536 444079 or through their web site at rswww.com. All goods must be ordered by Credit Card only. They did indicate that a post and packing charge will be incurred and is as follows: orders up to £30 – £4.60 p&p; over £30 to £79.99 – £2.95; over £80 – £1.75.

Camcorder Power Supply

It is important that readers keep to the specified types for some of the components needed to build the Camcorder Power Supply project. The specification of diode D10 and capacitor C8 is especially important.

The diode BYW60 used in the prototype is a high-speed, fast recovery type capable of handling 8A and was purchased from Farnell (0113 263 6311 or www.farnell.com) code 366-705. It is also listed by Maplin (0870 264 6000 or www.maplin.co.uk), code AH57M. You will also need a semiconductor insulating kit to electrically isolate the device from the small fabricated aluminium (15mm x 40mm) heatsink.

Capacitor C8 must have a low inductance at 100kHz and a minimum working voltage of 50V d.c. A Rubycon YXF series capacitor (2 off) ordered from the Honeywell SDP8405 phototransistor used in the Bird Scarer, code 195-640-765) by RS Components and can be ordered through any bona fide stockists or directly, using your credit card, from RS (01536 444079 or rswww.com).

The Gate Sentinel magnet-operated reed type switch has normally-closed contacts which may be difficult to find. The prototype uses an RS Form B type (code 361-4961) and can be ordered as outlined above. The same applies to the 47nH r.f. choke for inductor L3, code UK80B.

Perpetual Projects 4 – Gate Sentinel, Solar-Powered Bird Scarer and Register

As pointed out in previous parts of the Perpetual Projects and this final instalment, readers are advised to use the Motorola MC4093BCP version of the 4093 quad 2-input NAND Schmitt trigger i.c. This device is listed (code 640-766) by RS Components and can be ordered through any bona fide stockists or directly, using your credit card, from RS (01536 444079 or rswww.com).

The Uniboard printed circuit board is obtainable from the EPE PCB Service, code 305 (see page 745).

PIC TOOLKIT Mk3

Most items for the PIC Toolkit Mk3 are RS components and can be ordered through any bona-fide stockist, including some of our advertisers. If you have a credit card, you can place an order with RS on 01536 444079 or through their web site rswww.com.

The MAX662CPA charge-pump d.c.-to-d.c. converter chip, designed to provide a +5V voltage reference (code 302-4210) and the Newport high torque attached.

The Uniboard printed circuit board is obtainable from the EPE PCB Service, code 318 (see page 745).
Virtual laboratory – Traffic Lights
Complimentary output stage

ANALOGUE ELECTRONICS

Analogue Electronics is a complete learning resource for this most difficult branch of electronics. The CD-ROM includes a host of virtual laboratories, animations, diagrams, photographs and text as well as a SPICE electronic circuit simulator with over 50 pre-designed circuits. Sections on the CD-ROM include: Fundamentals – Analogue Signals (5 sections), Transistors (4 sections), Op.Amps (6 sections), Phaseshaping Circuits (6 sections), Op.Amps – 17 sections covering everything from Symbols and Signal Connections to Differentiators. Amplifiers – Single Stage Amplifiers (8 sections), Multi-stage Amplifiers (3 sections), Filters – Passive Filters (10 sections), Phase Shifting Networks (4 sections), Active Filters (6 sections). Oscillators – 6 sections from Positive Feedback to Crystal Oscillators. Systems – 12 sections from Audio Pre-Amplifiers to 8-Bit ADC plus a gallery showing representative p.c.b. photos.

DIGITAL ELECTRONICS

Digital Electronics builds on the knowledge of logic gates covered in Electronic Circuits & Components (opposite), and takes users through the subject of digital electronics up to the operation and architecture of microprocessors. The virtual laboratories allow users to operate many circuits on screen. Covers binary and hexadecimal numbering systems, ASCII, basic logic gates, monostable and oscillating circuits, and bistables – including JK and D-type flip-flops. Multiple gate circuits, equivalent logic functions and specialised logic functions. Introduces sequential logic including clocks and clock circuitry, counters, binary coded decimal and shift registers, A/D and D/A converters, traffic light controllers, memories and microprocessors – architecture, bus systems and their arithmetic logic units.

FILTERS

Filters is a complete course in designing active and passive filters that makes use of highly interactive virtual laboratories and simulations to explain how filters are designed. It is split into five chapters: Revision which provides underpinning knowledge required for those who need to design filters. Filter Basics which is a course in terminology and filter characterization, important classes of filter, filter order, filter impedance and impedance matching, and effects of different filter types. Advanced Theory which covers the use of filter tables, mathematics behind filter design, and an explanation of the design of active filters. Passive Filter Design which includes an expert system and filter synthesis tool for the design of low-pass, high-pass, band-pass, and band-stop Bessel, Butterworth and Chebyshev op.amp filters. Systems – Multiple Filter Design and Active Filter Design with filter synthesis tool for the design of low-pass, high-pass, band-pass, and band-stop Bessel, Butterworth and Chebyshev op.amp filters.

DIGITAL WORKS 3.0

Digital Works Version 3.0 is a graphical design tool that enables you to construct digital logic circuits and analyze their behaviour. It is so simple to use that it will take you less than 10 minutes to make your first digital design. It is so powerful that you will never outgrow its capability.
- Software for simulating digital logic circuits
- Create your own macros – highly scalable
- Create your own circuits, components, and i.c.s
- Easy-to-use digital interface
- Animation brings circuits to life
- Vast library of logic macros and 74 series i.c.s with data sheets
- Powerful tool for designing and learning

PRICES

Prices for each of the CD-ROMs above are:
- Hobbyist/Student ...£45 inc VAT
- Institutional (Schools/HE/FE/Industry)£99 plus VAT
- Institutional 10 user (Network Licence)£199 plus VAT

(UK and EU customers add VAT at 17.5% to “plus VAT” prices)
Interested in programming PIC microcontrollers? Learn with PICtutor

This highly acclaimed CD-ROM by John Becker, together with the PICtutor experimental and development board, will teach you how to use PIC microcontrollers with special emphasis on the PIC16x84 devices. The board will also act as a development test bed and programmer for future projects as your programming skills develop. This interactive presentation uses the specially developed Virtual PIC Simulator to show exactly what is happening as you run, or step through, a program. In this way the CD provides the easiest and best ever introduction to the subject. Nearly 40 Tutorials cover virtually every aspect of PIC programming in an easy to follow logical sequence.

HARDWARE

Whilst the PIC-CD-ROM can be used on its own, the physical demonstration provided by the PICtutor Development Kit, plus the ability to program and test your own PIC16x84s, really reinforces the lessons learned. The hardware will also be an invaluable development and programming tool for future work. Two levels of PICtutor hardware are available – Standard and Deluxe. The Standard unit comes with a battery holder, a reduced number of switches and no displays. This version will allow users to complete 25 of the 39 Tutorials. The Deluxe Development Kit is supplied with a plug-top power supply (the Export Version has a battery holder), all switches for both PIC ports plus I.C.D. and 4-digit 7-segment I.D.D. displays. It allows users to program and control all functions and both ports of the PIC. All hardware is supplied fully built and tested and includes a PIC16F84.

Note:
The software on each version is the same, only the licence for use varies.

PICtutor CD-ROM
Hobbyist/Student - £45 inc VAT
Institutional 10 user (Network Licence) - £199 plus VAT

Deluxe PICtutor Hardware
Deluxe PICtutor Development Kit - £99 plus VAT

Electronic Circuits & Components V2.0
Provides an introduction to the principles and application of the more common classes of electronic components and shows how they are used to form complete circuits. The virtual laboratories, worker examples and pre-designed circuits allow students to learn, experiment and check their understanding. Version 2 has been considerably expanded in almost every area following a review of major syllabuses (GCSE, GNVQ, A level and HNC). It also contains both European and American circuit symbols. Sections include: Fundamentals: units & multiples, electricity, electric circuits, alternating circuits. Passive Components: resistors, capacitors, inductors, transformers. Semiconductors: diodes, transistors, opamps, logic gates. Passive Circuits, Active Circuits. The Parts Gallery will help students to recognise common electronic components and their corresponding symbols in circuit diagrams. Selections include: Components, Components Quiz, Symbols, Symbols Quiz, Circuit Technology. Included in the Institutional Versions are multiple choice questions, exam style questions, fault finding virtual laboratories and investigations/worksheets.

Student copies (available only with a multiple user copy) £6 plus VAT (UK and EU customers add VAT at 17.5% to “plus VAT” prices)

Please send me:

CD-ROM ORDER FORM

(£23)

Electronic Components Photos
Electronic In Control – Single User
Electronic Circuits & Components V2.0
PICtutor
PICtutor Development Kit – Standard
PICtutor Development Kit – Deluxe

Version required:
Hobbyist/Student Institutional
Institutional 10 user

Note: The software on each version is the same (unless stated otherwise above), only the licence for use varies.

PICtutor CD-ROM
Hobbyist/Student - £45 inc VAT
Institutional 10 user (Network Licence) - £199 plus VAT

Deluxe Export
Note: The CD-ROM is not included in the Development Kit prices.

PICtutor Development Kit – Standard
Deluxe Export

Electronic Components Photos
Electronic In Control – Single User
Electronic Circuits & Components V2.0

Institutional User and Deluxe Versions – overseas readers add £5 to the basic price of each order for airmail postage (do not add VAT unless you live in an EU (European Union) country, then add 17½% VAT or provide your official VAT registration number).

Send your order to: Direct Book Service Wimborne Publishing Ltd 408 Wimborne Road East Ferndown, Dorset BH22 9ND

To order by phone ring 01202 873872. Fax: 01202 874562
Goods are normally despatched within seven days
E-mail: orders@wimborne.co.uk

Online shop: www.epemag.wimborne.co.uk/shopdoor.htm

Student/Single User/Standard Version price includes postage to most countries in the world. EU residents outside the UK add £5 for airmail postage per order

Institutional, Multiple User and Deluxe Versions – overseas readers add £5 to the basic price of each order for airmail postage (do not add VAT unless you live in an EU (European Union) country, then add 17½% VAT or provide your official VAT registration number).

Send your order to: Direct Book Service Wimborne Publishing Ltd 408 Wimborne Road East Ferndown, Dorset BH22 9ND

To order by phone ring 01202 873872. Fax: 01202 874562

Goods are normally despatched within seven days
E-mail: orders@wimborne.co.uk

Online shop: www.epemag.wimborne.co.uk/shopdoor.htm
INGENUITY
UNLIMITED

Our regular round-up of readers’ own circuits. We pay between £10 and £50 for all material published, depending on length and technical merit. We’re looking for novel applications and circuit designs, not simply mechanical, electrical or software ideas. Ideas must be the reader’s own work and must not have been submitted for publication elsewhere. The circuits shown have NOT been proven by us. Ingenuity Unlimited is open to ALL abilities, but items for consideration in this column should be typed or word-processed, with a brief circuit description (between 100 and 500 words maximum) and full circuit diagram showing all relevant component values. Please draw all circuit schematics as clearly as possible. Send your circuit ideas to: Alan Winstanley, Ingenuity Unlimited, Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown Dorset BH22 9ND. (We do not accept submissions for IU via E-mail.)

Your ideas could earn you some cash and a prize!

WIN A PICO PC BASED OSCILLOSCOPE
- 50MSPS Dual Channel Storage Oscilloscope
- 25MHz Spectrum Analyser
- Multimeter • Frequency Meter
- Signal Generator
If you have a novel circuit idea which would be of use to other readers then a Pico Technology PC based oscilloscope could be yours. Every six months, Pico Technology will be awarding an ADC200-50 digital storage oscilloscope for the best IU submission. In addition, two single channel ADC-40s will be presented to the runners-up.

THREE-WAY LIGHTING – Logically

T raditional three-way lighting circuits (in which a lamp can be operated using any one of three switches) are complicated and they are physically difficult to wire together. The electronic alternative detailed in the circuit diagram of Fig.1 gives much simpler wiring, and as it operates at a switched low voltage it gives an easier and more economical installation.

The wiring to the switches can be in low current alarm cable for example, and it can be used to operate a wide variety of loads, not necessarily mains-powered.

How It Works

The circuit works in the following way. Logic gate IC1a applies an exclusive-OR function to switches S1 and S2 (two-way switching), then IC1b applies the same function with the output from IC1a and the state of switch S3. This gives the effect of an optional inverted signal depending on the condition of S3. All eight possible combinations are detailed in the truth table shown, an analysis of which shows that in effect, changing any state of any switch toggles the lamp on or off accordingly.

The RC networks R4 to R6 and C1 to C3 are for improved noise immunity. Resistors R1 to R3 provide a load for the switches which promotes reliable operation at low voltage and also assists with noise immunity by lowering the input impedance of the circuit.

The output buffer transistor TR1 can be any low power n-channel MOSFET which switches the relay. The remainder of the circuit is a low power regulated power supply.

Note that although signal switching is done at a low voltage, if the wiring is run alongside other insulated mains wiring, the same standards must be followed to ensure safety. (Take extra precautions to ensure that there is no possibility of others mistaking low-voltage “signal” wires for live mains wiring, or vice versa – ARW.)

Kate Turner
St. Leonards-on-Sea

Table 1: Truth Table

<table>
<thead>
<tr>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>Lamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>off</td>
<td>off</td>
<td>on</td>
<td>on</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>off</td>
<td>on</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>on</td>
<td>off</td>
</tr>
<tr>
<td>on</td>
<td>off</td>
<td>off</td>
<td>on</td>
</tr>
<tr>
<td>on</td>
<td>off</td>
<td>on</td>
<td>off</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
</tr>
</tbody>
</table>

WHY NOT SEND US YOUR CIRCUIT IDEA?

Earn some extra cash and possibly a prize!

Fig.1. Complete circuit diagram for the Three-way Lighting system.
EEPPEE TTEEAACCHH--IINN 22000000
Now on CD-ROM

The whole of the 12-part Teach-In 2000 series by John Becker (published in EPE Nov ’99 to Oct 2000) is now available on CD-ROM. Plus the Teach-In 2000 software covering all aspects of the series and Alan Winstanley’s Basic Soldering Guide (including illustrations and Desoldering).

Teach-in 2000 covers all the basic principles of electronics from Ohm’s Law to Displays, including Op.Amps, Logic Gates etc. Each part has its own section on the interactive PC software where you can also change component values in the various on-screen demonstration circuits.

The series gives a hands-on approach to electronics with numerous breadboarded circuits to try out, plus a simple computer interface which allows a PC to be used as a basic oscilloscope.

ONLY £12.45 including VAT and p&p

We accept Visa, Mastercard, Amex, Diners Club and Switch cards.

NOTE: This mini CD-ROM is suitable for use on any PC with a CD-ROM drive. It requires Adobe Acrobat Reader (available free from the Internet – www.adobe.com/acrobat)

SAVE UP TO 68p AN ISSUE!

DON’T MISS THE WINDOW OF OPPORTUNITY – MAKE SURE OF YOUR COPY NOW!

FREE 16-Page Supplement
★ PIC TOOLKIT TK3 FOR WINDOWS ★
Plus TEACH-IN 2002 Part 1

Annual subscription rates:
6 Months: UK £15, Overseas £18 (standard air service), £32 (express airmail)
1 Year: UK £28.50, Overseas £34.50 (standard air service) £52 (express airmail)
2 Years: UK £52.00, Overseas £64.00 (standard air service) £99 (express airmail)

To: Everyday Practical Electronics,
Wimborne Publishing Ltd., 408 Wimborne Road East,
Ferndown, Dorset BH22 9ND
Tel: 01202 873872 Fax: 01202 874562
E-mail: subs@epemag.wimborne.co.uk

Order from our online shop at:
www.epemag.wimborne.co.uk/shopdoor.htm

SUBSCRIPTION ORDER FORM

I enclose payment of £ (cheque/PO in £ sterling only), payable to Everyday Practical Electronics

Name .. Address ..

Post code Tel. ..

My card number is: ..
Signature ..
Card Ex. Date Switch Issue No.

Subscriptions can only start with the next available issue.
For back numbers see the Back Issues page.

If you do not wish to cut your issue, send a letter or a copy of this form.
We conclude this month with the final part of our four-part series of “perpetual” projects. All are based on one small p.c.b. called a Uniboard. Each is powered around the clock – perpetually – by a single, high quality, memory back-up capacitor and a small solar cell (no battery). Each is designed to run unattended for months at a time – in fact for years!

The solar-powered power supply and regulator constructed in the first part (July ’01) of this series form the basis for each of the projects and it only remains for you to choose which one most appeals to you! This month we cover the following three Perpetual Projects:

- **Gate Sentinel**
- **Solar-Powered Bird Scarer**
- **Register**

Besides these three projects, suggestions are made for one variation – a Break Contact Alarm.

All the projects are built on a low-cost Uniboard (printed circuit board – one required for each project, unless you are expert at desoldering!). This should also include the Solar-Powered Power Supply and Voltage Regulator circuit described in Part 1 (July ’01).

Note that all the projects may also be run off batteries – see Part 1.

The solar-powered supply section is only required once, unless you wish to build and keep all the projects as separate modules. It is now over to you to choose which specific project you would like to add to your Uniboard.

SUGGESTION 1 – BREAK CONTACT ALARM

This simple Break Contact Alarm has one distinct advantage over last month’s Loop Burglar Alarm. When a door or a window is opened, it will not be silenced simply by closing the door or window again. Instead, it will continue to sound for about ten minutes before falling silent. It also gives a pulsed tone, which is more easily noticed.

Using the circuit of the Gate Sentinel as a guide, make the following modifications:

- Remove diode D3 and resistor R7.
- Substitute a 22 megohms (22M) resistor for R5
- Substitute a 22µF electrolytic capacitor for C3

Any number of normally-closed magnetic switches or microswitches may be wired in parallel with S1 so as to cover as many doors or windows as desired.
is held open by the “proximity magnet” mounted on the gate. When the gate is opened, S1 reverts to its normal closed state, and capacitor C3 charges up through the switch, taking IC1a pin 1 high (logic 1), thus triggering the Sentinel.

When the gate is closed again, and switch S1 is held open by the “proximity magnet” mounted on the gate, capacitor C3 requires a short period to discharge through resistor R5. This introduces a delay before the Gate Sentinel again falls silent. To increase the period for which the Sentinel sounds after closing your gate, increase the value of C3.

A normally-closed, magnet-operated, reed type switch would be ideal for S1. These switches are harder to come by than normally-open switches of the same type, so it would be worth noting that a magnet may be glued strategically to the side of a normally-open switch of this type, to convert it to a normally-closed switch. A continuity tester will quickly show where the magnet should be glued.

Any number of normally-closed switches (microswitches included, which are cheaper) may be wired in series with switch S1. These open when the gate is closed. Normally-open vibration switches would also be well suited in this position, closing briefly when the gate is opened.

A special challenge of this project was to switch off both oscillators simultaneously when switch S1 opened, so that no oscillator would be left running “in the background” (see Part 1 of the series). This was achieved by using a normally closed magnetic switch to trigger gate IC1a, as well as inverter IC1b.

Piezo disc sounder WD1 may be replaced with an i.e.d. if desired, or a i.e.d. may be used together with WD1. The i.e.d. is wired between IC1 pin 10 and the positive supply line, with its anode (a) the longest lead) being taken to positive.

Use a ballast resistor in series with the i.e.d. – use the current limiting formula $R = (V_f - V_i) / I$ (see Part 2 – Aug ’01). A white i.e.d. requires no ballast resistor, since the effective current flow is limited by the regulator. Only an extreme brightness i.e.d., preferably with a narrow viewing angle, should be used.

CONSTRUCTION

The Gate Sentinel is built up on the Uniboard p.c.b., as shown in the topside component layout details of Fig.2, together with the copper foil master. This board (minus components) is available from the EPE PCB Service, code 305. The Solar-Powered Power Supply and Voltage Regulator (July ’01) components are included in this diagram.

Commence construction by soldering the link wires and the resistors in position, continuing with the diode and the capacitors. The cathode (k) of diode D3 is banded and should be inserted as indicated in Fig.2. Finally, insert IC1 in its d.i.l. socket, being careful to observe the correct orientation, as well as anti-static precautions.

SETTING-UP

Assuming the circuit is being solar powered, once the power supply capacitor C1 has been fully charged in the sun, via the solar cell (see Part 1), adjust the regulator’s preset trimmer VR1 until 3-6V is measured across electrolytic capacitor C2 (solder pins are provided on both sides of C2) – while the Gate Sentinel is sounding. This it will do as long as your gate is open. Remember that capacitor C2 causes a delay to any adjustments that are made to the voltage.

Current consumption is virtually nil on standby, and about 60µA when the buzzer is sounding.

COMPONENTS

<table>
<thead>
<tr>
<th>GATE SENTINEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistors</td>
</tr>
<tr>
<td>R5, R8 4M7 (2 off)</td>
</tr>
<tr>
<td>R6 10M</td>
</tr>
<tr>
<td>R7 1M</td>
</tr>
<tr>
<td>All 0.25W 5% carbon film</td>
</tr>
<tr>
<td>Capacitor</td>
</tr>
<tr>
<td>C3 1µ min. radial elect 10V</td>
</tr>
<tr>
<td>C4 47n polyester film</td>
</tr>
<tr>
<td>C5 33p ceramic plate</td>
</tr>
<tr>
<td>Semiconductors</td>
</tr>
<tr>
<td>D3 1N4148 signal diode</td>
</tr>
<tr>
<td>IC1 MC14093BCP quad 2-input NAND Schmitt trigger</td>
</tr>
<tr>
<td>Miscellaneous</td>
</tr>
<tr>
<td>WD1 low profile wire-ended piezo sounder</td>
</tr>
<tr>
<td>S1 normally-closed reed proximity switch, with bar magnet (see text)</td>
</tr>
</tbody>
</table>

Printed circuit board (Uniboard) available from the EPE PCB Service, code 305; multistrand connecting wire; link wires; solder pins; solder etc.

Note: Component designations run on from the Solar-Powered Power Supply and Voltage Regulator described in the July ’01 issue.

Approx. Cost

<table>
<thead>
<tr>
<th>Guidance Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>£6</td>
</tr>
</tbody>
</table>
IT HAS been shown that birds particularly dislike a rasping sound around 200Hz, and will for a while avoid it. The present project (could also be called an Electronic Scarecrow) was given to a farmer to test on his grapes, and proved very effective over a radius of three to four metres. In fact the farmer was quite excited about the results.

Having said this, however, after about three weeks the birds grew accustomed to the sound, and it was a sorry looking farmer who asked the author whether he could “get the Bird Scarer working again”. This did not mean that it had malfunctioned, as the author imagined – the birds merely paid no more attention to it!

Thus the Bird Scarer would be particularly useful for the temporary protection of seedlings or fruit.

CIRCUIT DETAILS

Since this project will only be needed during the daylight hours (most birds go to roost in the darkness), we can allow a higher current consumption during the day, and put the circuit to sleep at night. This circuit is more power-hungry than the rest, mainly because its two oscillators (IC1a and IC1b) run continuously during the day. Again, both of the oscillators need to be switched off simultaneously – in this case at night.

The full circuit diagram for the Solar-Powered Bird Scarer is shown in Fig.3. The component references follow on from the supply/voltage regulator circuit (July ‘01).

As with the Gate Sentinel, the low frequency oscillator IC1a modulates the high frequency oscillator IC1c, and the piezo disc WD1 is operated in push-pull fashion for maximum volume by IC1c and IC1d.

An npn phototransistor TR3 is used to switch off the two oscillators in the darkness, and this should be mounted away from any night-time light sources. A phototransistor is used because of its high dark resistance, so that it consumes less power in this position than many other devices would do.

The Bird Scarer is located at the centre of the area which you would like to protect from birds, preferably tucked away among some leaves. The solar panel should, of course, be positioned to receive full sunlight.

CONSTRUCTION

The Solar-Powered Bird Scarer is built up on the Uniboard p.c.b., as shown in the topside component layout details of Fig.4, together with copper foil master. This board (minus the solar cell) for the Solar-Powered Power Supply and Regulator from the July ‘01 issue.

Fig.3. Circuit diagram for the Solar-Powered Bird Scarer. Component numbering continues on from the power supply/regulator published in the July ‘01 issue.

COMPONENTS

BIRD SCARER

Resistors
R5 2M2 carbon film
R6, R7, R9 22M metal film (3 off)
R8 4M7 carbon film
All 0·25W 5% or better

Capacitor
C3 470n min. polyester film
C4 560p min. ceramic plate

Semiconductors
D3 1N4148 signal diode
TR3 SDP8405 npn phototransistor
IC1 MC14093BCP quad 2-input NAND Schmitt trigger

Miscellaneous
WD1 low profile wire-ended piezo sounder

Printed circuit board (Uniboard) available from the EPE PCB Service, code 305; multistrand connecting wire; link wires; solder pins; solder etc.

Note: Component designations run on from the Solar-Powered Power Supply and Voltage Regulator described in the July ‘01 issue.

(Approx. Cost Guidance Only)

£66
components) is available from the EPE PCB Service, code 305. Once again, the Solar-Powered Power Supply and Voltage Regulator components are included in this diagram.

Follow the same procedures as previously described, soldering the components to the board in sequence, and finally inserting IC1 in its holder, observing anti-static precautions.

Note that R6 and R7 are wired in series, and together make up the required value of 44 megohms. One end of each of the two resistors should have their leads twisted and soldered together. The opposite (free) ends of the resistors should be inserted in the board, across pins 2 and 3 of IC1, as shown in Fig.4.

SETTING-UP

Assuming the solar power supply is active, adjust the regulator’s voltage to 3-6V – while the Bird Scarer is *sounding*. Remember that capacitor C2 in the regulator circuit causes a short delay to any adjustments that are made to the voltage.

Current consumption is less than 1µA at night, and fluctuates between about 10µA and 30µA when it is in operation.

If the solar power supply is active, adjust the regulator’s voltage to 3·6V – while the Bird Scarer is *sounding*. Remember that capacitor C2 in the regulator circuit causes a short delay to any adjustments that are made to the voltage.

Current consumption is less than 1µA at night, and fluctuates between about 10µA and 30µA when it is in operation.

SOLAR-POWERED REGISTER

Is there anyone at home?

Our final Perpetual Project is a Register. This device is useful especially to indicate whether a person is in or out. It will flash green if a person is in, and red if a person is out. A series of these devices together in a hallway could inform residents of a small "nudge" voltage who is in and who is out – residents would simply touch a touchswitch as they passed to indicate that they were coming or going.

Alternatively, it could send secret messages to the street from your bedroom window. A green flashing l.e.d. might indicate: “See you at the bowling alley tonight,” while a red flashing l.e.d. might indicate: “I’m grounded.”

CIRCUIT DETAILS

The complete circuit diagram for the Solar-Powered Register is shown in Fig.5. Like all the previous circuits, the component numbering follows on from the voltage regulator published in the July ‘01 issue.

Both l.e.d.s are pulsed in order to conserve power. Do not even think of using other types of l.e.d. besides extreme brightness types – other types will be virtually useless. A narrow viewing angle is recommended – a wider viewing angle could seriously compromise brightness.

In this final design, we dispense with buffer gates, to gain more gates to utilise in the circuit.

Note that the specified values for ballast resistors R7 and R10 were chosen experimentally in relation to the forward voltage (V_F) drop of l.e.d.s D4 and D6, which varies with the colour (typically red $V_F = 1·85V$, green $V_F = 2·2V$). If either oscillator fails to work, experiment with different values for the respective ballast resistor.

BISTABLE LATCH

Each of the two l.e.d. flashers, IC1a and IC1b, is turned on or off respectively by a simple bistable latch circuit made up of IC1c and IC1d. When touchswitch S1 is touched, the input at IC1c pin 8 goes low. According to NAND logic, the output terminal, pin 10, therefore must go high. Both inputs of IC1d (pins 12 and 13) are thus...
high – its output terminal is therefore low, as well as input pin 9 of IC1c.

When touchswitch S1 opens again, IC1c’s output terminal remains high, since one of its inputs is now low. Now, imagine then that the other touchswitch S2 (IC1d) is touched. Follow the same logic sequence, and you will see that the bistable latch changes state.

Since IC1c and IC1d essentially invert one another, when one output is high the other is low, and vice versa. This switches one i.e.d. flasher on while it switches the other off.

IN SEQUENCE

It is interesting to note that we have here (arguably) a one-bit computer. It has a “keyboard” (two touchswitches), a memory – to memorise your last key-press (logic i.c.s may serve as a form of memory), and a display (the different coloured i.e.d.s).

At any rate, this is the only project in this “Uniboard” series which uses sequential logic instead of combinational logic. Combinational logic merely reacts to the present state of the inputs (or the combination of highs and lows which are present at the inputs). Sequential logic, on the other hand, is influenced by a previous state of the inputs.

Also, it is interesting to note just what it is that constitutes “memory”. In digital electronics, it is feedback which is used to store events. In this case, the outputs of IC1c and IC1d are fed back to one of the other inputs at pin 13 and pin 9 respectively, to serve as the most basic form of memory – the bistable latch.

The subjective brightness of the two i.e.d.s (D4 and D6) may be increased considerably by changing the values of resistors R6 and R9 to 47 kilohms (47k) to change the flashing mark space ratio. However, the power supply charge lifespan would be reduced to about fifteen hours.

The rate of flashing may be increased by decreasing the values of resistors R5 and R8, but this will also reduce the power supply effective life.

One “Goldcap” memory backup capacitor, C1 in the power supply/voltage regulator (Part 1 – July ‘01) could support two registers in sunnier climes. A few such registers placed in a passageway could keep track of the movements of a few people at the same time.

TOUCH SWITCH

It was decided to use touchswitches throughout this series, since the symbolism of the “perpetual” might be compromised if any mechanical switches were included.

A touch-switch was constructed by the author from the pieces of a broken ultrasonic transducer, the cavity between the “switch” contacts being filled with quick-set putty. Any “home produced” switch should be constructed in such a way that a finger is sure to close the gap across the two contacts.

It would be worth noting that touchswitches can pick up static. A recommended simple means of protecting all the circuits in this series against static would be to wire a one megohm resistor in series with each touchswitch. This would be desirable especially if there is an expanse of carpeting near the touchswitch.

CONSTRUCTION

The Solar-Powered Register is built up on the Uniboard p.c.b., which may or may not already hold the regulator and d.i.l. socket (see July issue, Fig.2) – as shown in the topside component layout details of Fig.6. This board (minus all components) is available from the EPE PCB Service, code 305.

Follow the same procedures as previously described, soldering the components to the board in sequence, and finally inserting IC1, observing anti-static precautions. In order to conserve space, all last resistors are wired directly to the i.e.d.s as shown.

Note again that some extreme brightness i.e.d.s also require anti-static precautions.

SETTING-UP

Once the memory retention capacitor (supply/regulator circuit) C1 has been fully charged in the sun (see July ‘01), adjust the regulator’s preset trimmer VR1 until 3-6V is measured across electrolytic capacitor C2 (solder pins are provided for this purpose on both sides of C2). Remember that C2 causes a short delay to any adjustments that are made to the voltage.

Current consumption (excluding the regulator) is below 15µA. If you measure more than 20µA make IC1 your prime suspect. A CMOS i.c. can be partially damaged by static, while seeming to function correctly. If the i.c. is not the version specified in the Components list, this will almost certainly be the problem.

IN CLOSING

Among other things, this series has been a demonstration of some of the recent advances in electronics technology, and of the practical usefulness of such advances.

This series also illustrates good examples of using capacitance as the primary source of power (with the solar panel, of course, replenishing the capacitor). May your “perpetual project”, whichever one you choose, give life-long and trouble-free service.
Previous Interface articles have described analogue-to-digital and digital-to-analogue converters that use a form of serial interfacing. This method has the advantage of providing eight or 12-bit resolution using only about three lines to provide the interfacing to the PC.

The same basic method can be applied where simple interfacing is required but a large number of digital inputs or outputs are required. It is an output port that is featured here, but similar techniques could no doubt be applied to a digital input port.

Of course, you do not get something for nothing by using serial interfacing. The price that is paid for the lack of wires from the PC to the interface is added complication in the software and a lack of speed. Where an application needs to update the output port every microsecond or so the serial approach is unlikely to be suitable.

Of course, in many practical applications the output ports are only altered relatively infrequently, and the serial method is then eminently suitable.

Single Chip
The circuit featured here uses a three-line interface to a PC printer port and provides some 32 output lines. Furthermore, the circuit uses just two components, and one of these is a supply decoupling capacitor!

This is made possible by using the UCN5818AF serial interfacing chip, which is essentially just a 32-bit shift register. It would probably be cheaper to use CMOS or TTL shift registers to provide the same function, but the UCN5818AF provides a very neat and reliable way of handling things. This chip is produced by Allegro Microsystems Inc. and is available in the UK from the usual RS outlets.

The pinout configuration for the UCN5818AF is shown in Fig.1. Pin 40 is the normal supply pin while pin 1 is the load supply input. This chip is primarily intended for operation with vacuum fluorescent displays where it is necessary to control loads operating at relatively high voltages.

However, it can operate at normal 5V logic levels throughout, and it is just a matter of connecting both supply pins to the 5V logic supply. The current consumption of the chip itself is only a few milliamps, but overall current drain is somewhat higher if the outputs are used to provide significant output currents.

Data from the PC is applied to the serial input at pin 39. There is also a serial output at pin 2 that permits two or more devices to be cascaded if 32 outputs are not enough. There are three control inputs, but in normal operation only two of these are used.

The timing diagram of Fig.2 helps to illustrate the normal method of interfacing this chip. First the Data input is set at the correct logic level for the first bit of data, which in this example is logic 1. A pulse is then supplied to the Clock input, and it is on the low to high transition that the data is clocked into the first cell of the shift register.

This process is repeated until all 32 bits have been clocked into the chip. For the sake of simplicity, in the example of Fig.2 there are only four bits of data, with the first two at logic 1 and the second two at logic 0.

All Change
As each bit of data is clocked into the chip, the data already in the shift register is moved one place further along. The first bit of data therefore appears on output 1 (pin 38) initially, but has worked its way along the line to output 32 (pin 3) by the time the thirty-second bit has been clocked in.
The data in the shift register is not valid until the final bit in a set of 32 has been clocked into the chip, and it must not be placed on the output pins until then. One solution is to hold the Blanking input at pin 19 high, while data is being fed into the chip. This switches on the current sink at each output and switches off the current sources, setting every output low.

In most applications this is no better than allowing the shift register to drive the nets, since the data on the outputs will still be invalid. For most purposes it is best to tie the blanking input to ground so that the outputs always operate normally.

Internal latches and the Strobe input are then used to ensure that the data on the outputs of the shift register is not transferred to the output pins until fully valid data is available. This is achieved by having the Strobe input held low until a full set of 32 bits has been clocked into the chip.

A pulse is then applied to the Strobe input to transfer the new data to the output pins and latch it there. Any changes on the outputs of the shift register then have no effect on the output pins until another set of data has been clocked in and another strobe pulse is generated.

Versatile Output

The circuit diagram for the 32-bit output port appears in Fig.3. The accompanying software uses the 32 outputs as four 8-bit output ports, but they can be used as two 16-bit ports, a single 32-bit type, 32 single bit outputs, or any other set-up that requires no more than 32 output lines.

In order to keep the software straightforward the Data input is driven from D0 of the printer port, while the Strobe and Clock inputs are respectively driven by the printer port’s Strobe and ALF handshake outputs. This conveniently places the data and control outputs at separate output addresses, but with suitably clever software it should be possible to use any three outputs of the port.

The 5V supply is not available from the printer port, but methods of obtaining a 5V supply from a PC have been covered in many previous articles. The connections to the printer port are made via a 25-way male D-connector. Connection details are provided in Fig.4.

Software

The demonstration program for the 32-bit output port was written using Visual BASIC 6 and it requires inpout32.dll in order to run. It uses four vertical slider controls (VScroll1 to VScroll4) to provide values from 0 to 255 that are output to the ports (see photograph above). The main routine is applied to a timer that sends a new set of data to the ports every 50 milliseconds.

The whole listing is too long for inclusion here, but all the files for this program are available from the EPE web site. (It is also available on the Interface Disk 1 – see EPE PCB Service page.) This includes the compiled program.

Data is sent to the four ports using what is basically the same routine for each port. This is the last of these four routines:

If (VScroll4.Value And 128) = 128 Then
Out Pn1, 1 Else Out Pn1, 0
Out Pn3, 1
Out Pn3, 3
End If

If (VScroll4.Value And 64) = 64 Then
Out Pn1, 1 Else Out Pn1, 0
Out Pn3, 1
Out Pn3, 3
End If

If (VScroll4.Value And 32) = 32 Then
Out Pn1, 1 Else Out Pn1, 0
Out Pn3, 1
Out Pn3, 3
End If

If (VScroll4.Value And 16) = 16 Then
Out Pn1, 1 Else Out Pn1, 0
Out Pn3, 1
Out Pn3, 3
End If

If (VScroll4.Value And 8) = 8 Then
Out Pn1, 1 Else Out Pn1, 0
Out Pn3, 1
End If

If (VScroll4.Value And 4) = 4 Then
Out Pn1, 1 Else Out Pn1, 0
Out Pn3, 1
Out Pn3, 3
End If

If (VScroll4.Value And 2) = 2 Then
Out Pn1, 1 Else Out Pn1, 0
Out Pn3, 1
Out Pn3, 3
End If

If (VScroll4.Value And 1) = 1 Then
Out Pn1, 1 Else Out Pn1, 0
Out Pn3, 1
Out Pn3, 3
End If

Pn1 and Pn 3 are variables that are set at 898 and 890 respectively earlier in the program. These are normally the output addresses for the data lines and handshake outputs of printer port 1. Both values must be changed if you are using a different port or if your PC uses different addresses for port 1.

The routine starts by checking the state of bit 7 in the value read from the slider control. This is achieved using the normal bitwise AND method. Output D0 of the printer port is set high if this bit is at logic 1, or low if it is not.

The next two lines generate the clock pulse that loads this bit into the shift register.

The same basic process is then used to check the other bits, write the appropriate value to bit D0 of the printer port, and then clock the data into the serial register. The value in each bitwise operation is changed to suit the bit being tested.

Adaptable

Two extra Out instructions are used at the end of the routine, and these generate a pulse on the Strobe output so that the data is latched onto the 32 output pins. Note that these two instructions are only used at the end of the fourth routine, when all 32 bits of the new word of data are available. The program includes lines that print the current value for each port below the slider control so that it is easy to check that the outputs of the ports are responding properly to the slider settings. It should not be difficult to adapt the software to suit practical applications. The values for the ports can be written to variables that are then used in place of VScroll1.Value, etc. It is not necessary to use all 32 output pins, but 32 bits of data must always be written to the UCNS818AF to prevent things getting “out of sync”. Dummy data must therefore be written to any outputs that are not used.
The essential reference work for everyone studying electronics

- Over 900 pages
- In-depth theory
- Projects to build
- Detailed assembly instructions
- Full components checklists
- Extensive data tables
- Detailed supply information
- Easy-to-use format
- Clear and simple layout
- Comprehensive subject range
- Professionally written
- Regular Supplements
- Sturdy gold blocked ring-binder

EVERYTHING YOU NEED TO GET STARTED AND GO FURTHER IN ELECTRONICS!

The revised edition of the Modern Electronics Base Manual contains practical, easy-to-follow information on the following subjects:

CIRCUITS TO BUILD: There's nothing to beat the satisfaction of creating your own project. From basic principles, like soldering and making printed circuit boards, to circuit-building, the Modern Electronics Manual and its Supplements describe clearly, with appropriate diagrams, how to assemble radios, loudspeakers, amplifiers, car projects, computer interfaces, measuring instruments, workshop equipment, security systems, etc. The Base Manual describes 13 projects including a Theremin and a Simple TENS Unit.

ESSENTIAL DATA: Extensive tables on diodes, transistors, thyristors and triacs, digital and linear i.c.s.

EXTENSIVE GLOSSARY: Should you come across a technical word, phrase or abbreviation you're not familiar with, simply turn to the glossary included in the Manual and you'll find a comprehensive definition in plain English.

The Manual also covers Safety and Suppliers. The most comprehensive reference work ever produced at a price you can afford, the revised edition of THE MODERN ELECTRONICS MANUAL provides you with all the essential information you need.

THE MODERN ELECTRONICS MANUAL

Regular Supplements: Approximately 160-page Supplements of additional information which, if requested, are forwarded to you immediately on publication (four times a year). These are billed separately and can be discontinued at any time.
Presentation: Durable looseleaf system in large A4 format

Price of the Basic Work: £39.95 SALE PRICE £23.97 (to include a recent Supplement FREE)

Guarantee

Our 30 day money back guarantee gives you complete peace of mind. If you are not entirely happy with either Manual, for whatever reason, simply return it to us in good condition within 30 days and we will make a full refund of your payment – no small print and no questions asked.
(Overseas buyers do have to pay the overseas postage charge)
SAFETY: Be knowledgeable about Safety Regulations, Electrical Safety and First Aid.

UNDERPINNING KNOWLEDGE: Specific sections enable you to understand Electrical and Electronic Principles, Active and Passive Components, Circuit Diagrams, Circuit Measurements, Radio, Computers, Valves and manufacturers’ Data, etc.

PRACTICAL SKILLS: Learn how to identify Electronic Components, Avoid Static Hazards, Carry Out Soldering and Wiring, Remove and Replace Components.

TEST EQUIPMENT: How to choose and use test equipment, assemble a toolkit, set up a workshop, and get the most from your multimeter and oscilloscope, etc.

SERVICING TECHNIQUES: The regular supplements include vital guidelines on how to service audio amplifiers, radio receivers, TV receivers, cassette recorders, amplifiers, video recorders, personal computers, etc.

TECHNICAL NOTES: Commencing with the IBM PC, this section and the regular supplements deal with a very wide range of specific types of equipment – radios, TVs, cassette recorders, amplifiers, video recorders etc.

REFERENCE DATA: Detailing vital parameters for diodes, small-signal transistors, power transistors, thyristors, triacs and field effect transistors. Supplements include operational amplifiers, logic circuits, optoelectronic devices, etc.

The essential work for servicing and repairing electronic equipment

- Around 900 pages
- Fundamental principles
- Troubleshooting techniques
- Servicing techniques
- Choosing and using test equipment
- Reference data
- Easy-to-use format
- Clear and simple layout
- Vital safety precautions
- Professionally written
- Regular supplements
- Sturdy gold blocked ring-binder

REGULAR SUPPLEMENTS

Unlike a book or encyclopedia, these manuals are living works – continuously extended with new material. If requested, supplements are sent to you approximately every three months. Each supplement contains around 160 pages – all for only £23.50 including postage if applicable.

Prepayment of £23.97 (for one manual) or £39.94 for both manuals (saving another £8 by ordering both together) is required.

We are able to provide you with the most important and popular, up to date, features in our regular supplements as soon as possible. How to order supplements:

1. Write a short note of your special interest to us.
2. Send the note, with your payment, to the following address:

Wimborne Publishing Ltd, Dept.Y10, 408 Wimborne Road East, Ferndown, Dorset BH22 9ND

We offer a 30 day money back guarantee

- If you are not happy with either manual simply return it to us in good condition within 30 days for a full refund.
- Overseas buyers do have to pay the overseas postage - see below.

Please allow four working days for UK delivery.

POSTAGE CHARGES

<table>
<thead>
<tr>
<th>Price PER MANUAL</th>
<th>Postal Region</th>
<th>Surface</th>
<th>Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>£23.50 each</td>
<td>Mainland UK</td>
<td>FREE</td>
<td>–</td>
</tr>
<tr>
<td>£25.60 each</td>
<td>Scottish Highlands, UK Islands & Eire</td>
<td>£5.50 each</td>
<td>£26 each</td>
</tr>
<tr>
<td>£20 each</td>
<td>Europe (EU)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>£26 each</td>
<td>Europe (Non-EU)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>£25 each</td>
<td>USA & Canada</td>
<td>£33 each</td>
<td>£45 each</td>
</tr>
<tr>
<td>£29 each</td>
<td>Rest of World</td>
<td>£35 each</td>
<td>£45 each</td>
</tr>
</tbody>
</table>

Please allow four working days for UK delivery.

NOTE: Surface mail can take over 10 weeks to some parts of the world. Each Manual weighs about 4kg when packed.

Online Shop: www.epemag.wimborne.co.uk/shopdoor.htm

ORDER FORM

Simply complete and return the order form with your payment to the following address:

Wimborne Publishing Ltd, Dept.Y10, 408 Wimborne Road East, Ferndown, Dorset BH22 9ND

We offer a 30 day MONEY BACK GUARANTEE

- If you are not happy with either Manual simply return it to us in good condition within 30 days for a full refund.
- Overseas buyers do have to pay the overseas postage – see below.

Please allow four working days for UK delivery.

NOTE: Surface mail can take over 10 weeks to some parts of the world. Each Manual weighs about 4kg when packed.

Online Shop: www.epemag.wimborne.co.uk/shopdoor.htm

ORDER BOTH BOTH MANUALS TOGETHER AND SAVE ANOTHER £8

A mass of well-organised and clearly explained information is brought to you by expert editorial teams whose combined experience ensures the widest coverage.

Regular Supplements to these unique publications, each around 160 pages, keep you abreast of the latest technology and techniques if required.

Please send me

□ THE MODERN ELECTRONICS MANUAL plus a FREE SUPPLEMENT

□ ELECTRONICS SERVICE MANUAL plus a FREE SUPPLEMENT

I enclose payment of £23.97 (for one Manual) or £39.94 for both Manuals (saving another £8 by ordering both together) plus postage if applicable.

I also require the appropriate supplements four times a year. These are billed separately and can be discontinued at any time. (Please delete if not required.)

Should I decide not to keep the Manual(s) I will return it/them to you within 30 days for a full refund.

SIGNATURE ________________________________

I enclose cheque/PO payable to Wimborne Publishing Ltd.

Please charge my Visa/Mastercard/Amex/Diners Club/Switch

Switch Issue No. ____________________________

Card No. _________________________________ Card Exp. Date ________________

Please allow four working days for UK delivery.

NOTE: Surface mail can take over 10 weeks to some parts of the world. Each Manual weighs about 4kg when packed.

Online Shop: www.epemag.wimborne.co.uk/shopdoor.htm
BASIC RADIO PRINCIPLES AND TECHNOLOGY

Iain Poole

Radio technology is becoming increasingly important in today’s high technology society. There are the traditional uses of radio which include broadcasting and point to point radio as well as the new technologies of satellites and cellular phones. All of these developments mean there is a growing need for radio engineers at all levels.

Assuming a basic knowledge of electronics, this book provides an easy understanding to ground the topic.

Chapters in the book: Radio Today, Yesterday, and Tomorrow; Radio Waves and Propagation; Capacitors, Inductors, and Filters; Modulation; Receivers; Ambitronics; Antennas; Broadcasting; “Unnatural” Personal Communications; Appendix – Basic Calculations.

263 pages Order code NE30 £16.99

WARNING: Basic electronics knowledge is required to safely use radios, transmitters, and other electronic devices. Unsupervised use by young children is strictly prohibited. Always make sure that all adults are aware of the potential dangers before using this book.

PROJECTS FOR RADIO AMATEURS AND S.W.L.S.

R. A. Penfold

This book describes a number of electronic circuits, most of which are quite simple, which can be used to enhance the performance of most short wave radio systems.

The circuits covered include: An aerial tuning unit; A simple aerial antenna; An add-on b.c.o. for portable sets; A couple to control the output of various responses; An audio notch filter; A parametric equaliser; C.W. and S.S.B. audio filters; Simple noise isolator; A speech processor; A volume expander.

Other useful circuits include a crystal oscillator, and RTTY/C.W. tone decoder, and a RTTY serial to parallel converter. A full range of interesting and useful circuits for short wave enthusiasts.

92 pages Order code BP104 £4.45

MORE ADVANCED ROBOTICS WITH LEGO MINDSTORMS – Robert Penfold

Covers the Vision Command System

Shows the reader how to extend the capabilities of the Brilliant Mindstorms Robotic Invention System (RIS) by using Lego’s own accessories and some simple home constructed units. You will be able to build robots that can provide you with “waiter service” when you are entertaining at home, or built by professional designers for use in the battle lines. Also, shows you how to extend your RIS system to control the robot using “ports” – an input of many different types of sensors including light, temperature, sound and ultrasonic and also explore the possibilities provided by using an additional motor. For the less experienced user, the text explains how to program the robot using Lego’s own programming language.

Detailed building instructions are provided for the features described above, together with numerous step-by-step photographs.

288 pages – large format Order code BP107 £14.99

MULTIMEDIA ON THE PC

Ian R. Sinclair

In this book, you’ll find out what a CD ROM is, how it works, and why it is such an excellent add-on for a PC. Allowing you to view pictures, read text, and hear sound on a CD ROM. It also describes the installation of a CD ROM drive and a complete list of additional problems that arise, and then shows how to use them to create a complete multimedia presentation that contains text, photos, a soundtrack with your own voice recorded as a commentary, even animation and edited video footage.

184 pages Order code PC112 £12.95

HOW TO BUILD YOUR OWN PC

Morris Rosenzweig

More and more people are building their own PCs. The get more value for their money, they create exactly the machine they want, and the work is highly satisfying and actually fun. That is, if they have a unique begin-ner’s guide like this one, which visually demonstrates how to construct a state-of-the-art computer from start to finish.

Through 150 crisp photographs and clear but minimal text, readers will learn about the concepts of computer building. The extra-big format makes it easy to see what’s going on in the pictures. For non-specialists, there’s even a graphically rich glossary that clearly illustrates technical terms. The author goes “under the hood” and steps through step-by-step how to create a socket 7 (Pentium and non-Intel chipsets) and a Slot 1 (Pentium II) computer. Covering: What first-time builders need to know; How to select and purchase parts; How to assemble the PC; How to Install Windows 98. The existing books on this subject are either badly outdated, or are in steady demand. This one delivers the expertise and new technology that networking computer builders are eagerly looking for.

224 pages – large format Order code MGH2 £21.99

PIC YOUR PERSONAL IntroDUCTORY COURSE

SECOND EDITION

John Morris

As a PIC microcontroller controller through graded projects – this book could revolutionize your electronics construction work

250 pages Order code MGH1 £22.99
DIGITAL ELECTRONICS – A PRACTICAL APPROACH
W. S. Amos and Roger Amos
S. W. Amos and Roger Amos

This book, intended for enthusiasts, students and technicians, seeks to establish a firm foundation in digital electronics and logic circuits, counting and correcting, microprocessors, calculators and computers, miscellaneous systems. Contents: waves and pulses, passive components, active components, voltage and current, power, feedback, flip-flop circuits, block diagrams, how radio works, disc and tape recording, elements of TV and radar, digital signals, gating and logic circuits, counting and correcting, microprocessors, calculators and computers, miscellaneous systems.

199 pages
Order code NE23 £13.99

SCROGGIE'S FOUNDATIONS OF WIRELESS AND ELECTRONICS – NINTH EDITION
S. W. Amos and Roger Amos

Schroggie's Foundations of Wireless and Electronics is a classic primer for practitioners and students alike. Stan Amos, one of the fathers of modern electronics and the author of many textbooks on the subject, took over the revision of this book in the 1980s and it is he, with his son, who has produced this latest version.

400 pages
Order code NE27 £21.99

GETTING THE MOST FROM YOUR MULTIMETER
R. A. Penfold

This book is primarily aimed at beginners and those of limited experience of electronics. Chapter 1 covers the basics of analogue and digital electronics, discussing the relative merits and the limitations of the two types. In Chapter 2 various methods of component checking are described, including tests for transistors, thyristors, resistors, capacitors and diodes. Circuit testing is covered in Chapter 3, with subjects such as voltage, current and component checking using electronic test equipment.

In the main and little previous knowledge or experience is required, although for full benefit of the test equipment techniques the reader should be able to confidently tackle servicing of most electronic projects.

86 pages
Order code PC109 £3.45

DIGITAL GATES AND FLIP-FLOPS
R. A. Penfold

This book, intended for enthusiasts, students and technicians, seeks to establish a firm foundation in digital electronics by treating the topics of gates and flip-flops thoroughly and from the beginning.

Topics such as Boolean algebra and Karnaugh mapping are outlined and explained, demonstrated graphically whenever possible and more attention is paid to the subject of synchronous counters than to the simple flip-flop and its derivative counters.

No background other than a basic knowledge of electronics is assumed, and the more theoretical topics are explained from the beginning, as also are many working lists of components, advice on construction, and guidance.

200 pages
Order code PC104 £9.95

PC MUSIC – THE EASY GUIDE
Robin Vincent

How do I make music on my PC? Can I record music onto my PC? What’s a sequence? How can I get my PC to print a music score? What hardware and software do I need? How do I connect a keyboard to my PC?

Just a few of the questions you’re probably asked. Well, you’ll find the answers to all these questions, and many, many others, in this book. It will show you what can be done, what it all means, and what you will need to create your own music on your PC. It’s packed with useful data and it will help you understand how a computer can be used to enhance your music in other ways.

It covers soundboards, sequences, hard disk digital audio workstations, MIDI, software, on-screen sound effects and sound, software, using your PC as a synthesizer, getting music onto and off the Internet, using Windows, sample PC music setup, software, compressors, effects and much more and a list of industry contacts.

116 pages
Order code PC117 £11.95

HIGH POWER AUDIO AMPLIFIER CONSTRUCTION
R. A. Penfold

Practical construction details of how to build a number of audio amplifiers ranges from less than 10 watts to big rms. m.s. includes MOSFET and bipolar transistor designs.

96 pages
Order code BP277 £4.49

Music, Audio and Video

There is a ‘blow-by-blow’ guide to the use of EASY-PC Professional XM and Pulsar software. Chapters on p.c.b. physics and p.c.b. design and construction of asynchronous and synchronous digital and analogue circuits are included. There are also plenty of circuits for video enthusiasts. All the projects can be simply constructed, and most are suitable for the newcomer to project construction, as they are assembled on boardstrip.

37 pages
Order code PC115 £10.95

SPECIAL ORDER

This book is primarily aimed at beginners and those of limited experience of electronics. Chapter 1 covers the basics of analogue and digital electronics, discussing the relative merits and the limitations of the two types. In Chapter 2 various methods of component checking are described, including tests for transistors, thyristors, resistors, capacitors and diodes. Circuit testing is covered in Chapter 3, with subjects such as voltage, current and component checking using electronic test equipment.

In the main and little previous knowledge or experience is required, although for full benefit of the test equipment techniques the reader should be able to confidently tackle servicing of most electronic projects.

86 pages
Order code PC109 £3.45

DIGITAL GATES AND FLIP-FLOPS
R. A. Penfold

This book, intended for enthusiasts, students and technicians, seeks to establish a firm foundation in digital electronics by treating the topics of gates and flip-flops thoroughly and from the beginning.

Topics such as Boolean algebra and Karnaugh mapping are outlined and explained, demonstrated graphically whenever possible and more attention is paid to the subject of synchronous counters than to the simple flip-flop and its derivative counters.

No background other than a basic knowledge of electronics is assumed, and the more theoretical topics are explained from the beginning, as also are many working lists of components, advice on construction, and guidance.

200 pages
Order code PC104 £9.95

PC MUSIC – THE EASY GUIDE
Robin Vincent

How do I make music on my PC? Can I record music onto my PC? What’s a sequence? How can I get my PC to print a music score? What hardware and software do I need? How do I connect a keyboard to my PC?

Just a few of the questions you’re probably asked. Well, you’ll find the answers to all these questions, and many, many others, in this book. It will show you what can be done, what it all means, and what you will need to create your own music on your PC. It’s packed with useful data and it will help you understand how a computer can be used to enhance your music in other ways.

It covers soundboards, sequences, hard disk digital audio workstations, MIDI, software, on-screen sound effects and sound, software, using your PC as a synthesizer, getting music onto and off the Internet, using Windows, sample PC music setup, software, compressors, effects and much more and a list of industry contacts.

116 pages
Order code PC117 £11.95

HIGH POWER AUDIO AMPLIFIER CONSTRUCTION
R. A. Penfold

Practical construction details of how to build a number of audio amplifiers ranges from less than 10 watts to big rms. m.s. includes MOSFET and bipolar transistor designs.

96 pages
Order code BP277 £4.49
Printed circuit boards for most recent EPE constructional projects are available from the PCB Service, see list. These are fabricated in glass fibre, and are fully drilled and rolled tinned. All prices include VAT and postage and packing. Add £1 per board for overseas’ orders and non-EU only. Remittances should be sent to The PCB Service, Everyday Practical Electronics, Wimborne Publishing Limited, West Wimborne, Poole, Dorset BH20 9ND. Tel: 01202 873872; Fax 01202 874562; E-mail: orders@epemag.wimborne.co.uk. On-line Shop: www.epemag.wimborne.co.uk/shopdoor.htm.

NOTE: While 95% of our boards are held in stock and are dispatched within seven days of receipt of order, please allow a maximum of 28 days for delivery—overseas readers allow extra if ordered by surface mail.

Back numbers or photostats of articles are available if required—see the Back issues page for details.

Please check price and availability in the latest issue.

Everyday Practical Electronics, October 2001

745

PCB SERVICE

<table>
<thead>
<tr>
<th>Project Title</th>
<th>Order Code</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light Alarm</td>
<td></td>
<td></td>
<td>£5.78</td>
</tr>
<tr>
<td>Wireless Monitoring System Transmitter</td>
<td>219+a</td>
<td>92.50</td>
<td></td>
</tr>
<tr>
<td>PIC MIDI Sustain Pedal</td>
<td>Software only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wireless Monitoring System-2</td>
<td>See</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F.M. Trans/Rec Adaptors</td>
<td>219a/220a</td>
<td>Feb 99</td>
<td></td>
</tr>
<tr>
<td>Time and Date Generator</td>
<td>221</td>
<td>£7.37</td>
<td></td>
</tr>
<tr>
<td>Auto Cuglid Light</td>
<td>222</td>
<td>£8.36</td>
<td></td>
</tr>
<tr>
<td>Ironing Board Saving</td>
<td>223</td>
<td>£13.15</td>
<td></td>
</tr>
<tr>
<td>Voice Record/Playback Module</td>
<td>224</td>
<td>£5.12</td>
<td></td>
</tr>
<tr>
<td>Mechanical Radio (jig)</td>
<td>226A/B</td>
<td>£7.60</td>
<td></td>
</tr>
<tr>
<td>Versatile Event Counter</td>
<td>207</td>
<td>£8.42</td>
<td></td>
</tr>
<tr>
<td>A.M./F.M. Radio Remote Control – Transmitter</td>
<td>209</td>
<td>£12.00</td>
<td></td>
</tr>
<tr>
<td>Receiver</td>
<td>210</td>
<td>£12.20</td>
<td></td>
</tr>
<tr>
<td>Musical Sundial</td>
<td>JUNE 99</td>
<td>31</td>
<td>£1.51</td>
</tr>
<tr>
<td>PC Audio Frequency Meter</td>
<td>211</td>
<td>£3.79</td>
<td></td>
</tr>
<tr>
<td>EPE Microprocessor</td>
<td>JULY 99</td>
<td>22</td>
<td>£30.80</td>
</tr>
<tr>
<td>12V Battery Tester</td>
<td>223</td>
<td>£21.72</td>
<td></td>
</tr>
<tr>
<td>Intruder Alarming</td>
<td>224</td>
<td>£21.72</td>
<td></td>
</tr>
<tr>
<td>L.E.D. Stroboscope (Multi-project PCB)</td>
<td>932</td>
<td>£3.00</td>
<td></td>
</tr>
<tr>
<td>Ultrasoundic Puncturer Finder</td>
<td>AUG 99</td>
<td>236</td>
<td>£5.00</td>
</tr>
<tr>
<td>Channel Analogue Data Logger</td>
<td>237</td>
<td>£38.88</td>
<td></td>
</tr>
<tr>
<td>Buffer Amplifier (Oscillators Pt 2)</td>
<td>238</td>
<td>£96.98</td>
<td></td>
</tr>
<tr>
<td>Magnetic Field Detective</td>
<td>239</td>
<td>£57.77</td>
<td></td>
</tr>
<tr>
<td>Sound Activated Switch</td>
<td>240</td>
<td>£56.53</td>
<td></td>
</tr>
<tr>
<td>Freezer Alarm (Multi-project PCB)</td>
<td>932</td>
<td>£3.00</td>
<td></td>
</tr>
<tr>
<td>Child Guard</td>
<td>SEPT 99</td>
<td>241</td>
<td>£7.51</td>
</tr>
<tr>
<td>Variable Dual Power Supply</td>
<td>242</td>
<td>£17.64</td>
<td></td>
</tr>
<tr>
<td>MPEG Power supply</td>
<td>OCT 99</td>
<td>243</td>
<td>£21.61</td>
</tr>
<tr>
<td>Interior Lamp Delay</td>
<td>244</td>
<td>£7.88</td>
<td></td>
</tr>
<tr>
<td>Main Cable Locator (Multi-project PCB)</td>
<td>932</td>
<td>£2.00</td>
<td></td>
</tr>
<tr>
<td>Video Camera</td>
<td>NOV 99</td>
<td>245</td>
<td>£19.43</td>
</tr>
<tr>
<td>Teach-In 2000 — Part 4</td>
<td>DEC 99</td>
<td>246</td>
<td>£14.94</td>
</tr>
<tr>
<td>High Performance Regenerative Receiver</td>
<td>254</td>
<td>£35.00</td>
<td></td>
</tr>
<tr>
<td>EPE Interboard — PCB357, programmed PIC16F877 and floppy disc</td>
<td>Set only</td>
<td>£22.99</td>
<td></td>
</tr>
<tr>
<td>Parking Warning System</td>
<td>258</td>
<td>£38.98</td>
<td></td>
</tr>
<tr>
<td>Microscope</td>
<td>APR 99</td>
<td>259</td>
<td>£50.50</td>
</tr>
<tr>
<td>Garage Link — Transmitter</td>
<td>260</td>
<td>£40.87</td>
<td></td>
</tr>
<tr>
<td>Receiver</td>
<td>261</td>
<td>£40.87</td>
<td></td>
</tr>
<tr>
<td>Versatile Micro/Audio Pre-amplifier</td>
<td>MAY 99</td>
<td>262</td>
<td>£33.33</td>
</tr>
<tr>
<td>PIC Light Checker</td>
<td>263</td>
<td>£3.17</td>
<td></td>
</tr>
<tr>
<td>Multi-Channel Transmission System – Transmitter</td>
<td>264</td>
<td>£40.87</td>
<td></td>
</tr>
<tr>
<td>Receiver</td>
<td>265</td>
<td>£33.33</td>
<td></td>
</tr>
<tr>
<td>Unidode Titre Predator</td>
<td>JUNE 99</td>
<td>266</td>
<td>£3.95</td>
</tr>
<tr>
<td>PIC-9095 Frequency Generator/Counter</td>
<td>D. Meter</td>
<td>267</td>
<td>£14.50</td>
</tr>
<tr>
<td>EPE Modemol</td>
<td>JULY 99</td>
<td>268</td>
<td>£30.97</td>
</tr>
<tr>
<td>Quiz Game Indicator</td>
<td>271</td>
<td>£5.42</td>
<td></td>
</tr>
<tr>
<td>Handy-amp</td>
<td>272</td>
<td>£4.52</td>
<td></td>
</tr>
<tr>
<td>Active Ferrite Loop Aerial</td>
<td>273</td>
<td>£4.52</td>
<td></td>
</tr>
<tr>
<td>Remote Control IR Decoder</td>
<td>Software only</td>
<td>274</td>
<td>£4.57</td>
</tr>
<tr>
<td>Pic Dual-channel Virtual Scope</td>
<td>OCT 99</td>
<td>275</td>
<td>£5.15</td>
</tr>
<tr>
<td>Pico Pulsometer</td>
<td>NOV 99</td>
<td>Software only</td>
<td>£3.96</td>
</tr>
<tr>
<td>Twinkling Star</td>
<td>DEC 99</td>
<td>276</td>
<td>£4.28</td>
</tr>
<tr>
<td>Festive Fader</td>
<td>277</td>
<td>£3.71</td>
<td></td>
</tr>
<tr>
<td>Moteurist/ Buzz-Box</td>
<td>278</td>
<td>£5.39</td>
<td></td>
</tr>
<tr>
<td>PICChopper</td>
<td>279</td>
<td>£2.99</td>
<td></td>
</tr>
<tr>
<td>PIC-Monitored Dual PSU-1 PSU</td>
<td>280</td>
<td>£4.75</td>
<td></td>
</tr>
<tr>
<td>Event Recorder</td>
<td>281</td>
<td>£9.00</td>
<td></td>
</tr>
<tr>
<td>Monitor Unit</td>
<td>282</td>
<td>£3.00</td>
<td></td>
</tr>
<tr>
<td>Static Field Detector (Multi-project PCB)</td>
<td>932</td>
<td>£3.00</td>
<td></td>
</tr>
<tr>
<td>Two-Way Intercom</td>
<td>JAN 99</td>
<td>283</td>
<td>£4.76</td>
</tr>
<tr>
<td>UPG Detector and Event Recorder</td>
<td>Magnetic Anomaly Detector</td>
<td>284</td>
<td>£6.19</td>
</tr>
<tr>
<td>Event Recorder</td>
<td>285</td>
<td>£2.99</td>
<td></td>
</tr>
<tr>
<td>Audio Alarm</td>
<td>286</td>
<td>Software only</td>
<td>—</td>
</tr>
</tbody>
</table>

EPE SOFTWARE

Software programs for EPE projects marked with an asterisk *are available on 3.5 inch PIC-compatible disks or free from our internet site. The following disks are available: PIC Tutorial (Mar—May ’98 issues); PIC Toolkit Mk2 V2·4 (May—Jun ’99 issues); EPE Disk 1 (Apr ’96—Dec ’98 issues); EPE Disk 2 (Jan—Dec ’99); EPE Disk 3 (Jan—Dec ’99); EPE Disk 4 (Jan ’00 to issue current cover date). The disks are obtainable from the EPE PCB Service at £3.00 each (UK) to cover our admin costs (the software itself is free). Overseas (each), £3.50 surface mail, £4.95 each airmail. All files can be downloaded free from our Internet FTP site: ftp://ftp.epemag.wimborne.co.uk.

EPE PRINTED CIRCUIT BOARD SERVICE

<table>
<thead>
<tr>
<th>Order Code</th>
<th>Project</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: ……………………………………………………………………………………</td>
<td>Address: …………………………………………………………………………</td>
<td>Tel. No: …………………………………………………………………………</td>
<td>I enclose payment of £………… (cheque/PO in £ sterling only) to:</td>
</tr>
</tbody>
</table>