USB THE EASY WAY
PIC-Based USB Interface

PHOTIC PHONE
A digital optical ‘phone link

HALLOWEEN HOWLER
Uses digital WAV files in EEPROM

PLUS

BACK TO BASICS - 7
Parking Radar Telephone Switch

www.epemag.co.uk
WARNING!

The materials and works contained within *EPE Online* — which are made available by Wimborne Publishing Ltd and TechBites Interactive Inc — are copyrighted. You are permitted to make a backup copy of the downloaded file and one (1) hard copy of such materials and works for your personal use. International copyright laws, however, prohibit any further copying or reproduction of such materials and works, or any republication of any kind.

TechBites Interactive Inc and Wimborne Publishing Ltd have used their best efforts in preparing these materials and works. However, TechBites Interactive Inc and Wimborne Publishing Ltd make no warranties of any kind, expressed or implied, with regard to the documentation or data contained herein, and specifically disclaim, without limitation, any implied warranties of merchantability and fitness for a particular purpose.

Because of possible variances in the quality and condition of materials and workmanship used by readers, *EPE Online*, its publishers and agents disclaim any responsibility for the safe and proper functioning of reader-constructed projects based on or from information published in these materials and works. In no event shall TechBites Interactive Inc or Wimborne Publishing Ltd be responsible or liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or any other damages in connection with or arising out of furnishing, performance, or use of these materials and works.
Projects and Circuits

HALLOWEEN HOWLER by Mike Hibbett
Fun project; the sound comes from WAV files stored in EEPROM

PIC-BASED USB INTERFACE by Robert Lang
USB the easy way with a PIC18F2455 microcontroller

INGENUITY UNLIMITED – Sharing your ideas with others
Cybervox Light Interface; Theremin Volume Control; Voltage Splitter;
Pulsed Motor Speed Controller

PHOTIC PHONE by Thomas Scarborough
Communicate digitally over a light beam

BACK TO BASICS – 7 Parking Radar and Telephone Switcher
by Bart Trepak
Simple, easy-to-build circuits based on one or two CMOS logic chips

Series and Features

TECHNO TALK by Mark Nelson
The foggy history of electronic development

INTRODUCING THE VIRTUAL DIY CALCULATOR
by Clive “Max” Maxfield & Alvin Brown
Learn how computers do maths without making your brain ache!

NET WORK – THE INTERNET PAGE surfed by Alan Winstanley
Dealing with spyware

PIC N’ MIX by John Becker
More on getting a DS1267 dual digital potentiometer working with a PIC

INTERFACE by Robert Penfold
Using a D/A converter in a transistor tester

CIRCUIT SURGERY by Ian Bell
Chopper op.amp i.c.a

Regulars and Services

PIC PROJECTS CD-ROM
20 “hand PICked” PIC projects

EDITORIAL

SHOPTALK with David Barrington
The essential guide to component buying for EPE projects

NEWS – Barry Fox highlights technology’s leading edge
Plus everyday news from the world of electronics

BACK ISSUES Did you miss these?

SUBSCRIBE TO EPE And save money

CD-ROMS FOR ELECTRONICS
A wide range of CD-ROMs for hobbyists, students and engineers

DIRECT BOOK SERVICE
A wide range of technical books available by mail order, plus more CD-ROMs

READOUT John Becker addresses general points arising

PRINTED CIRCUIT BOARD SERVICE
PCBs for EPE projects

ELECTRONICS MANUALS
CD-ROM reference works for hobbyists, student and service engineers

ADVERTISERS INDEX

© Wimborne Publishing Ltd 2005. Copyright in all drawings, photographs and articles published in EVERYDAY PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.

Our November 2005 issue will be published on Thursday, 13 October 2005. See page 667 for details

Readers Services • Editorial and Advertisement Departments 675
NEXT MONTH

TEACH-IN 2006

Are you starting electronics for the first time? Or perhaps you are a little more experienced but have missed out on some aspects of electronics? Do you wonder about how circuits work and what really goes on inside them? Do you want to be able to design and build your own circuits and get them to work first time? Are you a student or thinking about gaining a formal qualification in electronics? If the answer to any one or more of these questions is “yes” then our Teach-In 2006 series is going to be just right for you!

We won’t assume that you have any previous knowledge, and while we will include the relevant theory, we won’t bore you with a lot of mathematics. Each part includes a number of Practical Investigations providing you with an opportunity to prove why real circuits work. And with each part there will be a short multiple choice Quiz on-line for you to enter.

A Final Test will also be available on-line, successful completion of which will lead to the award of a personalised EPE Teach-In Certificate, something that will provide you with lasting formal recognition of your success.

List of Topics
- Charge and Capacitance. Introducing Capacitors and Inductors. Magnetism and Inductance.
- Digital Electronics. Introducing Logic Circuits.

CAMERA WATCH MK2

The publication of the first EPE Speed Camera Watch project in Jan ’05 generated a lot of interest and many suggestions for enhancements. Camera Watch Mk2 addresses those suggestions. It uses GPS signals to locate speed cameras. It can store up to 10,000 camera positions and can scan them all within one second. An i.c.d. provides the visual feedback and enables the display of additional GPS related information.

As requested, an RS232 PC interface has been added. The unit’s database can now be extracted, uploaded to the internet and shared with other users.

You can also download other user’s databases and merge them with your own. A special web site has been set up for this option.

Significantly, too, the ability to set an acoustic warning for exceeding preset speeds (30, 40, 50, 60 and 70 mph) has also been added.

PIC CHROMATONE

You’ve all experienced Sound-to-Light displays – haven’t you – discos, parties, raves, etc? But what about Light-to-Sound? Bet that’s probably a new one to you – but not any longer if you read next month’s light-controlled musical novelty!

Light-to-sound? Well it’s just a matter of turning thoughts on their head a bit. Given the infinite variety of colour tones around us, all we do is to electronically sense what colours they are and produce frequency tones specific to them.

It must be said, though, the resulting design is a gimmick. But it’s a fun gimmick, and should provide much musical entertainment!

DON’T MISS AN ISSUE – PLACE YOUR ORDER NOW!

see page 727
Or take out a subscription and save money.
see page 716
PIC & ATML Progammers
We have a wide range of low cost PIC and ATML Programmers. Complete range and documentation available from our web site.

Programmer Accessories:
- 4-pin Wide ZIF socket (ZIF40W) £15.00
- 18VDC Power supply (PSU100) £19.95
- Leads: Parallel (LCD136) £4.95 / Serial (LCD441) £4.95 / USB (LDC644) £2.95

NEW! USB ‘Flash’ PIC Programmer
USB PIC programmer for most ‘flash’ devices. No external power supply making it truly portable. Supplied with box and Windows Software. ZIF Socket and USB Plug A-B lead not included.
Kit Order Code: 3128KT – £34.95
Assembled Order Code: AS3128 – £39.95

“PICALL” ISP PIC Programmer
“PICCALL” will program virtually all 8 to 40 pin serial-mode* AND parallel-mode *(PIC16Cx family)*
Supply: 16-18V dc.
Assembled Order Code: AS3117 – £24.95

ATML 80xxx Programmers
Uses serial port and any standard terminal comms program. 4 LEDs display the status. ZIF sockets not included. Supply: 16VDC.
Kit Order Code: 3123KT – £29.95

NEW! USB & Serial Port PIC Programmer
USB/Serial connection. Header cable for ICSP. Free Windows software. See website for PICs supported. ZIF Socket and USB Plug A-B lead extra. 18VDC.
Kit Order Code: 3148KT – £34.95
Assembled Order Code: AS3149 – £49.95

USB Flash ICSP PIC Programmer
Fully assembled version of our 3128 USB Flasher PIC Programmer but WITHOUT the pre-programming socket. It just has 5-pin ICSP header (GND, VCC, CLK, DI, DQ) and cable. No external PSU required. Free Windows software.
Order Code: AS3182 – £37.95

ABC Maxi AVR Development Board
The ABC Maxi board has an open architecture design based on Atmel’s AVR.

Atmel AT89S535 RISC microcontroller and is ideal for developing new designs.
Features:
- 8Kb of In-System Programmable Flash
- 1000 write/erase cycles
- 512 bytes internal SRAM
- 512 bytes EEPROM
- 8 analogue inputs (range 0-5V)
- 4 Opto-isolated Inputs (3VIOs are bi-directional with internal pull-up resistors)
- Output buffers can sink 20mA current
- Direct I.o. driven up to 12V
- 8-channel open drain
- 4-channel open drain
- 8485 network connector
- 2-16 LCD Connector
- 3.5mm Speaker Phone Jack

Order Code ABCMAXISP – £89.95
The ABC Max boards only can also be purchased separately at £69.95 each.

Controllers & Loggers
Here are just a few of the controller and data acquisition and control units we have. See website for full details. Suitable PSU for all units: Order Code PSU445 – £89.95

Rolling Code 4-Channel UHF Remote
4 channels.
- Momentary or latching relay output.
- Range up to 40m. Up to 15 TXs can be learned by one Rx (kit includes one Tx but more available separately).
- 4 indicator LEDs.
- Rx: PCB 77x85mm, 12VDC/6mA (standby).
- TX: 2-10 Channel versions also available.

Kit Order Code: 3180KT – £39.95
Assembled Order Code: AS3180 – £47.95

Computer Temperature Data Logger
Serial port 4-channel temperature logger. °C or °F.
- Continuously logs up to 4 separate sensors located 200m+ from board.
- Wide choice of Windows free software applications for storing/using data.

Kit Order Code: 3149KT – £16.95
Assembled Order Code: AS3149S – £23.95
Additional DS1820 Sensors – £3.95 each

Most items are available in kit form (KT suffix) or pre-assembled and ready for use (AS prefix).

NEW! DTMF Telephone Relay Switcher
Call your phone number using a DTMF phone from anywhere in the world and remotely turn on/off any of the 4 relays as desired. User selectable Security Password, Anti-Tamper. Rings to Answer, Auto Hang-up and Lockout. Includes plastic case. 130 x 110 x 30mm. Power: 12VDC.
Kit Order Code: 3104KT – £39.95
Assembled Order Code: AS3140 – £59.95

Serial Port Isolated I/O Module
Computer controlled 8-channel relay board. 5A mains rated relay outputs and 4 opto-isolated digital inputs (for monitoring switch states, etc). Useful in a variety of control and sensing applications. Programmed via serial port (use our new Windows interface, terminal emulator or batch files). Serial cable can be up to 35m long. Includes plastic case 130 x 100 x 30mm. Power: 12VDC/500mA.
Kit Order Code: 3108KT – £49.95
Assembled Order Code: AS3108 – £59.95

Infra-red RC 12-Channel Relay Board
Control 12 on-board relays with included infra-red remote control unit. Toggle or momentary. 15m+ range. 112 x 122mm.
Supply: 12VDC/0.5A.
Kit Order Code: 3142KT – £39.95
Assembled Order Code: AS3142 – £49.95

PC Data Acquisition & Control Unit
Monitor and log a mixture of analogue and digital inputs and control external devices via the analogue and digital outputs. Monitor temperature, pressure, temperature, light intensity, weight, switch state, movement, relays, etc with the appropriate sensors (not supplied). Data can be processed, stored and the results used to control devices such as motors, sirens, relays, servo motors (up to 11) and two stepper motors.

Features
- 11 Analogue Inputs – 0-5V. 10 bit (5mV/step)
- 16 Digital Inputs – 20 Vmax. Protection 1K in series. 5-1V Toler.
- 1 Analogue Output – 0-2.5V or 0-10V. 8 bit (20mV/step)
- 8 Digital Outputs – Open collector, 500mA, 33V max
- Custom box (140 x 110 x 35mm) with printed front & rear panels
- Windows software utilities (3 to XP) and programming examples
- Supply: 12V DC (Order Code PSU203)

Kit Order Code: 3093KT – £64.95
Assembled Order Code: AS3093 – £94.95

Quasar Electronics Limited
PO Box 6935, Bishops Stortford, CM23 4WP
Tel: 0870 246 1826
Fax: 0870 460 1045
E-mail: sales@quasarelectronics.com

Postage & Packing Options (Up to 2kg gross weight): UK standard 3-7 Day Delivery – £3.95, UK Mainland Next Day Delivery – £8.95, Europe (EU) – £8.95, Rest of World – £9.95. Order online for reduced prices UK Postage! We accept all major credit/debit cards. Make cheques/PoS payable to Quasar Electronics Limited. Prices include 17.5% VAT. MAIL ORDER ONLY. Call now for our FREE CATALOGUE with details of over 300 high quality kits, projects, modules and publications.
EPE PIC PROJECTS
VOLUME 1
MINI CD-ROM

A plethora of 20 “hand-PICked” PIC Projects from selected past issues of EPE
Together with the PIC programming software for each project plus bonus articles

The projects are:

PIC-Based Ultrasonic Tape Measure
You’ve got it taped if you PIC this ultrasonic distance measuring calculator.

EPE Mind PICkler
Want seven ways to relax? Try our PIC-controlled mind machine!

PIC MIDI Sustain Pedal
Add sustain and glissando to your MIDI line-up with this inexpensive PIC-controlled effects unit

PIC-based MIDI Handbells
Ring out thy bells with merry tolling – plus a MIDI PIC-up, of course!

EPE Mood PICkler
Oh for a good night’s sleep! Insomniacs rejoice – your wakeful nights could soon be over with this mini-micro under the pillow!

PIC Micro-Probe
A hardware tool to help debug your PIC software

PIC Video Cleaner
Improving video viewing on poorly maintained TVs and VCRs

PIC Graphics LCD Scope
A PIC and graphics LCD signal monitor for your workshop

PIC Polywhatsit
A novel compendium of musical effects to delight the creative musician

PIC Macro Music
Conjure music from thin air at the mere touching gesture of a fingertip

PIC Virus Zapper
Can disease be cured electronically? Investigate this controversial subject for yourself.

PIC Controlled Intruder Alarm
A sophisticated multi-zone intruder detection system that offers a variety of monitoring facilities

PIC Freezer Alarm
How to prevent your food from defrosting unexpectedly

PIC World Clock
Graphically displays world map, calendar, clock and global time-zone data

PICAXE Projects
A 3-part series using PICAXE devices – PIC microcontrollers that do not need specialist knowledge or programming equipment

Versatile PIC Flasher
An attractive display to enhance your Christmas decorations or your child’s ceiling

EPE PIC PROJECTS CD-ROM ORDER FORM

Please send me (quantity) EPE PIC PROJECTS VOL 1 CD-ROM
Price £14.45 each – includes postage to anywhere in the world.

Name ..
Address ..
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
..
...
...
...
...
...
...
...
...
...
.. Post Code

☐ I enclose cheque/P.O./bank draft to the value of £

☐ Please charge my Visa/Mastercard/Amex/Diners Club/Switch
£ ...

Card No. ..

Card Security Code (The last 3 digits on or just under the signature strip)

Start Date Expiry Date Switch Issue No.

SEND TO: Everyday Practical Electronics,
Wimborne Publishing Ltd.,
408 Wimborne Road East, Ferndown, Dorset BH22 9ND.
Tel: 01202 873872. Fax: 01202 874562.
Email: orders@epemag.wimborne.co.uk

Payments must be by card or in £ Sterling – cheque or bank draft
drawn on a UK bank.

Normally supplied within seven days of receipt of order.

Send a copy of this form, or order by letter if you do not wish to cut your issue.

PLEASE ORDER FROM:
www.epemag.wimborne.co.uk/shopdoor.htm
or www.epemag.com (USA $ prices)

BECOME A PIC PROJECT BUILDER WITH THE HELP OF EPE!
EPE MICROCONTROLLER P.I. TREASURE HUNTER

The latest MAGENTA DESIGN – highly stable & sensitive – with I.C. control of all timing functions and advanced pulse separation techniques.

- High stability
- drift cancelling
- Easy to build & use
- No ground effect, works in seawater
- Detects gold, silver, ferrous & non-ferrous metals
- Efficient quartz controlled microcontroller pulse generation.
- Full kit with headphones & all hardware

Kit 647 £63.95

EPE MICROCONTROLLER P.I. MICRO PEST SCARER

Our latest design – The ultimate scarer for the garden. Uses special microchip to give random delay and pulse time. Easy to build reliable circuit. Keeps pets/pests away from newly sown areas, play areas, etc. uses power source from 0 to 24 volts.

Kit 867 £22.95

Power Unit £3.99

PIC PIPE DESCALER

- SIMPLE TO BUILD
- SWEEP
- HIGH POWER OUTPUT
- FREQUENCY
- AUDIO & VISUAL MONITORING

An affordable circuit which sweeps the incoming water supply with variable frequency electromagnetic signals. May reduce scale formation, dissolve existing scale and improve lathering ability by altering the way salts in the water behave.

Kit includes case, P.C.B., coupling coil and all components. High coil current ensures maximum effect. L.E.D. monitor.

Kit 868 £22.95

Power Unit £3.99

EPE TEACH-IN 2000

Full set of top quality NEW components for this educational series. All parts as specified by EPE. Kit includes breadboard, wire, croc clips, pins and all components for experiments as listed in introduction to Part 1.

Batteries and tools not included.

Teach-in 2000

- **Kit 879 £44.95**
- **Multimeter £14.45**

SPACEWRITER

An innovative and exciting project. Waves the wand through the air and the Panasonic unit will hold any message up to 16 digits long. Comes pre-loaded with “MERRY XMAS”. Kit includes PCB, all components & instructions for message loading.

Kit 849 £16.99

SUPER BAT DETECTOR

A safe low cost eraser for up to 4 EPROMS at a time in less than 20 minutes. Operates from a 12V supply (400mA). Used extensively for mobile work – updating equipment in the field etc. Also in educational situations where mains supplies are not allowed. Safety interlock prevents contact with UV.

Kit 790 £29.99

ULTRASONIC PEST SCARER

- Keep pets/pests away from newly sown areas, fruit, vegetable and flower beds, children’s play areas, patios etc.
- This project produces intense pulses of ultrasound which deter visiting animals.
- **Kit includes all components, PCB & Case**
- **Efficient 100V Transducer Output**
- **Completely Inaudible to Humans**
- **Up to 4 Metres Range**
- **Low Current Drain**

Kit 812 £15.00

12V EPROM ERASER

1 WATT O/P, BUILT IN SPEAKER, COMPACT CASE

A new circuit using a ‘full’bridge audio amplifier i.e., internal speaker, and headphone socket. The latest sensitive transducer & double balanced mixer give a stable, high performance superheterodyne design.

Kit 861 £34.99

Also available Built & Tested... £48.99

MOSFET MkII VARIABLE BENCH POWER SUPPLY 0-25V 2-5A

Based on our MkI design and preserving all the features, but now with switching pre-regulator for much higher efficiency. Panel meters indicate Volts and Amps. Fully variable down to zero. Toroidal mains transformer. Kit includes punched and printed case and all parts. As featured in April 1994 EPE. An essential piece of equipment.

Kit No. 845 £64.95

1000V & 500V INSULATION TESTER

Superb new design. Regulated output, efficient circuit. Dual-scale meter, compact case. Reads up to 200 Megohms. Kit includes wound coil, cut-out case, meter scale, PCB & all components.

Kit 848 £32.95

SIMPLE PIC PROGRAMMER

- Displays PIC16F84 chip disk, lead, plug, p.c.b., all components and instructions
- Extra 16F84 chips £3.84

Kit 857 £12.99

EPE PROJECT PICS

Programmed PICS for ‘EPE Projects’

<table>
<thead>
<tr>
<th>Kit No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1C20/8</td>
<td>£3.99</td>
<td></td>
</tr>
<tr>
<td>16C64/16F84/16C71</td>
<td>£5.90</td>
<td></td>
</tr>
<tr>
<td>16F876/677</td>
<td>£10.00</td>
<td></td>
</tr>
</tbody>
</table>

68000 DEVELOPMENT TRAINING KIT

- NEW PCB DESIGN
- MK8 68000 16 BIT BUS
- MANUAL AND SOFTWARE
- 2 SERIAL PORTS
- PIT AND I/O PORT OPTIONS
- 12C PORT OPTIONS

Kit 621 £99.95

ON BOARD 5V REGULATOR

- PSU £8.99
- SERIAL LEAD £3.99

Stepping Motors

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD100</td>
<td>Std 100 step... £9.99</td>
<td></td>
</tr>
<tr>
<td>MD200</td>
<td>200 step... £12.99</td>
<td></td>
</tr>
<tr>
<td>MD24</td>
<td>Large 200 step... £22.95</td>
<td></td>
</tr>
</tbody>
</table>

TESTER

- LOW CURRENT
- RANGE
- UP TO 4 METRES

Kit 812 £15.00

EPE ELECTRONICS

135 Hunter Street, Burton-on-Trent, Staffs, DE14 2ST

Tel 01283 565435 Fax 546932

http://www.magenta2000.co.uk

E-mail: sales@magenta2000.co.uk

All Prices include V.A.T. ADD £3.00 PER ORDER P&P. £6.99 next day

All components NEW.

MAIL ORDER ONLY • CALLERS BY APPOINTMENT
PIC LCD DISPLAY DRIVER

16 Character x 2 Line display, pcb, programmed PIC16F84, software disk and all components to experiment with standard intelligent alphanumeric displays. Includes full PIC source code which can be changed to match your application.

KIT 860........£19.99

PIC STEPPING MOTOR DRIVER

PCB with components and PIC16F84 programmed with demonstration software to drive any 4 phase unipolar motor up to 24 Volts at 1 Amp. Kit includes 100 Step Hybrid Stepping Motor. Full software source code supplied on disc.

Use this project to develop your own applications. PCB allows 'simple PIC programmer' 'SEND' software to be used to reprogram chip.

KIT 863........£18.99

8 CHANNEL DATA LOGGER

From Aug/Sept '99 EPE. Featuring 8 analogue inputs and serial data transfer to PC. Magenta redesigned PCB - LCD plugs directly onto board. Use as Data Logger or as a test bed for developing other PIC16F877 projects. Kit includes iod, prog. chip, PCB, Case, all parts and 8 x 256 KEEProgs.

KIT 877.......£49.95

PIC16F84 MAINS POWER CONTROLLER & 4 CHANNEL LIGHT CHASER / DIMMER

- With program source code disk.
- Chase Speed and dimming potentiometer controls.
- Reprogram for other applications.

KIT 855........£39.95

PIC TUTOR 1

EPE March/April May '98 PIC 16F84 Starter Series

The original PIC16F84 series by John Becker. Magenta's tutor board has individual switches and leds on all portA and PortB lines, plus connectors for optional 4 digit seven segment led display, and 16 x 2 intelligent Ioc. Written for newcomers to PICs this series. Disk has over 20 tutorial programs. Connect to a PC parallel port, send, run, and experiment by modifying test programs. Then Write and Program Your Own.

KIT 870...£27.95, Built....£42.95
16x2 LCD....£7.99, LED display...£6.99, 12VPSU...£3.99

SUPER PIC PROGRAMMER

Magenta's original parallel port programmer. Runs with downloaded WINDOWS 95 - XP software. Use standard Microchip HEX files. Read/Prog/Verify wide range of 16,28, and 40 pin PICs. Including 16F84/876/877, 6278, (Inc. 'A' versions) + 16xx OTPs.

KIT 862...£29.99 Power Supply £3.99

ICEBREAKER

ICEBreaker uses PIC16F877 in-circuit debugger.
- Links to standard PC Serial port (lead supplied).
- Windows (95 to XP) Software included.
- Works with MASM assembler.
- 16 x 2 LCD display, Breadboard, Relay, I/O devices and patch leads.
- Featured in EPE Mar '00. Ideal for beginners & experienced users.

KIT 900...£34.99
With serial lead & software disk, PCB, Breadboard, PIC16F877, LCD, all components and patch leads.

POWER SUPPLY...£3.99 STEPPING MOTOR 100 Step £9.99

20W Amp. Module

EPE May '05 -- Superb Magenta Stereo/Mono Module
Wide bandwidth Low distortion 11W/channel Stereo 20W Mono True (rms) Real Power
Short Circuit & Overheat Protected. Needs 8 to 18V supply.
Stable Reliable design Latest Technology IC with local feedback gives very high performance.

KIT 914 (all parts & heatsink for stereo or mono) £11.90

Magenta BrainiBorg

A super walking programmable robot with eyes that sense obstacles and daylight. BrainiBorg comes with superb PC software CD (WIN95+ & XP) and can be programmed to walk and respond to light and obstacles on any smooth surface.

CD contains illustrated construction details, operating principles, circuits and a superb Educational Programming Tutorial.
Test routines give real-time 'scope traces of sensor and motor signals. Connects to PC via SERIAL port with the lead supplied.

KIT 912 Complete Kit with CD rom & serial lead £49.99
KIT 913 As 912 but built & tested circuit board £58.95

EPE PIC Tutorial

EPE Apr/May/June '03 and PIC Resources CD
- Follow John Becker’s excellent PIC toolkit 3 series.
- Magenta Designed Toolkit 3 board with printed component layout, green solder mask, places for 8,18,28 (wide and slim), and 40 pin PICs. and Magenta extras.
- 16 x 2 LCD, PIC chip and components included.

KIT 880 (with 16F84) £34.99, built & tested £49.99
KIT 880 (with 16F877) £39.99, built & tested £55.99

EPE TEACH-IN 2004

THE LATEST NOV 03 SERIES
All parts to follow this new Educational Electronics Course. Inc. Breadboard, and wire, as listed on p752 Nov. Issue.

KIT 920.........£29.99 KIT921.........£12.99

MAGENTA BRAINIBOT I & II

- Full kit with ALL hardware and electronics.
- As featured in EPE Feb '03 (KIT 910)
- Seeks light, beeps, and avoids obstacles
- Spins and reverses when "cornered"
- Uses 8 pin PIC chip
- ALSO KIT 911 - As 910 PLUS programmable from PC serial port leads and software CD included.

KIT 910...£16.99 KIT 911...£24.99

All prices include VAT. Add £3.00 p&p. Next day £6.99

Tel: 01283 565435 Fax: 01283 546932 email: sales@magenta2000.co.uk
Starting Out

Teaching electronics or design and technology? A student studying electronics or design and technology? A newcomer to electronics? Generally interested in electronics and want to learn more? Like to brush up on your electronics theory? Then our new ten part Teach-In series is sure to be of interest to you – or someone you might know. It starts next month and you will find more details about it on page 667.

We think the on-line monthly test and end of series on-line test and certificate are a first for EPE. Our Teach-In courses are always popular and, as this one has been written by Mike Tooley, who is well known for his many books and articles and who edited our Electronics Service Manual, it will no doubt be very well received. Mike has over 30 years experience in teaching electronics at all levels and has an easy-going writing style that helps to get the subject across in a readily understandable form.

Don’t miss the start of the series next month. With cut backs by high street newsagents you may find issues are sold out quickly. We suggest you place an order with your newsagent or take out a subscription and save money – see page 716.

Cameras Again!

Next month also sees the publication of a Mk2 Speed Camera Watch. The original version, published in the January issue, aroused a great deal of interest and the Mk2 version has been greatly enhanced. One of the major changes – suggested by readers – has been to add an audible speed warning. This makes it easy to keep to the speed limit without constantly checking the speedo. So when you come off the motorway into a 30mph area it will help to make sure you adjust your speed accordingly. The memory has also been enlarged to hold up to 10,000 camera or black spot coordinates so, hopefully, it will cover everywhere you want to go, and keep you within the law.
Halloween Howler

Mike Hibbett

Halloween’s coming – why not give your “trick or treat” visitors a scare?!

Picture a pumpkin head, eyes lighting up red and emitting an eerie howl when someone walks past it!

Although intended to help generate a bit of fun over Halloween, this project also serves to demonstrate just how easy (and cheap) it can be to output audio in an electronics project. The sound comes from a pre-recorded computer “WAV” file stored in a small non-volatile memory. WAV files can be downloaded from the internet, extracted from music CDs and even recorded by yourself on a PC using software supplied with most operating systems.

The circuit can be configured into one of two modes of operation: Halloween Howler, which includes a light sensor to detect moving objects, and a generic three-input design that allows one of three stored sound samples to be played when an input is asserted. This second setup provides a more general purpose sound generator that can have a number of uses. Only minor component changes are required for the different setups, which are described later.

WAV File Format

WAV files are one of the simplest formats used for storing sounds on a PC and are typically used for short sound clips. They are not a very efficient format. For example, a CD quality four minute music track requires about 42MB. An MP3 format file would require a tenth of that, but also requires complex encoding and decoding algorithms to record and play back.

A WAV file consists of a small header section which defines how the content has been recorded followed by the data itself. When a sound source is recorded, for example from the microphone on your PC, there are two factors that will determine the quality and size of the file: the number of data bits used per sample, and the rate at which samples are taken.

Values of four, eight and 16 are typical for the number bits per sample, while the sample rate varies typically from 8000 to 44000 samples per second. The sample rate determines the maximum frequency that you can record and must be at least twice that of the highest frequency to be sampled.

For reasons that will become clear later, the WAV files used in this design are encoded at 11025 samples per second, with an 8-bit resolution per sample. This provides an acceptable quality sound output without requiring enormous and expensive memory storage. WAV files are easy to create in this format on a PC, and existing higher quality sound files can be easily re-encoded to this format.

Digital-to-Analogue Conversion

The heart of this project is the circuit which converts the digital representation of the sound, stored in the WAV file, into an analogue signal. In other words, it is a digital-to-analogue converter (DAC). DACs are not just used for creating audio, they are used in PC video cards to create the analogue video signals, and they find many other uses in embedded control systems.

There are a number of ways to implement a DAC. Some of the more common methods that can be used in a hobby project are:

- Pulse Width Modulation: Many microcontrollers provide an option to control a pulse-width modulated (p.w.m.) peripheral, such as a motor for example. The p.w.m. control is generally run at least three times the sample rate, and the output signal is connected to an RC (resistor/capacitor) filter to produce an averaged analogue signal. The nice feature is that it requires just a single output pin, and is a good option if you have a spare p.w.m. on your micro.

- On chip DAC: Some high performance microcontrollers have a DAC peripheral built in, with a resolution of eight to 16 bits. These are the easiest to use.

- Dedicated DAC: These implement all the electronics into a single chip, such as the Analog Devices DAC08 for example.

- Discrete R2R DAC: This technique uses an array of resistors connected to a parallel port on the microcontroller. This is cheap, easy to route on a p.c.b. and very effective. It is also very easy to drive in software.

- Single bit DAC: Uses a single output port pin to drive an RC circuit, at high speed. However, the sound file needs to be encoded in a special way and the encoder must “model” the characteristics of the RC circuit. It’s quite complex and hard to understand but very easy to implement if you have a fast enough microcontroller.

- Digital Potentiometer: These devices can readily be used as 8-bit (or greater) DACs, the “wiper” output providing an analogue voltage in respect of a input digital value.
Chosen R2R DAC

For this project the simplest and cheapest method is used, the discrete R2R DAC. By carefully examining the I/O (input/output) port requirements (memory interface, DAC output pins, trigger input pins) a search of the Microchip database showed that the PIC16F628 was ideal for the purpose. It is small, cheap and every available pin can be used, so nothing is wasted! In the Howler there is plenty of free code space for adding extra features later on should you wish to.

The trick behind making an R2R DAC work lies in being able to drive all the output pins simultaneously. Delays in setting some outputs will result in unacceptable distortion in the audio signal. That limits the number of bits (and therefore the DAC resolution) – we can drive at most eight bits simultaneously, so eight bits it is then.

The next issue to deal with is the sample rate. CD quality audio is sampled at 44kHz: there are two problems with that rate. First we would not be able to read data from memory fast enough, and secondly we would quickly run out of storage space. The industry-standard rate of 11025Hz was chosen as a fair compromise.

As it is a standard encoding rate, so we can use existing PC tools to create our sound sources, it allows us to store almost six seconds of sound, and we can read data from a serial EEPROM (electrically erasable programmable read-only memory) at this rate. The sound’s quality isn’t bad either. In theory it would be possible to run at a sample rate of 22050Hz, but with just three seconds of recorded sound. Feel free to tinker!

Circuit Description

There are two configurations that can be used for the Halloween Howler. They both use the same circuit, which is shown in Fig.1, with a few minor changes. We first describe the Halloween setup and explain the changes required for the second setup later.

The circuit is based around a PIC16F628 microcontroller, IC5, that reads a standard Windows WAV file stored in a serial EEPROM, IC2. The eight bits of data that represent each sound sample are output on PIC PORTB, to which the R2R DAC is connected. Capacitor C4 provides some initial filtering, and as this signal is quite high impedance it is buffered by an op.amp, IC3a. Op.amp IC3b acts as both a low pass filter (C5 and R25) and attenuator to provide the correct drive to a small audio power amplifier, IC4. The low pass filter removes the high frequency artifacts caused by the signal switching at the sample rate.

The audio amplifier based around IC4 uses the device’s application sheet design and produces about 350mW, more than enough to drive a small 4Ω or 8Ω loudspeaker connected to jumper connector TB8. Potentiometer VR1 provides a volume control.

Light emitting diodes D1 and D2 are standard 5mm red i.e.d.s that illuminate when the sound is triggered, simulating glowing red eyes. Any i.e.d.s will do, so
long as the PIC’s drive capability of 25mA per pin is not exceeded.

The sound output is triggered by a sudden rise in light level on a light dependent resistor (l.d.r.), R28, connected to TB7. Op.amp IC1 is configured as a comparator into which the l.d.r. is fed. Capacitor C1 and resistor R2 provide a bias to the comparator's reference input so that gradual changes in light level, such as sunrise or clouds passing over the moon, do not trigger the sound output. The sensitivity of the circuit is largely determined by resistor R4; reduce this to increase the sensitivity.

The circuit is triggered by a sudden rise in light level – the idea being that as someone approaches the pumpkin the light level falls, then as they go past, the circuit triggers. So the pumpkin wakes up behind them, adding to the scary effect!

Serial EEPROM IC2 holds the WAV file sound data, of up to 64KB, about six seconds. A PC can be connected via RS232 interface on TB5 and TB6 using a suitable level shifter circuit as shown later in Fig.3. The serial EEPROM also holds data which defines how the p.c.b. is configured. The sound file and the configuration information are downloaded using a simple PC program, dlwav.exe.

The board is powered at 6V, supplied by four 1.5V batteries connected via TB1.

Alternative Setup

The PIC software supports a second mode of operation, using three input signals to trigger one of three stored WAV files. In this configuration the light detection circuitry and l.e.d.s D1 and D2 are removed (but not their jumper headers, TB7, TB3 and TB4, respectively.

Other circuit changes are:

- R30, R31 replaced by wire links
- R32, R33 values changed to 4k7
- IC1, R2, R3, R4, C1 not fitted

The three new trigger inputs are connected to TB2, TB3 and TB4. A low level input will trigger the sound.

Construction

Printed circuit board component and track layout details are shown in Fig.2. This board is available from the EPE PCB Service, code 535.

Solder the two wire links first, then i.c. sockets and jumper header pins (terminal pins may be used instead of the latter), followed by the remaining components. Before fitting the i.c.s, apply power and check that the (nominally) 6V supply voltage is reaching the correct i.c. socket pins. Remove power and fit the i.c.s, observing normal static precautions when handling them.

Wire up i.e.d.s D1 and D2 via TB3 and TB4, connect a speaker via TB8 and connect the light sensor l.d.r. to TB7. The l.d.r. is not polarity sensitive and can be fitted either way round.

If you are programming your own PIC it must be programmed with the Osc HS, power-up timer and watchdog options enabled in the Config bits.

Download your WAV file to the board, then power the board up again. Quickly move your hand over the l.d.r.; the “eyes” i.e.d.s will illuminate while the sound is

Components

<table>
<thead>
<tr>
<th>Resistors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R1, R6 to R12, R14</td>
<td>20k 1% (11 off)</td>
</tr>
<tr>
<td>R2</td>
<td>82k</td>
</tr>
<tr>
<td>R3</td>
<td>47k</td>
</tr>
<tr>
<td>R4</td>
<td>120k</td>
</tr>
<tr>
<td>R5, R13, R26, R27</td>
<td>4k7 (4 off)</td>
</tr>
<tr>
<td>R15 to R21, R23</td>
<td>10k 1% (8 off)</td>
</tr>
<tr>
<td>R22, R25, R28</td>
<td>2k 2 (2 off)</td>
</tr>
<tr>
<td>R29</td>
<td>1k</td>
</tr>
<tr>
<td>R30, R31, R32, R33</td>
<td>4k7 or not fitted (see text) (2 off)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacitors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1µ radial elect. 25V</td>
</tr>
<tr>
<td>C2, C3</td>
<td>22p ceramic disc, 2.5mm pitch (2 off)</td>
</tr>
<tr>
<td>C4</td>
<td>10n ceramic disc, 5mm pitch</td>
</tr>
<tr>
<td>C5, C7</td>
<td>22n ceramic disc, 5mm pitch (2 off)</td>
</tr>
<tr>
<td>C6</td>
<td>22µ radial elect. 16V</td>
</tr>
<tr>
<td>C8</td>
<td>10µ radial elect. 16V</td>
</tr>
<tr>
<td>C9</td>
<td>100n ceramic disc, 5mm pitch</td>
</tr>
<tr>
<td>C10</td>
<td>22µ radial elect. 63V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semiconductors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D1, D2</td>
<td>5mm red l.e.d. (2 off)</td>
</tr>
<tr>
<td>IC1</td>
<td>LM393 dual op.amp</td>
</tr>
<tr>
<td>IC2</td>
<td>24LC512 serial</td>
</tr>
<tr>
<td>IC3</td>
<td>LM358 dual op.amp</td>
</tr>
<tr>
<td>IC4</td>
<td>LM386N-1 audio power amp</td>
</tr>
<tr>
<td>IC5</td>
<td>PIC16F88-20 microcontroller, pre-programmed (see text)</td>
</tr>
<tr>
<td>IC6</td>
<td>MAX232 RS232 converter (optional – see text)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
<th>Approx. Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR1</td>
<td>4k7 min. preset</td>
</tr>
<tr>
<td>SK1</td>
<td>9-pin D-type connector, female (optional - see text)</td>
</tr>
<tr>
<td>LS1</td>
<td>821 min. speaker</td>
</tr>
<tr>
<td>X1</td>
<td>20MHz Crystal</td>
</tr>
</tbody>
</table>

Printed Circuit Board

Printed circuit board, available from the EPE PCB Service, code 535; 8-pin d.i.l. socket (4 off); 16-pin d.i.l. socket (see text); 18-pin d.i.l. socket; stripboard (optional – see text); pumpkin!, connecting, solder, etc.

Finished prototype with the off-board components attached ready for the pumpkin
being played. Adjust volume potentiometer VR1 for an appropriate sound level.

You can download WAV files to the board any number of times; The EEPROM can be written to over 100,000 times so you are unlikely to wear it out!

Pumpkin Head

Once you are happy with the setup you can install it into a pumpkin. It’s best to place the p.c.b. and speaker inside a sealed plastic bag since the inside of a pumpkin remains damp for many weeks.

Position the light sensing l.d.r. in the “mouth” and the l.e.d.s close to the holes cut for the “eyes”. Covering the eye holes with red crepe paper helps to diffuse the light and adds to the scary effect.

Positioning the pumpkin requires a little thought, since it must be pointing to a light source (such as a porch lamp). It must be positioned so that the light is interrupted when someone approaches. A little experimentation may be required, and the value of resistor R4 adjusted if necessary.

Completed Howler prototype circuit board. Note resistors R33 and R32 do not appear on this board and the author has used header pins for the wiring take-off terminals

Fig.2. Printed circuit board topside component layout, off-board wiring details and full-size underside copper foil master pattern for the Halloween Howler

Fig.3. Suggested circuit diagram for a suitable RS232 interface using the Maxim MAX232 chip. This circuit and accompanying board has not been tested with the Howler

Fig.4. Stripboard component layout and wiring details for the suggested RS232 Interface circuit
Sound Downloading

The WAV file files can be downloaded from the EPE website (see later). The program to use is dlwav.exe and cp.30fwm.dll. Copy these files to a directory on your PC (any name you want) and then run the dlwav.exe program.

An example of the program window is shown in Fig.5. First select the appropriate COM port, then click on the p.c.b. configuration that you will be using. If you choose the second option then two further input boxes will appear for additional sound files. Type in the names of the sound files you want to use, or click on the browser button to find them using Explorer.

Download Interface

When you are ready to download the files to the board, connect an RS232 interface circuit to the PC and p.c.b. If you do not have such an interface, the circuit shown in Fig.3 can be assembled on stripboard. A suggested layout is shown in Fig.4, but has not been tested with the prototype.

Click the Download button in (as in Fig.5). After a few seconds the program should indicate it is waiting for the p.c.b. to respond. Apply power to the p.c.b. After a few seconds the dlwav screen should indicate the download progress. Downloading takes approximately 90 seconds. When it has finished, remove power from the p.c.b. and disconnect the cables.

The program will check that the sound files are of the correct format. They must be stored in a 11025Hz, 8-bit Mono mode format. Microsoft’s Sound Recorder application can sample audio files to the correct format. If you open a WAV file in Sound Recorder and select the File -> Save As option you can click on the Change button in the dialog and select the correct format. If the sound sample is too long it will be truncated by the dlwav program, although you can also use the Sound Recorder application to trim the files to the length you want.

Suitable sounds can be easily found on the Internet and resampled to the correct format if necessary. A search via www.google.com for “Halloween sounds” resulted in plenty of interesting options! If you choose to record your own sounds make sure that you record at a high level using a decent microphone. Low volume sound samples will not playback well. The author found a cheap “Studio Microphone” quite acceptable.

Resources

Software, including source code files, for this design can be downloaded from the EPE Downloads site accessible via the home page at www.epemag.co.uk. It is held in the PICs folder, under Halloween. This month’s Shop Talk provides information about obtaining pre-programmed PICs and component buying advice.

Halloween Howler

No real “howlers” appeared when casting an eye down the components list for the Halloween Howler project. The LM op.amps and audio amplifier ICs should be readily available from our components advertisers.

For those readers who intend to program their own PICs, it should be pointed out that its the 20MHz version of the PIC16F628-20 that is required, although you can identify the -20 after the main type number.

The MAX232 RS232 serial interface IC is of the most favoured devices and readers should have no trouble in obtaining one from most of our components advertisers. For more technical details you could log on to www.maxim-ic.com.

Some readers may experience difficulty in locating the 24LC512 serial EEPROM. This is currently listed by Maplin (0870 429 6000 or www.maplin.co.uk), code N31BH. The serial EEPROM holds the WAV file sound data, up to 64KB, about six seconds.

Standard 5mm red LEDs are used to simulate the “glowing eyes”. Almost any LED will do here, so long as the PIC’s drive capability of 25mA per pin is not exceeded.

For those readers unable to program their own PICs, ready programmed PIC16F628-20 microcontrollers can be purchased from Magenta Electronics (02083 565435 or www.magentainfo.co.uk) code N31BH. The serial EEPROM holds the WAV file sound data, up to 64KB, about six seconds.

Standard 5mm red LEDs are used to simulate the “glowing eyes”. Almost any LED will do here, so long as the PIC’s drive capability of 25mA per pin is not exceeded.

For those readers unable to program their own PICs, ready programmed PIC16F628-20 microcontrollers can be purchased from Magenta Electronics (02083 565435 or www.magentainfo.co.uk) code N31BH. The serial EEPROM holds the WAV file sound data, up to 64KB, about six seconds.

Standard 5mm red LEDs are used to simulate the “glowing eyes”. Almost any LED will do here, so long as the PIC’s drive capability of 25mA per pin is not exceeded.

For those readers unable to program their own PICs, ready programmed PIC16F628-20 microcontrollers can be purchased from Magenta Electronics (02083 565435 or www.magentainfo.co.uk) code N31BH. The serial EEPROM holds the WAV file sound data, up to 64KB, about six seconds.

Standard 5mm red LEDs are used to simulate the “glowing eyes”. Almost any LED will do here, so long as the PIC’s drive capability of 25mA per pin is not exceeded.
L O V E it or hate it, Rupert Murdoch’s satellite station BSkyB just keeps going from strength to strength. Murdoch’s son James is now CEO and running the show.

At a recent meeting held to update city analysts, Chief Financial Officer Jeremy Darroch described the company as being in “robust health” and reported 12% subscriber growth over the last year, with 11% revenue growth. Murdoch, subscribers who stop paying, averages 10.3% per year. Despite this, Sky now has 7.78 million paying subscribers with home dishes. Average revenue from each subscriber is now £384. “We expect 8m subscribers by the end of this year and 10m by end of the decade” says Murdoch. “We have 0.89m Sky+ PVR users with 1m expected in the next few weeks.” Asked whether Sky’s 10 million target is dependent on the UK government’s analogue switch off plans, Murdoch admitted: “Of course there is some connection – the (gov- ernment) switch off plan does not have a lot of clarity.”

Revenue from Sky’s interactive TV betting is rising by 40% a year with more growth expected following liberalisation of the UK laws. People can now lose even more money they cannot afford from the privacy of their homes. To protect children the electronic programme guide is being redesigned, with the option to remove all adult material from the menu and control the replay of Sky+ recordings.

An intriguing new service will be launched before the end of year that will let the replay of Sky+ recordings. There will be an additional charge for the connection of peripherals to the back of an ordinary satellite receiver; an FM signal at 864MHz lets the portable switch channels on the satellite receiver, and a pint-sized portable, Gnome comes in two halves, a transceiver that plugs into the back of an ordinary satellite receiver with fixed dish antenna.

“We shall start by offering a few hundred movies on demand” says Murdoch. No details of the cost or technology are yet available. But Sky confirms that the PC will need to download a software application and very small print on a slide shown by Murdoch showed Spiderman 2 using a file of 500MB – almost certainly with MPEG-4 compression instead of MPEG-2, as currently used by Sky and Freeview. Sky has already confirmed that its HDTV service, due for launch early next year, will use MPEG-4.

“By 2007 CRT production will be dis- continued – there will be 10 million HD Ready sets sold by end of the decade” says Murdoch. “By Christmas you will be able to buy a very good quality HD Ready screen for under £1000. It’s going to be great. It’s going to be a big story over the next five or six years”.

Down To Earth

More immediate and down to earth Sky will soon launch a battery radio that works anywhere in the house or garden to receive the sound of satellite stations that can normally only be heard from a large dish antenna. The Gnome comes in two halves, a transceiver which plugs into the back of an ordinary satellite receiver, and a pint-sized portable.

A wireless telemetry link at 433MHz lets the portable switch channels on the satellite receiver; an FM signal at 864MHz carries hi-fi stereo to the portable. Working range is around 30 metres; the likely cost around £100. The Gnome is being made for Sky by Global Communications of Essex.

Murdoch confirms the Gnome will also work with Freesat, Sky’s free-to-air satellite radio and TV service. When Murdoch was asked about recent concern over the life cycle of existing receivers and how long receiver boxes can be expected to last, and a comment by Sky’s suppliers that they are not allowed to talk about planned life, he tried to reassure: “Life cycle is not an issue – at this point. We don’t see any deterioration. There is a lot of life in them yet... I looked again before this conference. If we did see something I would tell you”.

ToothPIC Unveiled

At a recent London gathering FlexiPanel Ltd unveiled ToothPIC, a PIC microcon- troller module with in-built Bluetooth and radio communications software libraries. The class-1 radio is FCC/CE certified and has 100m range with its integral antenna.

“ ToothPIC offers you radio communica- tions straight out of the box,” said Richard Hoptroff, managing director of FlexiPanel. “No specialist knowledge of radio frequen- cy design is required. Indeed, many remote control and data acquisition applications can use our off-the-shelf firmware, so the PIC doesn’t even need to be programmed.”

Based on the high-end PIC18LF6720 microcontroller, ToothPIC is supported by a large range of free software, from on-chip firmware solutions such as OpenTooth, which provides access control from a cellphone, to the user interface server, which allows it to create user interfaces on PCs, pocket PCs and high-end cellphones. Using Wireless Field Programming it can be reprogrammed from any Windows PC via Bluetooth, allowing OEMs to distribute product upgrades to their customers by email.

“We are really enthusiastic about the ToothPIC modules,” says beta customer Marcel Jaconnet, Lecturer at Berne Fachhochschule, Switzerland, who uses them for teaching. “They are so simple to use and to download our own applications.” Utility functions are provided to take easy control of the ToothPIC peripher- als, including real time clock, UART, 10-bit 12 channel A/D inputs and five p.w.m. outputs. The on-board power regulator accepts anything from 3V to 10V. For more information on FlexiPanel’s ToothPIC browse: www.flexipanel.com.
FOLLOWING our welcome to Conrad Electronics last month, the company have filled us in with a bit more information about themselves:

Conrad has more than 80 years at the cutting edge of technology and says it leads the world in the supply of components. The Company began with providing components for kits for making radios in the 1920s, and then progressed in the 1930s to kits for making TVs. Components are now supplied for computers, multimedia, telephone, radio, and a multitude of home systems and electrical needs.

Conrad offers its products and services by catalogue, through retail branches and also via the Internet. Over 110 million products are shipped each year and products are supplied directly to customers in more than 150 countries worldwide. There are over 15,000 components on the website!

You can also subscribe online to the free regular Newsletter and stay informed about all the latest offers and exciting products.

In Conrad’s advert with us (see elsewhere in this issue), you can obtain a discount of 10% off orders valued at £30 or more. You’ll also get the chance to win a Voltcraft Multimeter worth £139 in Conrad’s Prize Draw!

For more information on Conrad browse: www.conrad-direct.co.uk. Email: customerservice@conrad-direct.co.uk or Tel 0870 732 3223.

Brunning Update Training

Brunning Software have just released a revised and updated version of their PIC Training and Development System, Peter Brunning believes that the practical approach is the natural way of learning so the theory is kept to a minimum. But he also believes that a newcomer can never become a proficient PIC programmer unless he or she has a grounding in the language of the processor.

The first of the two books included with the course gives a gentle start to PIC assembly language, while the second book teaches how to program PICs using the C language. The P801 PIC Training System works through from absolute beginner to experienced engineer level.

For £159 plus postage you get a programmer module which is also your experimental test bed, two books, CD with PIC assembler and C compiler, plugtop PSU (UK only) and PC serial COM lead.

For more information contact Brunning Software, 138 The Street, Little Clacton, Clacton-on-Sea, Essex CO16 9LS. Tel: 01255 862308, Web: www.brunningsoftware.co.uk.

PCB-POOL

The team at PCB-POOL have launched a number of new services. In their recent press release they say that they are Europe’s largest on-line p.c.b. prototype supplier and are broadening their offering, promising a range which will suit every level of p.c.b. designer. The improvements will provide for reduced lead-times, and electrical testing as standard. The aim of the service is to pass on the cost saving benefits of prototype p.c.b. manufacture to the designer. Expensive tooling and photoplot charges have been eliminated.

The company has recognized the importance of receiving high quality p.c.b. prototypes, and all files are fully design-rule checked and validated by experienced CAM engineers. As an extra assurance for p.c.b. designers full electrical test is being offered on all four to six layer prototypes free of charge.

You can order pre-production quantities, working from a standard lead-time of eight working days. A fast turnaround service with a reduced lead-time of five working days is also available.

For further information visit: www.pcbpool.com, or free phone: 0800 3898560.

Quote...Unquote

Dixons, one of the UK’s leading retailers of consumer technology on the high street, has announced the launch of a Dixons-exclusive, Hitachi-branded Hi-Fi that the retailer believes will redefine the shape of future home entertainment systems.

OUT are tape decks, CD-only players, AM radios and other legacy technologies.

IN are a 40GB hard drive that stores 10,000 songs, a DAB radio, a DVD player that plays all CD formats, and high specification speakers. Other enhancements include front and rear USB ports to enable owners of MP3 players to plug and play or plug and go.
Perception of Kilby

month Kilby had built a working model. The idea of a circuit in monolithic i.c. form would make it merely the transistor, could be made out of silicon - not in itself set the world alight with just one transistor on-board. Someone who realized this was Robert Noyce, who had independently thought along similar lines. Although he did not start until January 1959, his debut design was the first i.c. with more than one transistor.

Aware, too, of Kilby's work he delivered a patent application that stressed the unique characteristics of his own design along with details of its potential applications, something missing from Kilby's presentation. This paid off for him and it was he who was awarded the patent for the first integrated circuit while Kilby's submission was still being analysed. Was this rough justice? It's hard to tell.

Of course you cannot do much with such basic circuit elements and it fell to others to develop i.c.-type devices with practical applications. The microprocessor is one and in 1968 Los Angeles computer expert Gilbert Hyatt took the integrated circuit a step further by including in one place all the pieces necessary to operate a computer (except memory and interface).

His patent application for this microprocessor was submitted in 1970 and although three engineers from Intel Corporation created the first commercially viable microprocessor the following year, while Hyatt's paperwork was still being scrutinised, it was nevertheless Hyatt who was eventually credited with its invention by the U.S. Patent Office.

Ancient History

For this is how it went at the end of the bickering and there are several other valid claimants for the credit of being father of the i.c. Radar scientist Geoffrey (G.W.) Dummer of Britain's Royal Aircraft Establishment had already outlined his ideas for integrated circuits in May 1952 and attempted to build a prototype in 1956.

His 1952 revelation was made at a conference in Washington D.C. when he explained how a solid block of material such as silicon could comprise separate layers that would act as the key components needed by electronic systems. He was thus the first person to publicise the concepts that Kilby and Noyce later brought to fruition.

Unfortunately for Dummer, his rudimentary integrated circuit of 1956 failed to persuade British investors willing to fund further research, losing an opportunity to create a multi-million pound industry.

If you broaden the definition of the i.c. to include components, all “integrated” in a single pack-

As a credential he employed his “first printed circuit invention in the form of a complete radio set that worked perfectly”, as a credential when applying for a job with Philco.

We can certainly credit Eisler with creating the first true printed circuit board but the idea was by no means new in 1936. A fascinating piece of research in the *Articles* section of *www.circuitree.com* reveals a patent of 1903 by Albert Parker Hanson, living in Berlin, for circuit boards using stamped copper tracks bonded adhesively to paraffined paper. The patent even illustrates double-sided and multilayer p.c.b.s – such modernity over 100 years ago!
Are you ready to jump on the Universal Serial Bus (USB) bandwagon? Maybe you have an existing embedded application you would like to update to use USB. Maybe you have a new PIC application you would like to develop to use USB. In this article we explore the basics of an easy way of getting data into and out of a PIC18F2455 microcontroller using its USB interface. The design allows existing RS232 devices to be controlled by a Windows 2000/XP USB connection. In addition, LEDs can be controlled over the USB. Although the design is simple, it illustrates the process of getting data into and out of the PIC over a USB connection. The “easy way” approach to USB makes maximum use of existing free software and Windows drivers.

Introduction to USB

The goals of the USB 2.0 development team were very lofty. They wanted to simplify, from the user’s point of view, personal computer peripherals. They wanted a system that supported real time video, voice and audio data. They wanted a protocol that could handle isochronous data transfers and asynchronous messaging.

They wanted a standard interface that could quickly be used in products. They wanted new classes of devices that would expand the personal computer’s capability, and they wanted backward compatibility with previous versions of USB.

The result is Universal Serial Bus Specification, Revision 2, a 650 page behemoth, that is available as a free download (see References, Ref.1, later). The USB specification contains almost anything you would want to know about USB, it is suggested that you start by reading Chapter 9 which discusses the USB device framework.

Chapter 9 includes device requests, descriptors and class definitions. USB allows peripherals to be plugged and unplugged without down-powering the computer. This process, called “enumeration”, involves communicating with the peripheral to discover its identity and characteristics.

Information about the device is contained in descriptors that are transmitted to the host during enumeration. A unique address is assigned to each peripheral to be used for run-time transfers. The device is also assigned a configuration during the enumeration process.

Slave Protocol

All USB peripherals are slaves that obey a defined protocol. They must react to request transactions sent from the host PC. For example, the peripheral must respond to control transactions that request detailed information about the device and its configuration. All USB devices support the requests and descriptor definitions described in Chapter 9.

In addition, devices may provide extended services that are characteristic of a group of devices. A class of devices, for example the Audio Device Class, is defined by a specific set of descriptors, requests and interface/endpoint usage. So you might find descriptors, request and interface usage relating to a volume control in the Audio Device Class but not in the Imaging Device Class.

Each USB device has two or more endpoints. An endpoint is a uniquely addressable portion of the USB device that is a sink or source of information that flows between the host and the device. One can think of an endpoint as a device buffer where data is placed to be transferred by the USB engine to or from the host. USB is a host-centric protocol so “IN” endpoints transfer data to the host from the USB device and “OUT” endpoints transfer data from the host to the USB device.

USB 2.0 supports four types of data transfer: Control, Interrupt, Isochronous and Bulk. Control transfers are typically used for command and status operations. They are essential and all enumeration functions are performed using control transfers. Interrupt transfers are typically non-periodic, small device “initiated” communication requiring bounded latency. An Interrupt request is queued by the device until the host polls the USB device

Isochronous transfers occur continuously and periodically. They typically contain time sensitive information, such as an audio or video stream where a delay or retry would be unacceptable. However, if a
The USB engine is V2.0 compliant and operates at low (1.5 million bits per sec) and full (12Mb/sec) speeds. The USB engine supports all types of data transfer and up to 32 endpoints. It has one kilobyte of RAM starting at 400h that is shared between the CPU and the USB engine. This shared memory can be configured for optimum use by the user. The first few locations are defined in `usbmap.c` and `usbmap.h` and are used for an endpoint (buffer) descriptor table consisting of: STAT, CNT and ADR.

There is one buffer descriptor table for each endpoint. STAT is the status register for the endpoint. Bit 7 determines who owns the buffer (CPU or USB engine) and who can write to it. CNT is the number of bytes in the buffer. ADR is the pointer to where the endpoint buffer starts in the 400h to 7FFh range.

Circuit Description

The circuit diagram for the PIC-Based USB Interface described here is fairly simple and is shown in Fig.1. We begin with the power supply. There is none – the device is powered by the USB bus! There are a couple of critical components. One is C3, a 470nF capacitor connected to V_{USB} on the PIC18F2455. This is a filter capacitor and without it the PIC may not run at USB full speed. Since we are using power from the USB bus, we also need the 1µF capacitors, C4 and C5, to reduce the inrush current when the device is plugged into the USB bus.

Putting the USB device into the Communication Device class has two advantages:

1. Microchip has written and freely distributes PIC software for the Communication Device class to emulate RS232 over a USB connection.
2. From the PC side, the USB device just looks like a COM port to the Windows software. This allows us to use existing Windows software like Hyperterminal to communicate with the device over the USB port.

Class Definitions

A USB device class is a group of devices that has a common set of descriptors, requests and interface/endpoint usage. Some of the USB device classes that have been defined in the specifications include Audio Device Class, Imaging Device Class, Communication Device Class (CDC), Human Interface Device (HID) Class, Mass Storage Device Class, Printer Device Class and others. Some of the classes have sub-classes such as the MIDI devices under the Audio Class.

If you can fit your device into a standard USB device class then you can leverage your software development efforts by using the standard device drivers written by the operating system developers.

Our “easy” approach to USB we make the device a Communication Device. A complete description of the communication device class is contained in Universal Serial Bus Class Definitions for Communication Devices (Ref.2). It is only 121 pages.

The PIC18F2455 is one of the new USB-enabled flash memory microcontrollers from Microchip. It has 24K bytes of flash program memory that allow the user to store about 12 thousand 16-bit instructions which can be erased and reprogrammed electrically. The flash program memory supports 100,000 write/erase cycles and has a greater than 40-year data retention period.

This PIC has 2048 bytes of RAM data memory, and has many of the features users have come to expect from Microchip: a universal synchronous-asynchronous receiver/transmitter (USART), four timers, ten 10-bit ADC channels, and a master synchronous serial port (MSSP). The MSSP is useful for communicating with peripheral devices such as serial EEPROMS, and supports SPI and I²C protocols. The PIC18F2455 operates at clock speeds up to 48MHz.

The USB engine is V2.0 compliant and operates at low (1.5 million bits per sec) and full (12Mb/sec) speeds. The USB engine supports all types of data transfer and up to 32 endpoints. It has one kilobyte of RAM starting at 400h that is shared between the CPU and the USB engine. This shared memory can be configured for optimum use by the user. The first few locations are defined in `usbmap.c` and `usbmap.h` and are used for an endpoint (buffer) descriptor table consisting of: STAT, CNT and ADR.

There is one buffer descriptor table for each endpoint. STAT is the status register for the endpoint. Bit 7 determines who owns the buffer (CPU or USB engine) and who can write to it. CNT is the number of bytes in the buffer. ADR is the pointer to where the endpoint buffer starts in the 400h to 7FFh range.

Circuit Description

The circuit diagram for the PIC-Based USB Interface described here is fairly simple and is shown in Fig.1. We begin with the power supply. There is none – the device is powered by the USB bus! There are a couple of critical components. One is C3, a 470nF capacitor connected to V_{USB} on the PIC18F2455. This is a filter capacitor and without it the PIC may not run at USB full speed. Since we are using power from the USB bus, we also need the 1µF capacitors, C4 and C5, to reduce the inrush current when the device is plugged into the USB bus.
When designing the circuit board, there were grand plans to make it also function as a USB MIDI interface. For that reason some additional components were added as outlined in Fig.1. The additional hardware needed for MIDI is very minimal – an optical isolator, IC2, on the input, some resistors and a couple of MIDI sockets. To get Windows to recognize the device as a MIDI interface, the PIC must be reprogrammed. The MIDI components are not needed for this project, but may be helpful to experienced readers who wish to add their own PIC code to make use of them.

The PIC18F2455 is the heart of the system. Use is made of its internal USB voltage regulator, USB transceiver and USB pull-up resistors. A 20MHz crystal (X1), in conjunction with capacitors C1 and C2, provides the clock signal. The 20MHz clock is increased to 48MHz inside the PIC.

The PIC handles all communications with the host over the USB bus and handles the two-way serial communication at 115200 bits per second to the MAX233 RS232 driver/receiver, IC3. This device converts the 0V to 5V signals from the PIC to ±12V RS232 signals. The MAX233 generates the ±12 levels internally from the +5V supply line with no external components.

The output from IC3 is routed to socket SK4 where the RS232 cable is connected. The five I.e.d.s (D1 to D5) are tied to the PIC’s RB0 to RB4 pins and are used for status indicators as explained later. Pins RB6 and RB7 were used for in-circuit programming of the PIC during development of the software. The Reset switch, S1, connects the PIC’s MCLR pin to the 0V line, causing the PIC to restart the program.

Construction
Component and track details for the PIC-Based USB Interface p.c.b. are available as stated later. The additional hardware needed for MIDI is very minimal – an optical isolator, IC2, on the input, some resistors and a couple of MIDI sockets. To get Windows to recognize the device as a MIDI interface, the PIC must be reprogrammed. The MIDI components are not needed for this project, but may be helpful to experienced readers who wish to add their own PIC code to make use of them.

The PIC18F2455 is the heart of the system. Use is made of its internal USB voltage regulator, USB transceiver and USB pull-up resistors. A 20MHz crystal (X1), in conjunction with capacitors C1 and C2, provides the clock signal. The 20MHz clock is increased to 48MHz inside the PIC.

The PIC handles all communications with the host over the USB bus and handles the two-way serial communication at 115200 bits per second to the MAX233 RS232 driver/receiver, IC3. This device converts the 0V to 5V signals from the PIC to ±12V RS232 signals. The MAX233 generates the ±12 levels internally from the +5V supply line with no external components.

The output from IC3 is routed to socket SK4 where the RS232 cable is connected. The five I.e.d.s (D1 to D5) are tied to the PIC’s RB0 to RB4 pins and are used for status indicators as explained later. Pins RB6 and RB7 were used for in-circuit programming of the PIC during development of the software. The Reset switch, S1, connects the PIC’s MCLR pin to the 0V line, causing the PIC to restart the program.

Software Writing
Because Microchip wrote the CDC software in C, it was decided to write the remainder of the software in C as well. The C18 compiler is available for experienced readers who wish to add their own PIC code to make use of them.

The PIC18F2455 is the heart of the system. Use is made of its internal USB voltage regulator, USB transceiver and USB pull-up resistors. A 20MHz crystal (X1), in conjunction with capacitors C1 and C2, provides the clock signal. The 20MHz clock is increased to 48MHz inside the PIC.

The PIC handles all communications with the host over the USB bus and handles the two-way serial communication at 115200 bits per second to the MAX233 RS232 driver/receiver, IC3. This device converts the 0V to 5V signals from the PIC to ±12V RS232 signals. The MAX233 generates the ±12 levels internally from the +5V supply line with no external components.

The output from IC3 is routed to socket SK4 where the RS232 cable is connected. The five I.e.d.s (D1 to D5) are tied to the PIC’s RB0 to RB4 pins and are used for status indicators as explained later. Pins RB6 and RB7 were used for in-circuit programming of the PIC during development of the software. The Reset switch, S1, connects the PIC’s MCLR pin to the 0V line, causing the PIC to restart the program.

Construction
Component and track layout details for the printed circuit board are shown in Fig.2. This board is available from the EPE PCB Service, code 536. Start assembly by soldering in the link wires, using 22-gauge single-core wire. Next, solder the small components: diodes, resistors and capacitors. Add sockets for PIC18F2455, mount the programming connector, TB1, and test points TB2. Pre-programmed PICs and source code files are available as stated later.

Software Writing
Because Microchip wrote the CDC software in C, it was decided to write the remainder of the software in C as well. The C18 compiler is available for experienced readers who wish to add their own PIC code to make use of them.

The PIC18F2455 is the heart of the system. Use is made of its internal USB voltage regulator, USB transceiver and USB pull-up resistors. A 20MHz crystal (X1), in conjunction with capacitors C1 and C2, provides the clock signal. The 20MHz clock is increased to 48MHz inside the PIC.

The PIC handles all communications with the host over the USB bus and handles the two-way serial communication at 115200 bits per second to the MAX233 RS232 driver/receiver, IC3. This device converts the 0V to 5V signals from the PIC to ±12V RS232 signals. The MAX233 generates the ±12 levels internally from the +5V supply line with no external components.

The output from IC3 is routed to socket SK4 where the RS232 cable is connected. The five I.e.d.s (D1 to D5) are tied to the PIC’s RB0 to RB4 pins and are used for status indicators as explained later. Pins RB6 and RB7 were used for in-circuit programming of the PIC during development of the software. The Reset switch, S1, connects the PIC’s MCLR pin to the 0V line, causing the PIC to restart the program.

Software Writing
Because Microchip wrote the CDC software in C, it was decided to write the remainder of the software in C as well. The C18 compiler is available for experienced readers who wish to add their own PIC code to make use of them.
Download from Microchip (see later) and is free for the first 60 days. After that time the compiler reverts to an unoptimized version. For that reason, the PIC software for this project was compiled with all optimization turned off.

Part of this design’s software uses the CDC framework provided by Microchip, from whom it can be downloaded free. Additional information on the CDC framework can be found in Ref.3. When the MCHPUSB code is loaded into the C18 compiler the project is compiled with all optimization turned off. For that reason, the compiler reverts to an unoptimized version. For that reason, the compiler reverts to an unoptimized version.

To compile the source code for this USB device, first delete the files are as shown in Fig.3.

Listing 1 Files For USB Device

<table>
<thead>
<tr>
<th>Files</th>
<th>file00=mystystem\usb\usbmap.c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>file00=mystystem\usb\usbdrv\usbdrv.c</td>
</tr>
<tr>
<td></td>
<td>file02=mystystem\usb\usb9\usb.c</td>
</tr>
<tr>
<td></td>
<td>file03=mystystem\usb\usb3\usb.c</td>
</tr>
<tr>
<td></td>
<td>file04=mystystem\usb\usbclrdrv\usbdrv.c</td>
</tr>
<tr>
<td></td>
<td>file05=mystystem\usb\class\cdc\cnc.c</td>
</tr>
<tr>
<td></td>
<td>file06=mystystem\usb\main.c</td>
</tr>
<tr>
<td></td>
<td>file07=mystystem\usb\usbmap.h</td>
</tr>
<tr>
<td></td>
<td>file08=mystystem\usb\usbcfg.h</td>
</tr>
<tr>
<td></td>
<td>file09=mystystem\usb\usb.h</td>
</tr>
<tr>
<td></td>
<td>file10=mystystem\usb\usbdhv.c</td>
</tr>
<tr>
<td></td>
<td>file11=mystystem\usb\usbdhc.c</td>
</tr>
<tr>
<td></td>
<td>file12=mystystem\usb\class\cdc\cnc.h</td>
</tr>
<tr>
<td></td>
<td>file13=C:\mocz\blkr\10f2455.lkr</td>
</tr>
</tbody>
</table>

* files modified

Listing 2 USB Device Descriptor

```
com USB DEV DSC device_dsc=" |
| siseof(USB _MKD DSC), // size of this descriptor in bytes |
| 0x01, // DEVICE descriptor type=1 |
| 0x00, // USB Spec Release Number in BCD format=1.00 |
| 0x00, // Class Code, l=PC device |
| 0x00, // Subclass code |
| 0x00, // Protocol code |
| 0x00, // Max packet size for END=8, see usbcfg.h |
| 0x00, // Vendor ID |
| 0x00, // Product ID; CDC DS-222 Emulation Demo |
| 0x00, // Device release number in BCD format |
| 0x00, // Pointer to Manufacturer string descriptor |
| 0x00, // Pointer to Product string descriptor |
| 0x00, // Pointer to Device string string [none] |
| 0x01 // Number of possible configurations |
```

Descriptor Pointers

In addition, the device descriptor points to some string descriptors for the manufacturer and product. The rom in the device_dsc type statement means that this constant information will be stored in program memory, thus freeing up valuable RAM memory on the PIC18F2455 device.

The configuration descriptor, cfg01, defines the amount of power that the device can draw, 100mA. Two interfaces are defined in the configuration descriptor. The first interface (#0) has one endpoint (EP02_IN) which does 8-byte interrupt transfers, EP02_IN is polled by the host every 2ms. The second interface (#1) has two endpoints (EP03_OUT and EP03_IN) which do bulk data transfers. The data packet size is 64 bytes.

The string descriptors consist of a byte containing the size of the string descriptor, a byte containing the value “3” that identifies it as a string descriptor and a string containing the text in Unicode format. Microchip has cleverly performed the conversion to Unicode by declaring each character as a word type.

Variable Locations

The Microchip CDC framework software is general-purpose and automatically allocates the USB (400h-7FFh) region of memory. Because the framework does this automatically, it is not as clear where variables are located in memory, as is the case when using assembly language or allocating the variables manually.

The PIC18F2455 has rules as to how the memory must be allocated, which are defined in Ref.4. Table 1 shows the USB portion of the PIC18F2455 memory as allocated by the Microchip USB framework and the main.c program.

The framework provides several functions which are used to communicate over the USB:
- mUSBUSARTisTxTrfReady determines if the USB engine is ready to accept a new string to transmit via USB
- mUSBUSARTTxRam writes a string of known length from data memory to USB
- GetsUSBART reads a string from the USB
- mCDCGetRxLength reports the length of the last string read from USB

Microchip advises that these functions should not be used in a blocking manner such as: while (mUSBUSARTisTxTrfReady());

Since the CDC framework is written to poll the USB data, there must be nothing in the software that will cause a significant delay in the polling.

Interrupts

Although the USB portion of the program does not use any interrupts, it became necessary to use interrupts to handle the RS232 serial interface. Interrupts are triggered when a character is received or a character can be transmitted. It may be useful to follow along with the author’s source code available from EPE. Received characters are loaded into 128-byte circular buffers (serial_input_buffer and serial_output_buffer) by the uart_handler interrupt routine. The routines serial_receive and serial_send are used to access the data in the buffers.

Indicators

A series of indicators has been implemented using the l.e.d.s. When the device is first powered up, all five l.e.d.s D1 to D5

Fig.3. Files for the communication device class firmware
are flashed sequentially. This indicates that the device is programmed and that the clock is running. Next, the l.e.d.s are flashed as shown in Table 2 while the USB enumeration is done.

When the enumeration is successfully completed l.e.d.s D1 and D2 will flash alternately. During the first enumeration the operating system will ask for a device driver. The user must point to the directory that contains the mchpcdc.inf file as shown in Fig.4. This file contains information that matches the product ID and vendor ID to the usbser.sys driver. The communication device class driver for Windows is called usbser.sys and is part of the Windows 2000/XP operating system.

The system will complain that the driver has not passed the Windows Logo testing, which is surprising since Microsoft wrote the driver, but continue the installation anyway. When the software installation is complete you will see Fig.5 on screen.

The flow of the main program is as follows. The InitializeSystem routine flashes the l.e.d.s to verify that the program is working, initialises the USB and initialises the USART to a transmission rate of 115,200 bits per second. The bit rate can be changed in the InitializeUSART routine.

Next the serial interrupts are enabled by the EnableInterrupts routine. All of the USB transmissions are handled by the USBTasks routine which is part of the CDC framework provided by Microchip. The DataTransfer routine displays the USB status on the l.e.d.s by calling the BlinkUSBStatus routine. The USB_to_USART_handler handles the processing of received USB data and its transmission out via the RS232 connection. The USART_to_USB_handler does the receipt of incoming RS232 data and the queuing of the data for USB transmission. The display_leds routine is called by these routines.

Table 1 USB RAM Memory Allocation

<table>
<thead>
<tr>
<th>RAM Address (hex)</th>
<th>Value (hex)</th>
<th>Variable Name</th>
<th>Description</th>
<th>Function</th>
<th>MEMORY NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x400</td>
<td>variable</td>
<td>ep0bo.Stat</td>
<td>Buffer Descriptor Status Register (see page 171-174 of Reference 3)</td>
<td>Buffer Descriptor Table (BDT) for Endpoint 0 Out</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x401</td>
<td>ep0bo.Cnt</td>
<td># of Bytes to be transmitted (before transmission) or bytes transmitted (after transmission).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x402</td>
<td>ep0bo.ADRL</td>
<td>Buffer Address Low Byte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x403</td>
<td>ep0bo.ADRH</td>
<td>Buffer Address High Byte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>variable</td>
<td>ep0bi.Stat</td>
<td>Buffer Descriptor Status Register (see page 171-174 of Reference 3)</td>
<td>Buffer Descriptor Table (BDT) for Endpoint 0 In</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x404</td>
<td>ep0bi.Cnt</td>
<td>Buffer size in bytes (before receive) or # of bytes received (after receive)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x405</td>
<td>ep0bi.ADRL</td>
<td>Buffer Address Low Byte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x406</td>
<td>ep0bi.ADRH</td>
<td>Buffer Address High Byte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x408-0x413</td>
<td>variable</td>
<td>ep0bi.Stat</td>
<td>Buffer Descriptor Status Register (see page 171-174 of Reference 3)</td>
<td>Buffer Descriptor Table (BDT) for Endpoint 1 Out</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x414</td>
<td>ep2bi.Stat</td>
<td>Buffer Descriptor Status Register (see page 171-174 of Reference 3)</td>
<td>Buffer Descriptor Table (BDT) for Endpoint 2 In</td>
<td>USBRAM4</td>
</tr>
<tr>
<td></td>
<td>0x415</td>
<td>ep2bi.Cnt</td>
<td># of Bytes to be transmitted (before transmission) or bytes transmitted (after transmission).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x416</td>
<td>ep2bi.ADRL</td>
<td>Buffer Address Low Byte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x417</td>
<td>ep2bi.ADRH</td>
<td>Buffer Address High Byte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>variable</td>
<td>ep3bi.Stat</td>
<td>Buffer Descriptor Status Register (see page 171-174 of Reference 3)</td>
<td>Buffer Descriptor Table (BDT) for Endpoint 3 In</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x418</td>
<td>ep3bi.Cnt</td>
<td># of Bytes to be transmitted (before transmission) or bytes transmitted (after transmission).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x419</td>
<td>ep3bi.ADRL</td>
<td>Buffer Address Low Byte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x41A</td>
<td>ep3bi.ADRH</td>
<td>Buffer Address High Byte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>variable</td>
<td>ep3bi.Stat</td>
<td>Buffer Descriptor Status Register (see page 171-174 of Reference 3)</td>
<td>Buffer Descriptor Table (BDT) for Endpoint 3 Out</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x41D</td>
<td>ep3bi.Cnt</td>
<td>Buffer size in bytes (before receive) or # of bytes received (after receive)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x41E</td>
<td>ep3bi.ADRL</td>
<td>Buffer Address Low Byte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x41F</td>
<td>ep3bi.ADRH</td>
<td>Buffer Address High Byte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x420-0x427</td>
<td>...</td>
<td>SetupPkt[8]</td>
<td>8 bytes</td>
<td>Endpoint 0 In Buffer</td>
<td></td>
</tr>
<tr>
<td>0x428-0x42F</td>
<td>...</td>
<td>CtrlTrData[8]</td>
<td>8 bytes</td>
<td>Endpoint 0 Out Buffer</td>
<td></td>
</tr>
<tr>
<td>0x500-0x507</td>
<td>...</td>
<td>out. Notice[8]</td>
<td>8 bytes</td>
<td>Endpoint 2 In Buffer</td>
<td>USBRAM5</td>
</tr>
<tr>
<td>0x508-0x514</td>
<td>...</td>
<td>out. Data[64]</td>
<td>64 bytes</td>
<td>Endpoint 3 In Buffer</td>
<td></td>
</tr>
<tr>
<td>0x515-0x51B</td>
<td>...</td>
<td>out. Data[64]</td>
<td>64 bytes</td>
<td>Endpoint 3 In Buffer</td>
<td></td>
</tr>
<tr>
<td>0x51C-0x51F</td>
<td>...</td>
<td>out. Data[64]</td>
<td>64 bytes</td>
<td>Endpoint 3 In Buffer</td>
<td></td>
</tr>
<tr>
<td>0x700-0x71F</td>
<td>...</td>
<td>serial_input_buffer[128]</td>
<td>128 bytes</td>
<td>USBRAM7A</td>
<td></td>
</tr>
</tbody>
</table>

Diebold 2000 is an example of a serial interface.
last two routines to control the LEDs based on the data received by the device.

Just to make it interesting, the receipt of certain characters toggle the LEDs on and off. If a “0” is received, the logic showing the USB status in the LEDs is turned off. Of course your imagination is the only limit to what can be done on the PIC once the USB data link is working.

There was some difficulty with getting the RS232 input to work. The first problem had to do with some variables, like istart, that were used in both the interrupt routine and the main routines. These variables needed to be declared as volatile to make sure both routines used the latest values.

A second problem had to do with the way the number of received bytes was calculated in the _serial_rxbytes routine. This routine had to be modified to work with the C18 compiler. The C18 compiler was used to compile and link the C source into the MCHPUSB.hex file.

If you are programming your own PIC, make sure that your system works with the PIC18F2455 since the programming algorithm is different to that for many other PICs.

Hardware Testing

Before plugging the device into your computer’s USB port, check its operation by applying a 5V power source to connector TB2. The first thing that should happen is that the LEDs should flash sequentially. This means that the device is powered and programmed. The device should draw less than 55mA. If it does not, stop and check the circuit.

Do not plug the device into your USB port until you are sure your wiring is correct or you may damage the port. Some, but not all USB ports, have overload protection, so do not rely on it.

The next thing to do is to plug the device into the USB port and check that the device is properly enumerated (see earlier). This can be done using the USBVIEW program (see later). Fig.6 shows the output of the USBView program with the hardware and software of this article connected.

USBVIEW shows that the device has one configuration and a maximum control packet size of eight bytes. It operates at full speed and has three open pipes. The first

<table>
<thead>
<tr>
<th>USB STATE</th>
<th>LED 1</th>
<th>LED 2</th>
<th>LED 3</th>
<th>LED 4</th>
<th>LED 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disabled State</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>Attached State</td>
<td>on</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>Powered State</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
</tr>
<tr>
<td>Reset State</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>Advanced State</td>
<td>blinking</td>
<td>off</td>
<td>off</td>
<td>off</td>
<td>off</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ASCII received via USB or UART</th>
<th>LED 1</th>
<th>LED 2</th>
<th>LED 3</th>
<th>LED 4</th>
<th>LED 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII 0 received via USB or UART</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>ASCII 1 received via USB or UART</td>
<td>Rabble</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Unchanged</td>
</tr>
<tr>
<td>ASCII 2 received via USB or UART</td>
<td>Unchanged</td>
<td>Rabble</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Unchanged</td>
</tr>
<tr>
<td>ASCII 3 received via USB or UART</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Rabble</td>
<td>Unchanged</td>
<td>Unchanged</td>
</tr>
<tr>
<td>ASCII 4 received via USB or UART</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Rabble</td>
<td>Unchanged</td>
</tr>
<tr>
<td>ASCII 5 received via USB or UART</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Rabble</td>
</tr>
</tbody>
</table>

Table 2 LED Blink Codes

<table>
<thead>
<tr>
<th>Table 2 LED Blink Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB STATE</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>Disabled State</td>
</tr>
<tr>
<td>Attached State</td>
</tr>
<tr>
<td>Powered State</td>
</tr>
<tr>
<td>Reset State</td>
</tr>
<tr>
<td>Advanced State</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ASCII received via USB or UART</th>
<th>LED 1</th>
<th>LED 2</th>
<th>LED 3</th>
<th>LED 4</th>
<th>LED 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII 0 received via USB or UART</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>ASCII 1 received via USB or UART</td>
<td>Rabble</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Unchanged</td>
</tr>
<tr>
<td>ASCII 2 received via USB or UART</td>
<td>Unchanged</td>
<td>Rabble</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Unchanged</td>
</tr>
<tr>
<td>ASCII 3 received via USB or UART</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Rabble</td>
<td>Unchanged</td>
<td>Unchanged</td>
</tr>
<tr>
<td>ASCII 4 received via USB or UART</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Rabble</td>
<td>Unchanged</td>
</tr>
<tr>
<td>ASCII 5 received via USB or UART</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Rabble</td>
</tr>
</tbody>
</table>

Fig.4. First device enumeration

Fig.5. USBVIEW of installed device

Fig.5. Successful completion of Windows driver installation

Fig.7. Device Manager view of installed device
Everyday Practical Electronics, October 2005

The second pipe uses bulk data transfers and is for host-to-device data transfers (03) and has a maximum packet size of 64 bytes. The third pipe uses bulk data transfers and is for device-to-host data transfers (83) and has a maximum packet size of 64 bytes. We can also look at the USB device using the XP device manager as shown in Fig. 7.

It will be seen that the USB device looks like a standard Windows COM port (COM5). To Windows application programs, like Hyperterminal or a program you might write in Visual Basic or C, the device will look like a standard COM port and can be accessed as one.

Hyperterminal Test

The final test involves using the Hyperterminal (or other) terminal emulation program. Plug the USB device into a Windows 2000/XP PC running Hyperterminal, connect a loopback plug to the RS232 socket on the USB as shown in Fig. 8. With this configuration the transfer of data into and out of the device can be observed.

RS232 data routed out of the device is sent back to it via the loopback plug. The data typed into Hyperterminal will also appear on the Hyperterminal screen after being sent to the USB device, sent out the RS232 connector, read back in the RS232 connector and transmitted via USB back to the host.

Although there are no data flow controls on the USART data, blocks of 15,000 characters have been sent and received successfully at 115,200 bits per second using this device.

One additional piece of information about using Windows programs like Hyperterminal with the USB device: if you unplug the USB device from the host computer with Hyperterminal running, when you plug the USB device back into the host, Hyperterminal will not be able to communicate with it.

The proper sequence, if you want to unplug the device and reconnect it, is to shutdown Hyperterminal before unplugging. This applies whether the USB is disconnected by unplugging or using its Reset switch (S1).

For the final test, remove the loopback plug. Now if you type a “0” in the Hyperterminal the flashing I.e.d.s should stop. Typing consecutive “1”s should turn on and off I.e.d.s D1, D2, D3, D4 and D5. Another “0” should set the I.e.d.s back to the USB status reporting mode.

Note that this logic is seen to work when the loopback is plugged in, but it will not be seen when the USB “0” takes the device out of USB status reporting mode – the “0” being echoed from the loopback plug puts it back into USB status reporting mode.

Conclusion

This is an interesting project which allows computers using the Windows 2000/XP operating system to communicate with a PIC microcontroller over the USB port. The device allows computers that do not have a COM serial port to use legacy devices.

This project also provides a practical introduction to USB, to CDC devices, to one of the new USB flash PICs and to the C18 compiler. As well as showing how I.e.d.s can be controlled via USB, it also provides the basics of getting data into and out of a PIC using USB, becoming the foundation of more complicated USB PIC projects.

Resources

Sourcecode is available for free download from our Downloads site, access via www.epemag.co.uk.

References

1. Universal Serial Bus Revision 2.0 Specification: www.usb.org/developers/docs/
2. Universal Serial Bus Class Definitions for Communication Devices: www.usb.org/developers/devclass_docs
3. Migrating Applications to USB from RS-232 UART with Minimal Impact on PC Software. Microchip Application Note AN956
5. PIC18F2XX/2XX5/4XX0/4XX5 Flash Microcontroller Programming Specification from www.microchip.com
7. Communication Device Class (CDC) Firmware: www.microchip.com/developmenttools/ide/S_DcService=SS_GET_PAGE&nodeId=2124¶m=en022625

Robert Lang is a professional electrical engineer interested in embedded microprocessors, mechanical musical instruments and MIDI. He is a freelance writer for electronic hobbyist, computer and synthesizer magazines. He can be reached at rlang@netdoor.com or by a Google search for HARPSITRON.
When you come to think about it, there are lots of “application-type” computer books along the lines of Learn Prof. Cuthbert Dribble’s Visual Programming V6.0 In 21 Days (you often have only 21 days, because that’s when version 7.0 of the software is going to come out). Sad to relate, however, there really aren’t many tomes – outside of mega-complex University courses – that teach how computers actually work.

In order to address this sad state of affairs, the authors decided to pen their own humble offering. One point we considered is that it’s a lot easier to learn how to do something if you actually have a specific project in mind.

For example, if someone simply hands you a plank of wood, a saw, a hammer and some nails, you might hang around for a while pondering just what to do. But if you are also presented with the plans for a simple bird table, then you can immediately leap into the fray with gusto and abandon.

Thus, we decided to base a book (details are given later) on the concept of a simple calculator called the DIY Calculator. The cunning part of all of this is that we created the DIY Calculator as a virtual machine that runs on your home computer. This article is a spin-off from the book and is designed to give a brief introduction as to how the DIY Calculator functions. In order to facilitate this, you can download a fully-functional copy of the DIY Calculator software from our website at www.DIYCalculator for free (you’ll find instructions on how to download and install the calculator on the website).

Computers and Calculators

In its broadest sense, a computer is a device that can accept information from the outside world, process that information using logical and/or mathematical operations, make decisions based on the results of this processing, and – ultimately – return the processed information to the outside world in its new form.

The main elements forming a computer system are its central processing unit (CPU), its memory devices (ROM and RAM) that are used to store programs (sequences of instructions) and data, and its input/output (I/O) ports that are used to communicate with the outside world. The CPU is the “brain” of the computer, because this is where all of the number-crunching and decision-making is performed. Read-only memory (ROM) has its contents hard-coded as part of its construction; by comparison, in the case of random access memory (RAM), you can load new values into it and read these values back out again later.

The term “bus” is used to refer to a group of signals that carry similar information and perform a common function. A computer actually makes use of three buses called the control bus, address bus, and data bus. The CPU uses its address bus to “point” to other components in the system; it uses the control bus to indicate whether it wishes to “talk” (output/write/transmit data) or “listen” (input/read/receive data); and it uses the data bus to convey information back and forth between itself and the other components. Our virtual computer is equipped with a data bus that is eight bits wide and an address bus that is 16 bits wide. This allows the address bus to point to $2^{16} = 65,536$ different memory locations, which are numbered from 0 to 65,535 in decimal; %0000000000000000 to %1111111111111111 in binary; or 0000 to $FFFF$ in hexadecimal, where the concepts of binary and hexadecimal are briefly introduced a little later in this article.

Once we’ve conceived the idea of a general-purpose computer, the next step is to think of something to do with it. In fact there are millions of tasks to which com...
computers can be assigned, but the application we’re interested in here is that of a simple calculator. So what does it take to coerce a computer to adopt the role of a calculator? Well, one thing we require is some form of user interface, which will allow us to present data to and view results from the computer (Fig.1).

The calculator’s user interface primarily consists of buttons and some type of display. Each button has a unique binary code associated with it, and this code will be presented to the computer’s input port whenever that button is pressed. Meanwhile, one of the computer’s output ports can be used to drive the display portion of the interface.

A Simple Test Case

In order to provide a simple demonstration of how the DIY Calculator works, download your free copy and install it as described on our website. Now use the Start > Programs > DIY Calculator command (or double-click the DIY Calculator icon on your desktop) to launch this little rascallion, which should look something like the screenshot shown in Fig.2.

Click the On/Off button on the calculator interface to power it up and then click on some of the “0” through “9” buttons. Nothing happens, because we haven’t loaded a program yet. In a moment we are going to create our own program, but just to provide a simple example, we’ve already provided a test case for you to play with as part of the download.

Use the Tools > Assembler command (or click the appropriate icon in the main window’s tool bar) to launch an application called the assembler. Now use the assembler’s File > Open command to open the file that you’ll find in the C:DIY CalculatorWork folder on your system.

This program is in a low-level computer programming language known as assembly language. Each computer has its own assembly language, but once you’ve learned one (especially one as simple as ours), this makes it much easier to learn others if you need to do so.

Now use the assembler’s File > Assemble command. This takes our source program and assembles it into a new file called hello.ram that contains the raw instruction and data values that will be processed by our virtual CPU. The contents of this file are in a form called machine code, because this is the form that is actually executed by the computer (machine).

Use the assembler’s File > Exit command to dismiss this application. Next, use the Memory > Load RAM command to load the hello.ram file that you’ll find in the C:DIY CalculatorWork folder into the DIY Calculator’s memory. Finally, click the Run button to execute this program and see the message “Hello World” appear on the calculator’s main display.

Binary and Hexadecimal

In a moment we’re going to create our own program, but before we start, we need to understand that computers store and manipulate data using the binary number system, which comprises just two digits: 0 and 1. One wire (or register bit/memory element) can be used to represent two distinct binary values: 0 or 1; two wires can represent four binary values: 00, 01, 10, and 11; three wires can represent eight binary values; 000, 001, 010, 011, 100, 101, 110, and 111; and so on. As our virtual computer has an 8-bit data bus, this can be used to represent 256 different binary values numbered from 0 to 255 in decimal or %00000000 to %11111111 in binary (where the “S” symbol is used to indicate a binary value).

The problem is that humans tend to find it difficult to think in terms of long strings of 0s or 1s. Thus, when working with computers, we tend to prefer the hexadecimal number system, which comprises 16 digits: 0 through 9 and A through F as shown in Fig.3.

In this case, we use “S” characters to indicate hexadecimal values. Each hexadecimal digit directly maps onto four binary digits (and vice versa of course). This explains why we noted earlier that our 16-bit address bus could be used to point to 2^16 = 65,536 different memory locations, which are numbered from 00000 to FFFF in hexadecimal.

The Accumulator (ACC) and Status Register (SR)

There are just a couple more things we need to know before we plunge headfirst into the fray. As illustrated in Fig.4, amongst other things, our CPU contains two 8-bit registers called the accumulator (ACC) and the status register (SR). (In this context, the term “register” refers to a group of memory elements, each of which can store a single binary digit.)

As its name implies, the accumulator is where the CPU gathers, or “accumulates”, intermediate results. In the case of the status register, each of its bits is called a status bit, but they are also commonly referred to as status flags or condition codes, because they serve to signal (flag) that certain conditions have occurred. We will only concern ourselves with the carry (C) flag for the purposes of our example program.

Since we may sometimes wish to load the status register from (or store it to) the memory, it is usual to register this as being the same width as the data bus (eight bits in the case of our virtual system). However, our CPU employs only five status flags, which occupy the five least-significant bits of the status register. This means that the three most-significant bits of the register exist only in our imaginations, so their non-existent contents are, by definition, undefined.

The Program Itself

For the purposes of this article, we’re going to create a simple program that first clears the calculator’s main display, and then loops around waiting for us to click one or buttons on the keypad. If any of these buttons are part of the “0” through “9” or “A” through “F” set, we’re going to display these values on the main display. In a moment we’re going to enter our program as shown in Listing 1. But before we do that, let’s walk through this code step-by-step.

The first thing we do is to declare some constant labels and associated them with

| Listing 1: Program to read button codes and write to the main display |
|--------------------------|--------------------------|--------------------------|
| CLRCODE: .EQU $10 | # Code to clear main display |
| MAINDISP: .EQU $0F031 | # Output port to main display |
| KEYPAD: .EQU $0F011 | # Input port from keypad |
| ORG $4000 | # Set origin to address $4000 |
| LDA CLRCODE | # Load ACC with clear code |
| STA [MAINDISP] | # Store ACC to main display |
| LOOP: LDA [KEYPAD] | # Load ACC from the keypad |
| CMPA $0F | # Compare accumulator to $0F |
| JC [LOOP] | # Jump if C flag is set |
| STA [MAINDISP] | # . . . else copy ACC to display |
| JMP [LOOP] | # Jump to LOOP |
| .END | # End of the program |

Fig.3. Binary and hexadecimal

Fig.4. The accumulator (ACC) and status register (SR)
certain values using .EQU ("equate") commands. In the case of this program, the CLRCODE label is associated with a hexadecimal value of $10, which is a special code that will clear the calculator’s main display. By comparison, the MAINDISP label is associated with the hexadecimal value $3F91, which happens to be the address of the output port that drives the calculator’s main display. Similarly, the KEYPAD label is associated with the hexadecimal value $S9F1, which is the address of the input port that is connected to the calculator’s keypad. (Note that everything to the right of a "#" character is treated as a comment and is therefore ignored by the assembler.)

Following the .EQU commands we see a .ORG ("origin") statement, which we use to specify $4000 as being the start address in our program. (The reason we use $4000 is that this is the first address in the DIY Calculator’s virtual RAM. When we come to run the program, the DIY Calculator will automatically start at this address.)

Next, we use a LDA ("load accumulator") instruction to load our special clear code into the accumulator, and then we use a STA ("store accumulator") instruction to copy this value to the main display, thereby clearing it.

Now we find ourselves at the LOOP address label, which is where we are going to wait for the user to click on a key. There are a couple of things we need to understand here. First, our virtual calculator’s front panel contains an 8-bit register. By default, this register is loaded with a dummy value of SFF. When we click a button on the keypad, a code associated with that button is loaded into this register. When the CPU reads from the input port connected to the calculator’s keypad, it actually reads the value out of this register.

Furthermore, the act of performing this read automatically reloads the register with its default SFF value. Last but not least, the hexadecimcal codes associated with the ‘0’ through ‘9’ and ‘A’ through ‘F’ keys are S00 through S09 and S0A through S0F, respectively (we’ve had to compromise on this approach, which is actually how it is done). When the keypad code is received by the CPU (via the UART), the keypad’s digit is then stored in a register, in the form of a hexadecimal code.

When we arrive at the LOOP label, we use a CLRA ("clear accumulator") instruction to clear the accumulator from the memory location pointed to by the KEYPAD label. As we previously noted, this is the address of the input port connected to the calculator’s keypad. Next, we use a CMPA ("compare accumulator") instruction to compare the contents of the accumulator with a value of S0F.

If the value in the accumulator is larger, the carry (C) status flag will be set with 1; this means that the user clicked a button whose code is higher than S0F, which we don’t wish to happen. Thus, if the user did click a button other than “0” through “9” or “A” through “F”, the JC ("jump if carry") instruction will return the program to the LOOP label to await another key.

Otherwise, we use a STA ("store accumulator") instruction to copy this key code to the main display, and then we use a JMP ("unconditional jump") instruction to return us to the LOOP label to await another key.

The final statement in the program is a .END that unsurprisingly, informs the assembler that its task here is completed.

Entering and Running the Program

Now we’re ready to rock and roll. If you haven’t already done so, launch the DIY Calculator and invoke the assembler’s main menu. If you still have the assembler open from running the test case earlier, then use its File > New command to create a new source code file.

Enter the program shown in Listing 1, use the assembler’s File > Save As command to save this program with the name mykeytest.asm, and then use the assembler’s File > Assemble command to translate your source program into a machine code equivalent called mykeytest.ram (if any errors are reported in the status bar at the bottom of the assembler window, debug them and reassemble the program). Finally, use the assembler’s File > Exit command to dismiss this application.

Click the On/Off button on the calculator interface to power it up. (Alternatively, if the calculator is still powered up from running the test case earlier, then use the main window’s Memory > Load RAM command to delete the old program from the calculator’s memory.) Next, use the Memory > Load RAM command to load the mykeytest.ram file that you just created into the DIY Calculator’s RAM.

Now, click the Run button to execute this program and observe that the main display is cleared. The program is now looping around waiting for you to press a key. Try clicking several of the “0” to “9” and “A” to “F” keys and observe the corresponding characters appearing on the main display. Also try clicking some of the other keys (such as “-” and “+”) and observe that – due to the way in which we created our program – these are discarded and do not appear on the display.

But Wait, There’s More!

We’ve really only scratched the surface of what is possible with the DIY Calculator. For example, you can use the Cancel button on the calculator’s front panel. Make sure the main window fills your screen, and then use the Display > CPU Registers, Display > Memory Walker, and Display > I/O Ports commands to invoke these utilities. As each tool appears, drag it to a clear area on your screen (if you have enough room on your screen, you might also try launching the Display > Message System utility).

Now click the Step button on the calculator’s front panel a few times. Next, watch what happens in the various displays for each click. Try clicking one of the number buttons – say the “6” key – and then click the Step button a couple more times, again watching the various displays for each click.

Note that you can use the main window’s Help > Contents command to learn more about these diagnostic tools. And if you want to experiment a little further, a slightly more testing example program that uses the DIY Calculator to implement a simple pseu-
do-random number generator is described on the website.

Further Projects

The book, How Computers Do Math, is organized in an interesting way. First there are a series of chapters introducing fundamental concepts such as Subroutines and Recursion. Each chapter is then backed up by a suite of interactive laboratories, each of which details what the reader will learn and how long it will take (typically 20 to 40 minutes each), followed by step-by-step instructions that walk the reader through that lab.

For educators, the CD ROM accompanying the book includes all of the labs and Adobe Acrobat files that can be printed out and used as handouts. Also, all of the illustrations in the book are provided as PowerPoint slides that can be used as the basis for presentations.

The chapters and labs build on each other until, at the end, we have a four function calculator that can input numbers in decimal, convert them into 16-bit binary integers, perform addition, subtraction, multiplication, and division on these binary values, and then present the results from these calculations in decimal on the main display. But this is only a starting point of the DIY Calculator’s website, it is intended to develop this much further by introducing the concept of floating-point values, describing our own simple floating-point format, and then implementing binary floating-point versions of our input, output, and math subroutines. (We are also going to do the same for Binary Coded Decimal (BCD) – check the website for more details.)

And this is still just the beginning, because (in conjunction with schools, colleges, universities, and individual readers), we plan on creating subroutines (with associated documentation) to implement many more math functions. These will be provided on the website for folks to download and experiment with – hopefully – to say “I can do better than that” and send in their own versions.

As yet another example of something that may interest educators, we have a final year project at the beginning of 2005, a team of students at the University of Newcastle upon Tyne, created VHDL models of the DIY calculator and then implemented a physical version of the little scanning binary field-programmable gate array (FPGA) development board. (Details of this project, including the VHDL source files and the project notes, are available on our website.)

So there you have it. Now there is a way to learn about how computers work — and how they do math — that’s actually fun and doesn’t make your brain ache or your eyes water. We’d love to hear what you think about all of this, so please feel free to email us at info@DIYCalculator.com to share your thoughts and ideas.

The book, How Computers Do Math — John Wiley & Sons, ISBN 0471732788 — is scheduled to roll off the printing presses September 2005. Throughout How Computers Do Math, we introduce a starting point in which computers work and walk readers through the process of creating a simple four-function calculator program (add, subtract, multiply and divide) from the ground up.
WIRELESS for the WARRIOR

Volume 4
CLANDESTINE RADIO
A technical history of Radio Communication Equipment in clandesine and special forces operations

Volume 4 ‘Clandestine Radio’ – not only ‘spy’ equipment but sets used by Special Forces, Parthians, Resistance, ‘Stay Behind’ organisations, Diplomatic Service, Australian Coast Watchers, RDF and intercept receivers, bugs and radar beacons. The information has been compiled through the collaboration of a vast number of collectors and enthusiasts around the world. Volume 4 includes information on more than 230 sets and ancillaries. It contains 692 pages in hardback format, and features over 850 photographs, 360 line drawings and 440 data tables.

Volume 1 ‘Wireless Sets No.1 to 88’ – covers the early radios, prior to the outbreak of World War II, and wartime sets which were never released in large quantities or were abandoned after trials.

Volume 2 ‘Standard Sets for World War II’ – provides information in detail of mass-produced Wireless Sets such as No.18, 19, 22 and 38. Additionally included are a number of post-war sets on which development had been started during World War II.

Volume 3 ‘Reception Sets’ – the receivers described span the era 1932 to the 1960s, and coverage includes not only reception sets specifically designed or adapted for the British Army, but also sets adopted from other arms (RN and RAF), special receivers, direction finding receivers, army broadcast reception sets, Canadian and Australian army sets, commercial receivers adopted by the army, and army welfare reception sets.

PRICES INCLUDING POSTAGE

<table>
<thead>
<tr>
<th>Volume</th>
<th>UK</th>
<th>Europe airmail,</th>
<th>Rest Of World airmail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vol 1</td>
<td>£33.00</td>
<td>£34</td>
<td>£44</td>
</tr>
<tr>
<td>Vol 2</td>
<td>£43.50</td>
<td>£47*</td>
<td>£55.95*</td>
</tr>
<tr>
<td>Vol 3</td>
<td>£42.50</td>
<td>£47</td>
<td>£55.95</td>
</tr>
<tr>
<td>Vol 4</td>
<td>£45</td>
<td>£49*</td>
<td>£57.95*</td>
</tr>
</tbody>
</table>

*For delivery to Canada Vol.2 and Vol 4 can only be sent by surface post.

Cheques made payable to Direct Book Service.

Direct Book Service, Wimborne Publishing Ltd,
408 Wimborne Road East, Ferndown, Dorset BH22 9ND
Tel: 0202 873872 Fax: 0202 874562
www.radiobygones.co.uk

Please send me: Wireless For The Warrior

.........(quantity) Vol 1;(quantity) Vol 2;(quantity) Vol 3;(quantity) Vol 4

Name ... Address ...

Post Code .. ☐ I enclose cheque/postal order/bank draft to the value of £..............

☐ Please charge my Visa/Mastercard/Amex/Diners Club/Maestro

£.......................... Card No: ...

Card security No: (last 3 digits on the signature strip)

Valid From Expiry Date Maestro Issue No
Dalek aficionados will know that when these diabolical creatures speak, a set of head mounted lights flash in sympathy with each spine-chilling word spoken. The circuit shown in Fig.1 is designed to be attached to the EPE Cybervox (July '05) and will flash filament lights whenever a word is spoken.

The voice signal is picked from the Cybervox board at connection point 19 (junction of C16 and the signal side of VR5). The signal is passed via capacitor C1 to an amplifier formed around an LM351 op.amp. The voltage gain of this amplifier is adjustable from about ×10 to ×1000. The gain level set by VR1 forces the output of the amplifier to swing between the supply rails (referred to as clipping) – a situation which is normally to be avoided.

In this application, however, these large voltage swings are usefully rectified by D1 and D2 and used to charge capacitor C4. As soon as the voltage across C4 reaches 0.6V, transistor TR1 conducts, turning on l.e.d. D3. Power transistor TR2 is used to switch more demanding loads such as filament lights and will only require a heatsink if more than two bulbs are wired in parallel.

Mike Boyden, Binfield, Bracknell

Fig.1. Circuit for the add-on Cybervox Light Interface for the EPE Cybervox Dalek voice emulator project – July ’05 issue
Voltage Splitter – Single Bias

The commonly used method to split a single supply is to use an op.amp and two resistors, as shown in Fig.4. Using an LM386 audio i.c. instead of the op.amp, the resistors are not required; see Fig.5. This saves on board space. Of 20 LM386s tried, 15 of them split the voltage to within 5%. The worst was 8.4%. This was sufficient for my application and would probably be so for most applications.

If more accurate splitting is required this can be done by connecting one or the other input lead to the negative rail via a 4kΩ pot (Fig.6). With most examples the split could be set precisely. With a 12V supply and loading only the one side with a 200Ω resistor (30mA) caused less than 0.5% change in the split (regulation). This is better performance than the op.amp solution can provide.

Op.amps are normally limited to 20mA of imbalance current. It is quite possible that other more robust audio amp i.c.s, such as the TDA2003, can be used if a more rigid split and a higher imbalance current is required. The LM386N-4 will handle 18V. The LM386N-1 has a quiescent current of 8mA at 12V. This should not be too onerous even for a battery application.

Neville Frewin,
Fontainebleu, South Africa

Fig.4. Splitter using an op.amp

Fig.5. Splitter using an LM386

Fig.6. An LM386 splitter with trimmer
Pulsed Motor Speed Controller – Over and Out

The circuit diagram shown in Fig. 7 was built to keep the speed of a motor constant with varying load conditions. It works by driving the motor with a train of 12V pulses, and varying the mark/space ratio of these pulses to control its speed. This method is reckoned to be more efficient than using a linear regulator because the series pass transistor dissipates much less power.

The speed of the motor is determined by measuring the voltage developed across it when no power pulse is being applied (this is effectively using the motor as a generator) and comparing its output voltage to a reference.

The 555 timer, IC1, is configured in its astable mode with capacitor C3 and resistor R8 determining the “output low” pulse width. This is of constant duration (about 7ms) and drives transistor TR1, via resistor R2, to feed a 12V power pulse to the motor M1.

The “output high” duration (“the dead time”) is determined by the value of the timing capacitor charge current. This charge current is itself determined by the voltage developed across the motor when no power is being applied to it. This motor voltage is compared by comparator TR2 to a 4.7V reference voltage provided by Zener diode D2.

So, if the voltage across the motor is less than about 3.5V transistor TR2 conducts and turns on TR3, its collector current charging timing capacitor C3. Resistor R7 limits the maximum collector current of TR3 and so limits the minimum “dead time” of the power pulses.

Switch-On

At switch-on, the voltage developed across the motor between the power pulses is zero so transistors TR2 and TR3 both conduct heavily and timing capacitor C3’s charge time is very short. As the motor accelerates to its target speed and its “generated” voltage increases, TR2 and TR3 both reduce their conduction, increasing the time it takes to charge C3 and so the “dead time” increases.

Eventually, an equilibrium is reached when the voltage generated across the motor is about the same as the reference voltage minus the voltages dropped across TR2’s emitter-base junction and TR3’s collector-emitter junction. Diode D1 protects TR2’s emitter-base junction from reverse bias during the 12V power pulse to the motor. During the power pulse both TR2 and TR3 are switched off so they have no effect on C3’s discharge current.

Capacitor C1 reduces the voltage “spike” developed across the motor produced by its internal inductance when the 12V pulse ends, and is most important to protect transistor TR1. Capacitor C2 provides a “soft start” for the motor by making the reference voltage build up slowly on switch-on; it can be omitted or increased in value as desired.

If the circuit is unstable, for instance, the motor is continually starting and stopping, increase the value of resistor R4 to reduce the system gain until stability is achieved.

The circuit should work fine as a variable speed controller by varying the reference voltage on TR2’s base (b), though judder may be encountered at low speeds and with low loads unless the timing capacitor C3 is reduced in value. Suitable circuit alterations for this are shown in Fig.9. It must be stressed that this circuit modification is untested.

Peter A. Tomlinson, Hull, East Yorkshire.

INGENUITY UNLIMITED

IU is your forum where you can offer other readers the benefit of your Ingenuity. Share those ideas, earn some cash and possibly a prize.
LAST month’s Net Work column highlighted AuthSMTP (see www.authsmtp.net), a third party mail service that promises to solve most outgoing email problems. This can be a perfect solution for users having domain mail relaying problems, or other issues such as a regular ISP’s mail server being blacklisted due to spam campaigns.

In use, AuthSMTP’s service is holding up extremely well and has been entirely trouble free for the past three months, offering superior performance to the writer’s broadband service provider, although the writer’s Eudora E-mail software was problematic initially. A 14-day trial of AuthSMTP can be ordered online.

They’re Spying On Us

This month we revisit the thorny topic of dealing with spyware and we take a look at some of the latest and most popular anti-spyware programs. Spyware is said to affect 90% of Windows PCs and can be dropped onto a computer in a number of ways. It may be included in some trial software, or it could originate from certain web pages or other computer files or downloads. Spyware programs reside on a host computer such as a PC and may be used to transmit credit card numbers or login details to a third party, or may have marketing-related purposes instead. They may hijack your web browser home page as well.

Some of the worst examples of spyware involve elements of “social engineering” which play mind-games by raising uncertainties in the minds of users and tricking them into clicking through to another web site. For example, a pop-up might appear that warns you that your PC has an infection (which it has: it’s the pop-up itself); clicking through might take you to a cheap utility software.

In a recent example, the author became increasingly irked to find a pop-up advert appearing every time he visited eBay’s web site. By using the free spyware removal tool Ad.Aware (highlighted in May 2005 Net Work, see www.lavasoft.de), some spyware was detected, but every time it was deleted by Ad Aware, the pop-up advertisement re-appeared. Only by using a whole armory of anti-spyware tools was the problem eventually cured.

The pop-up was also deceptive, as it resembles an authentic dialogue box that encourages neophyte computer users to click a “Next” button. The only redeeming grace was the unobtrusive warning link along the bottom of the pop-up. A similar pop-up also appeared, this time with a logo for “Casale Media”. This Internet marketing company claims to operate one of the world’s largest online media marketing networks, with 140 million “unique users” per month.

The eBay problem was eventually tracked down to “People On Page” spyware advertising. I asked Casale Media to comment on this form of persistent pop-up advertising. Casale assured me that they do not have the ability to target anyone’s computer or put any software onto their machine.

They added that they do not support pop-up advertisements and they specify that any site hosting adverts must only place pop-unders, and the amount of advertisements displayed to individual users is restricted to one per day. Casala blamed the persistent appearance of pop-ups on the presence of third party adware, as the Casale network only placed pop-unders – which appear after a short duration, underneath the main target web site.

The source of the People On Page spyware could not be pinpointed, and it proved troublesome to remove (it appeared to defeat AdAware SE), demonstrating the wisdom of using a range of spyware removal tools to hopefully cure any problems.

Large portal sites such as www.download.com, www.shareware.com, www.snapfiles.com and TUCOWS (The Ultimate Collection of Windows Software at www.tucows.com) are good places to start searching for utilities. Current anti-spyware contenders worth considering include: Parelogic’s Xoftspy (www.xoftspy.co.uk, free download, £39.95 one-time fee for the full version), the excellent Spyware Doctor (www.pctools.com £19.95) and the ubiquitous Spybot Search and Destroy (donationware) from www.safer-networking.org/en/download/.

Webroot offers the acclaimed Spyseeper for $29.95 per year (free trial available from www.webroot.com). Other spyware tools to consider are Sunbelt Software’s CounterSpy which has a 15 day trial and costs $19.95 per year. See www.sunbelt-software.com/CounterSpy.cfm for their take on Microsoft’s own Anti Spyware tools, which is available in beta from Microsoft via http://tinyurl.com/47cus.

Next month, I’ll be looking at ways of handling web site passwords and logins, without having to resort to memory or some dog-eared notebook (that you lost anyway). If you have any comments, suggestions or feedback please email them to the writer at alan@epemag.demon.co.uk.

AST month’s Net Work column highlighted AuthSMTP (see www.authsmtp.net), a third party mail service that promises to solve most outgoing email problems. This can be a perfect solution for users having domain mail relaying problems, or other issues such as a regular ISP’s mail server being blacklisted due to spam campaigns.

In use, AuthSMTP’s service is holding up extremely well and has been entirely trouble free for the past three months, offering superior performance to the writer’s broadband service provider, although the writer’s Eudora E-mail software was problematic initially. A 14-day trial of AuthSMTP can be ordered online.

They’re Spying On Us

This month we revisit the thorny topic of dealing with spyware and we take a look at some of the latest and most popular anti-spyware programs. Spyware is said to affect 90% of Windows PCs and can be dropped onto a computer in a number of ways. It may be included in some trial software, or it could originate from certain web pages or other computer files or downloads. Spyware programs reside on a host computer such as a PC and may be used to transmit credit card numbers or login details to a third party, or may have marketing-related purposes instead. They may hijack your web browser home page as well.

Some of the worst examples of spyware involve elements of “social engineering” which play mind-games by raising uncertainties in the minds of users and tricking them into clicking through to another web site. For example, a pop-up might appear that warns you that your PC has an infection (which it has: it’s the pop-up itself); clicking through might take you to a cheap utility software.

In a recent example, the author became increasingly irked to find a pop-up advert appearing every time he visited eBay’s web site. By using the free spyware removal tool Ad.Aware (highlighted in May 2005 Net Work, see www.lavasoft.de), some spyware was detected, but every time it was deleted by Ad Aware, the pop-up advertisement re-appeared. Only by using a whole armory of anti-spyware tools was the problem eventually cured.

The pop-up was also deceptive, as it resembles an authentic dialogue box that encourages neophyte computer users to click a “Next” button. The only redeeming grace was the unobtrusive warning link along the bottom of the pop-up. A similar pop-up also appeared, this time with a logo for “Casale Media”. This Internet marketing company claims to operate one of the world’s largest online media marketing networks, with 140 million “unique users” per month.

The eBay problem was eventually tracked down to “People On Page” spyware advertising. I asked Casale Media to comment on this form of persistent pop-up advertising. Casale assured me that they do not have the ability to target anyone’s computer or put any software onto their machine.

They added that they do not support pop-up advertisements and they specify that any site hosting adverts must only place pop-unders, and the amount of advertisements displayed to individual users is restricted to one per day. Casala blamed the persistent appearance of pop-ups on the presence of third party adware, as the Casale network only placed pop-unders – which appear after a short duration, underneath the main target web site.

The source of the People On Page spyware could not be pinpointed, and it proved troublesome to remove (it appeared to defeat AdAware SE), demonstrating the wisdom of using a range of spyware removal tools to hopefully cure any problems.

Large portal sites such as www.download.com, www.shareware.com, www.snapfiles.com and TUCOWS (The Ultimate Collection of Windows Software at www.tucows.com) are good places to start searching for utilities. Current anti-spyware contenders worth considering include: Parelogic’s Xoftspy (www.xoftspy.co.uk, free download, £39.95 one-time fee for the full version), the excellent Spyware Doctor (www.pctools.com £19.95) and the ubiquitous Spybot Search and Destroy (donationware) from www.safer-networking.org/en/download/.

Webroot offers the acclaimed Spyseeper for $29.95 per year (free trial available from www.webroot.com). Other spyware tools to consider are Sunbelt Software’s CounterSpy which has a 15 day trial and costs $19.95 per year. See www.sunbelt-software.com/CounterSpy.cfm for their take on Microsoft’s own Anti Spyware tools, which is available in beta from Microsoft via http://tinyurl.com/47cus.

Next month, I’ll be looking at ways of handling web site passwords and logins, without having to resort to memory or some dog-eared notebook (that you lost anyway). If you have any comments, suggestions or feedback please email them to the writer at alan@epemag.demon.co.uk.

AST month’s Net Work column highlighted AuthSMTP (see www.authsmtp.net), a third party mail service that promises to solve most outgoing email problems. This can be a perfect solution for users having domain mail relaying problems, or other issues such as a regular ISP’s mail server being blacklisted due to spam campaigns.

In use, AuthSMTP’s service is holding up extremely well and has been entirely trouble free for the past three months, offering superior performance to the writer’s broadband service provider, although the writer’s Eudora E-mail software was problematic initially. A 14-day trial of AuthSMTP can be ordered online.

They’re Spying On Us

This month we revisit the thorny topic of dealing with spyware and we take a look at some of the latest and most popular anti-spyware programs. Spyware is said to affect 90% of Windows PCs and can be dropped onto a computer in a number of ways. It may be included in some trial software, or it could originate from certain web pages or other computer files or downloads. Spyware programs reside on a host computer such as a PC and may be used to transmit credit card numbers or login details to a third party, or may have marketing-related purposes instead. They may hijack your web browser home page as well.

Some of the worst examples of spyware involve elements of “social engineering” which play mind-games by raising uncertainties in the minds of users and tricking them into clicking through to another web site. For example, a pop-up might appear that warns you that your PC has an infection (which it has: it’s the pop-up itself); clicking through might take you to a cheap utility software.

In a recent example, the author became increasingly irked to find a pop-up advert appearing every time he visited eBay’s web site. By using the free spyware removal tool Ad.Aware (highlighted in May 2005 Net Work, see www.lavasoft.de), some spyware was detected, but every time it was deleted by Ad Aware, the pop-up advertisement re-appeared. Only by using a whole armory of anti-spyware tools was the problem eventually cured.

The pop-up was also deceptive, as it resembles an authentic dialogue box that encourages neophyte computer users to click a “Next” button. The only redeeming grace was the unobtrusive warning link along the bottom of the pop-up. A similar pop-up also appeared, this time with a logo for “Casale Media”. This Internet marketing company claims to operate one of the world’s largest online media marketing networks, with 140 million “unique users” per month.
L

AST month we examined the basics of using the DS1267 dual digital potentiometer chip. We now look at some further aspects of its use.

Stacked Configuration

The potentiometers can be connected in series as in Fig.5. This stacked configuration allows the user to double the end-to-end resistance and the number of steps from 256 to 512 (9-bit resolution).

The wiper output for the stacked pots is taken from the SOUT pin, which is the multiplexed output of the wiper of pot 0 (W0) or pot 1 (W1), as governed by the stack select bit (bit 0). If bit 0 = 0, the output to SOUT will be that of W0. If bit 0 = 1, the SOUT output will be from W1.

![Fig.5. Stacking the pots](image)

Cascade Operation

Multiple DS1267s can be daisy-chained as in Fig.6. As a data bit is entered into the shift register, a bit will appear at the COUT output. The stack select bit will always be the first out at the beginning of a transmission. The COUT pin is always active regardless of the state of RST. This allows the shift register to be read without changing its value.

The COUT output can be used to drive the DQ input of another DS1267. When connecting multiple devices together, the total number of bits transmitted must always be 17 times the number of DS1267s in the daisy-chain.

An optional feedback resistor of between 2k and 10k can be placed between the COUT terminal of the last device and the first DQ input. This allows the PIC to be read as well as written to, or to circulate data through the daisy-chain.

When reading data via the COUT pin and feedback resistor, the PIC must set its pin that controls the DQ line into a high-impedance (input) state. When RST is taken high, bit 17 is present on the final COUT pin, which is fed back to the first DQ input through the resistor. The first DQ pin’s status can then be read by the PIC. By successive clocking of the CLK line, the register contents can be read and stored into PIC registers allocated by the user for the purpose.

When the CLK input is taken from low to high, bit 17 is loaded into the first position of the DS1267 register, and bit 16 becomes present on final COUT and first DQ pins. After 17 bits (of 17 times the number of DS1267s in the daisy-chain), the data will have been shifted completely around and back to its original position. When RST is taken low to end data transfer, the same value as before the read occurred is loaded into the W0, W1 and stack select bit registers.

Cascading Demo

The demo code discussed last month simply illustrates the writing of data to a single DS1267. It can also be used with two or more DS1267s cascaded, as in Fig.7. The control code now requires pot values appropriate to each pot in the chain. These codes are sent in the same way as with one DS1267, but as a serial stream of 17 × the number of DS1267s (two in this case).

By deleting the goto ENDPOT command the demo sends data to both chips. Note though that as written the code sends the first data group to the second chip, and the second group to the first chip. The ramping rate for the second pot group is higher than for the first.

Practically Speaking

In reality, it will be unlikely that repetitive looped control of one or more DS1267s would be required, unless ramped waveforms at various frequencies and slope angles were required.

Instead, it is more likely the pot wiper values may only need to be changed periodically. For this the PIC would only set particular values into the POTVALx registers immediately prior to the sending routine being called (call SETPOTS). Then at the end of that routine, the goto SETPOTS command would be replaced by a single return command.
Applications

The diagrams in Fig. 8a and Fig. 8b show two ways in which the DS1267 can be used in a circuit. In Fig. 8b, the required pot is connected between the +5V and –5V lines. The wiper is then connected to the non-inverting input of a unity-gain (buffering) op.amp. The op.amp output can then be used to control some other aspect of the circuit.

Secondly, Fig. 8a shows how the gain of an op.amp circuit can be amended by a DS1267 pot. The gain of the circuit is set by the relative resistance values at either side of the pot’s wiper. A further implementation of this idea is shown in the full datasheet.

In a forthcoming EPE project, a DS1267 is used with a single op.amp to control not only the gain, but also the offset bias of the stage. In that application, the setting of the pots is performed via a PC coupled to the controlling PIC.

It should be noted that any op.amp used as above should be defined as a rail-to-rail device.

Data Readback

A use for reading back data from a DS1267 has so far not been imagined. But should you wish to do so, a loop similar to that in SET-POTS should be written, in which the PIC’s data pin is set as an input. Three registers are then needed, one each for the pot data and one for the stack bit. The feedback resistor referred to earlier must be added. The process would then be along the lines of the logic in Table 2.

Table 2. Data Readback Logic

- set RST high
- read data (DQ) bit and store it as the stack bit
- send clock high then low
- read data bit
- store it into bit 0 of PIC’s first pot register
- rotate that register left by one place
- send clock high then low
- repeat process eight times
- repeat the last eight reads for the second pot register
- set RST low
- use the readback values as required

Listing 2

```
DELAY: decfz COUNTER0,F
    goto DELAY
decfz COUNTER1,F
    goto DELAY
return
```

Meter

If an oscilloscope is not available, the W0, W1 and SOUT waveforms can be monitored via a multimeter. This requires that a delay loop is put into the code, so that the analogue voltages at the three pins can be followed on the meter. As it stands, the demo code is clocked at too fast a rate for a meter.

Such a loop could consist of a routine such as that in Listing 2. This could be called by the command call DELAY immediately prior to the final command goto SETPOTS. This delay code would slow the wiper code changing routine by a factor of \(256 \times 256 = 65536\). Other more sophisticated delay routines could be used instead, for example by using the PIC’s timer to set the delay length.
JUNE '05
PROJECTS • PIC Ultrasonic Radar • Radio Control Model Switcher • Super-Ear Audio Telephone • Electronic Scarecrow • Digital TV Switchover • Programming
FEATURES • Catch the Wave (Tsunami) • Back To Basics – 3 • Digital TV Switchover • Practically Speaking • Circuit Surgery • Interface • Ingenuity Unlimited • Net Work – The Internet Page

JULY '05
PROJECTS • Cybervox • LF and VLF Converter • Multi-Clap Switch • Doorchime • Electronic Dice
FEATURES • Discovering PICs Reviewed • Back To Basics – 4 • Digital TV Switchover • Practically Speaking • Circuit Surgery • Interface • Net Work – The Internet Page

AUG '05
PROJECTS • Motor Amplifier • Pain Monitor • Audio System Communications • Kitchen Timer • Room Thermometer
FEATURES • Back To Basics – 5 • Circuit Surgery • Interface • Ingenuity Unlimited • Techno Talk • PIC 'N' Mix • Net Work – The Internet Page

SEPTEMBER '05
PROJECTS • All Band Radio • Snooker and Darts Scoreboard • Multicore Cable Tester • Controlling Model Railway Signals • Daily Reminder • Whistle Switch
FEATURES • Back To Logic Basics – 6 • Circuit Surgery • Practically Speaking • Ingenuity Unlimited • Techno Talk • PIC 'N' PIC • Net Work – The Internet Page

BACK ISSUES ONLY £3.80 each inc. UK p&p.
Overseas prices £4.50 each surface mail, £5.50 each airmail.
Where we do not have an issue a photocopy of any one article or one part of a series can be provided at the same price.

ORDER FORM – BACK ISSUES – PHOTOCOPYs– INDEXES

☐ Send back issues dated
☐ Send photocopies of (article title and issue date)
☐ Send a copy of this form, or order by letter if you do not wish to order our issues.

Name ...
Tel ...

☐ I enclose cheque/P.O/draft bank to the value of £ ...

☐ Please charge my Visa/Mastercard/Amex/Diners Club/Switch £ ...

Card No. ...

☐ Valid From Card Expiry Date Card Security Code [Valid for the next 3 digits on or just under the signature strip]

SEND TO: Everyday Practical Electronics, Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9HD. Tel: 01202 873873 Fax: 01202 874562
E-mail: orders@epemag.wimborne.co.uk
On-line Shop: www.epemag.wimborne.co.uk/shop/epemag.htm

Payments must be in £ sterling – cheque or bank draft drawn on a UK bank. Normally supplied within seven days of receipt of order. Please send a copy of this form, or order by letter if you do not wish to order our issues.
STORE YOUR BACK ISSUES ON MINI CD-ROMS

A great way to buy EPE Back Issues – our mini CD-ROMs contain back issues from our EPE Online website plus bonus articles, all the relevant PIC software and web links. Note: no free gifts are included.

All this for just £14.45 each including postage and packing.

VOL 1: BACK ISSUES – January 1999 to June 1999
VOL 2: BACK ISSUES – July 1999 to December 1999
VOL 4: BACK ISSUES – July 2000 to December 2000
VOL 6: BACK ISSUES – July 2001 to December 2001
VOL 7: BACK ISSUES – January 2002 to June 2002
VOL 8: BACK ISSUES – July 2002 to December 2002
VOL 10: BACK ISSUES – July 2003 to December 2003
VOL 11: BACK ISSUES – January 2004 to June 2004
VOL 12: BACK ISSUES – July 2004 to December 2004

NOTE: These mini CD-ROMs are suitable for use on any PC with a CD-ROM drive. They require Adobe Acrobat Reader (available free from the Internet – www.adobe.com/acrobat).

WHAT IS INCLUDED

All volumes include the EPE Online editorial content of every listed issue, plus all the available PIC Project Codes for the PIC projects published in those issues.

Note: Some supplements etc. can be downloaded free from the Internet – www.epemag.com.

No advertisements are included in Volumes 1 and 2, from Volume 5 onwards the available relevant software for Interface articles is also included.

EXTRA ARTICLES – ON ALL VOLUMES

BASIC SOLDERING GUIDE – Alan Winstanley’s internationally acclaimed fully illustrated guide
UNDERSTANDING PASSIVE COMPONENTS – Introduction to the basic principles of passive components.
HOW TO USE INTELLIGENT L.C.D.s, by Julian Ilett – An utterly practical guide to interfacing and programming intelligent liquid crystal display modules.
PhyzzyB COMPUTERS BONUS ARTICLE 2 – Creating an Event Counter. By Clive “Max” Maxfield and Alvin Brown.
INTERGRAPH COMPUTER SYSTEMS 3D GRAPHICS – A chapter from Intergraph’s book that explains computer graphics technology.
FROM RUSSIA WITH LOVE, by Barry Fox – Russian rockets launching American Satellites.
PC ENGINES, by Ernest Flint – The evolution of Intel’s microprocessors.
THE END TO ALL DISEASE, by Aubrey Scoon – The original work of Rife.
COLLECTING AND RESTORING VINTAGE RADIOS, by Paul Stenning.
The Life & Works of Konrad Zuse – a brilliant pioneer in the evolution of computers. A bonus article on his life and work written by his eldest son, including many previously unpublished photographs.

Note: Some of the EXTRA ARTICLES require WinZip to unzip them.

Order on-line from www.epemag.wimborne.co.uk/shopdoor.htm or www.epemag.com (USA $ prices) or by phone, Fax, E-mail or Post

BACK ISSUES MINI CD-ROM ORDER FORM

Please send me(quantity) BACK ISSUES CD-ROM VOL 1
Please send me(quantity) BACK ISSUES CD-ROM VOL 2
Please send me(quantity) BACK ISSUES CD-ROM VOL 3
Please send me(quantity) BACK ISSUES CD-ROM VOL 4
Please send me(quantity) BACK ISSUES CD-ROM VOL 5
Please send me(quantity) BACK ISSUES CD-ROM VOL 6
Please send me(quantity) BACK ISSUES CD-ROM VOL 7
Please send me(quantity) BACK ISSUES CD-ROM VOL 8
Please send me(quantity) BACK ISSUES CD-ROM VOL 9
Please send me(quantity) BACK ISSUES CD-ROM VOL 10
Please send me(quantity) BACK ISSUES CD-ROM VOL 11
Please send me(quantity) BACK ISSUES CD-ROM VOL 12

Price £14.45 each – includes postage to anywhere in the world.

Name ...
Address ...
Post Code ..

I enclose cheque/P.O./bank draft to the value of £ ...

Please charge my Visa/Mastercard/Amex/Diners Card No.

Card Security Code (The last 3 digits on or just under the signature strip)

Valid From Expiry Date

Maestro Issue No.

SEND TO: Everyday Practical Electronics,
Wimborne Publishing Ltd.,
408 Wimborne Road East, Ferndown, Dorset BH22 9ND.
Tel: 01202 873872. Fax: 01202 874562.
E-mail: orders@epemag.wimborne.co.uk

Payments must be by card or in £ Sterling – cheque or bank draft drawn on a UK bank.

Normally supplied within seven days of receipt of order.
Using a single ultrabright l.e.d., this simple low-cost, high security, optical voice link achieved a range of four metres, and 15 metres with a single lens.

In Concept

While the Photic Phone has an unusually good “line-of-sight” range, it does have two limitations in particular which the constructor might wish to be aware of. First, it has a “tinny” sound which does not match the quality of the humble telephone. However, its sound quality is more than adequate for clear voice communication. Second, although it incorporates fairly effective filtering, there is likely to be an audible hum when it is used under a.c. lighting.

The next impetus came as the author was developing the Bat Detector (EPE, March 2004). While contemplating the circuit diagram, it seemed obvious that it should be possible to transmit a modulated voice over a light-beam. This proved to be true, and a simple experiment achieved a short range.

The author also wondered just how simple such a circuit might potentially be. At first a direct analogue-to-binary conversion of the voice at the voice’s natural frequency – around 300Hz – was tried. Although this had the advantage of great simplicity, the clarity of transmission (or lack of it) was such that one could barely, if at all, make out what was being said. Female voices were more easy to discern than male – perhaps due to their higher frequency.

Lighting The Way

Besides being good fun, communicating via a light-beam may have certain advantages over other methods of transmission. It requires no wires, it needs no radio license, it is very cheap to implement, and it is all but impossible for anyone to eavesdrop on a transmission. Not only this, but the Photic Phone may also be used with fibre optic cable or a laser (at a price)! It has at least one further, less obvious use. This is to detect pulsed, reflected light. In this case the circuit would require a few small modifications, in particular the addition of an oscillator to the Transmitter circuit, and a diode charge pump to the Receiver. Such a circuit should have a potential range of a few metres with lenses, and would detect, for example, persons walking past a window or approaching a door.

Everyday Practical Electronics, October 2005
Clarity further improved if compression was applied at the transmitter. However, this approach was obviously not destined for practical success.

The obvious way to go, it seemed, was p.w.m. (pulse width modulation). This is not the same as digital transmission, since the latter converts the voice into equally spaced 0s and 1s, usually in a mathematically encoded form. Nor is it the same as amplitude modulation (a.m.), which modulates the amplitude of a signal. Instead, p.w.m. chops up the voice into binary segments with varying mark-space ratios, which correlate directly to the voice.

Fast Response

A breakdown of the Photonic Phone system into the Transmitter and Receiver sections is shown in the block diagram Fig. 1. The next key question was how fast an ultrabright l.e.d. would be able to switch. The author found that many ultrabright l.e.d.s (although not white l.e.d.s) could switch at 100kHz. Therefore, to be on the safe side, a modulating frequency a little above 40kHz was chosen for the circuit.

Again, it was considered whether compression would be required at the transmitter. However, in practice this proved not to be necessary, on condition that one knows approximately how loudly to speak into the microphone. As shown, the piezo microphone needs to be held about 10cm from the mouth when speaking normally. As it turned out, one of the most important requirements of the circuit was filtering. Firstly, a low-pass filter (482Hz) was required to reduce acoustic feedback. An early prototype produced acoustic feedback at 15 metres distance. This low-pass filter also doubles as demodulation or decoding for the modulated voice.

Secondly, it was necessary to include a high-pass filter (175Hz) at the receiver end, to suppress the hum of a.c. lighting. Note that since a power MOSFET (TR1) is used to switch the ultrabright l.e.d. D1, the light output of the Transmitter could easily be increased. A few ultrabright l.e.d.s could be used at once, or even the exceptionally bright Lumileds that are now available on the hobbyist market.

Transmitter Circuit

The full circuit diagram for the Transmitter stage of the Photonic Phone is shown in Fig. 2. Op.amp IC1a is configured as a relaxation oscillator, running at just over 40kHz. Notice that its output is taken from inverting input pin 2, instead of output pin 1. This is to obtain a rough approximation of a triangle wave for the modulating signal, which is presented to IC1d pin 13.

Next, a simple preamplifier, IC1b and IC1c, is employed to amplify the signal from a piezo microphone, MIC1. This is a cheap, disc type, piezo sounder, without an integral drive circuit. The potential at IC1b non-inverting input pin 5 is lightly biased through resistors R1 and R2, and gain is set through resistors R7 and R10. The values of these two resistors may be increased for greater sensitivity, and vice versa. However, bear in mind that greater sensitivity means increased acoustic feedback, which is more problematic at shorter distances.
Resistors R11 to R13 are particularly important to the circuit, since these “contain” the signal at IC1d input pin 12 within one-third and two-thirds of the supply voltage. That is, the maximum amplitude of the preamplifier signal at IC1d input pin 12 matches the maximum amplitude of the modulating signal at IC1d input pin 13.

Lastly, the gate (g) of MOSFET TR1 is biased at its switching voltage through resistors R14 to R16, so that a modulated signal at IC1d output pin 14 causes the ultrabright “transmit” LED D1 to switch. If a different MOSFET is used, R14 to R16 may need to be adjusted so that the potential at TR1’s gate (g) approximates the switching voltage. Bearing this in mind, most power MOSFETs may be used.

Receiver Circuit

The complete circuit diagram for the Receiver section is shown in Fig. 3. This comprises a preamplifier, IC2, followed by a simple passive bandpass filter, and a 500mW r.m.s. audio amplifier i.c. IC3.

The “receive” photodiode D3 was taken from the author’s spares box, but any sensitive photodiode or phototransistor may be used here, e.g. the Siemens SFH203. As a rough guide, the resistance of the author’s photodiode fell below 10kΩ when situated 10cm from the “transmit” LED D1.

Resistor R18 may be modified to suit D3, and ideally the potential at the D3/R18 junction would be about half supply voltage when receiving. A light dependent resistor (l.d.r.) also worked here, but with much reduced sensitivity.

Of course, an infra-red diode could be used for D1, with a matching photodiode or phototransistor for D3. In this case, the Photic Phone would communicate invisibly. However, considering the difficulty of working with an invisible beam, the author would not wish to attempt this himself!

Light Signals

The potential at the junction between photodiode D3 and resistor R18 fluctuates rapidly as a light signal is received. This is fed to the non-inverting input (pin 3) of preamplifier IC2 by means of coupling capacitor C8. The preamplifier’s non-inverting input (pin 2) is biased by means of resistors R19 and R20.

After this follow five passive filters, which make up a second-order low-pass filter (cut-off 482Hz), and a third-order high-pass filter (cut-off 173Hz), which form a bandpass filter when combined. This filter essentially permits the voice to pass, while filtering out both low frequency ripples caused by a.c. lighting, and the high frequency modulating signal. While active filters could have been used in this circuit, this would not have contributed to a simpler circuit, nor would it strictly have been necessary.

The fact that the high-pass filter is third-order, and its cut-off frequency relatively high, reveals that ripple from a.c. lighting was problematic during development of the circuit. While this filter does not completely eliminate hum, it greatly reduces it, particularly if photodiode D3 is placed in a black tube (see Fig. 6). One could insert another high-pass filter if desired.

The author was unable to find the required 9.2 kilohm resistors for the fil-
However, an easy solution is to use 10 kilohm resistors and to wire 100kΩ resistors in parallel, which equals about 9·1 kilohms.

The cut-off frequency of the filters is calculated with the formula $f = \frac{2\pi}{RC}$. The two low-pass filters comprise $R22/C11$ and $R23/C13$, while the three high-pass filters comprise resistors $R24$ to $R26$ and capacitors $C14$, $C16$ and $C17$.

Audio Amplifier

The audio signal amplifier, IC3, uses the popular LM386N-1 i.c., which puts out a respectable 0·5W r.m.s. into 8 ohms. Capacitor $C19$ is used as a final low-pass filter, recommended in data sheets (usually its value lies around 10nF), and $C15$ is a coupling capacitor for loudspeaker $LS1$.

To simplify design, the usual Zobel network at the output of IC3 was omitted. Capacitor $C12$ is used to boost the amplifier's gain, and this may be increased up to 10µF for increased gain, its positive terminal wired to pin 1 of IC3.

The current consumption of both Transmitter and Receiver is fairly high (about 15mA each), therefore two 12V sealed lead-acid batteries would be recommended, or two 12V regulated power supplies.

Construction

The printed circuit boards (P.C.B.s) for the Transmitter and Receiver both measure just 80mm (3·15in.) × 55mm (2·17in.) Instructions are given here for soldering both boards simultaneously.

The component layouts, off-board wiring and underside copper foil master patterns for the Transmitter and Receiver P.C.B.s for the Photic Phone are given in Fig.4 and Fig.5. These boards are available as a pair from the EPE PCB Service, codes 531(Trans.) and 532(Rec.).

COMPONENTS

Resistors

- $R1, R2, R11$ to $R13$, $R19, R20$: 1M (7 off)
- $R3, R5, R6$: 220k (3 off)
- $R4, R9, R21$: 1k (3 off)
- $R7, R14$: 47k (2 off)
- $R8, R15, R16$: 27k (3 off)
- $R10$: 47k
- $R17$: 510Ω
- $R18$: 22k
- $R22, R23$: 3k3 (2 off)
- $R24$ to $R26$: 9k2 (10k and 100k in parallel) (3 off)

All 0·25W 5% carbon film

Potentiometers

- $VR1$: 500k enclosed round preset

Capacitors

- $C1$: 470p ceramic or polyester
- $C2$ to $C5$, $C7$, $C9$ to $C14$, $C16$ to $C19$, $C21$: 100n ceramic or polyester (16 off)
- $C6$, $C15$, $C20$: 220µ radial elect. 16V (3 off)
- $C8$: 10n ceramic or polyester

Semiconductors

- $D1$: ultrabright red l.e.d. (see text)
- $D2$, $D4$: 1N4001 50V 1A rect. diode (2 off)
- $D3$: sensitive photodiode or phototransistor (e.g. SFH203 – see text)
- $TR1$: IRF610 n-channel power MOSFET
- $IC1$: TL074CN quad j.f.e.t. op.amp
- $IC2$: TL071 j.f.e.t. op.amp
- $IC3$: LM388N-1 audio amplifier

Miscellaneous

- $MIC1$: 3V to 30V piezo sounder, without integral driver
- $S1$, $S2$: s.p.s.t. toggle or slider switch (2 off)
- $LS1$: 0·5W 8 ohm miniature loudspeaker
- $B1$, $B2$: 12V sealed lead-acid battery or 12V regulated power supply – see text (2 off)

Printed circuit boards available from the **EPE PCB Service**, codes 531(Trans.) and 532(Rec.); 8-pin d.i.l. socket (2 off); 14-pin d.i.l. socket; ABS plastic case, size and style to choice (see text); lenses (optional – see text); screened microphone cable (optional); cable ties; battery clip (2 off); solder pins (12 off); solder, etc.

Fig.4. Transmitter printed circuit board component layout and wiring details
Since the two circuits amplify audio signals, and operate at a relatively high frequency, good solder joints need to be made throughout. All the components are fairly robust, and should not suffer from a good (though not excessive) application of solder. The integrated circuits should not be inserted in their dual-in-line (d.i.l.) sockets until circuit board construction has been completed and double checked for any component placement errors or bad soldering connections, including “bridged” copper tracks.

Working on each board in turn, begin construction by soldering the twelve solder pins, the three d.i.l. sockets, the twenty-six resistors and twenty-one capacitors (note the polarity of C6, C15 and C20). Solder preset potentiometer VR1, diodes D1 to D4 (D1 and D3 may be situated off-board for convenience), and transistor TR1.

Follow this by attaching the piezo microphone MIC1, loudspeaker LS1 and the two battery clips, observing the correct polarity, to the circuit boards as shown in Fig.4 and Fig.5. Finally, insert IC1 to IC3 in the d.i.l. sockets, observing their correct orientation.

Final Assembly
Suitable ABS plastic cases may be used for the Transmitter and Receiver, with the Transmitter being mounted on a tripod if desired. The piezo sounder/microphone MIC1 may be mounted in a separate, small ABS case, and wired to the p.c.b. by means of screened microphone cable to make a “CB-style” handheld microphone.

Lenses may be used with the Transmitter and Receiver as shown in Fig.6, and each should increase the range of the Photic Phone a few times over. Either add a single lens at the Transmitter (see photograph), or lenses at both the Transmitter and Receiver. The lenses are positioned so that the semiconductor chips within D1 and D3 are located precisely at the focal points of the lenses. A method for determining the approximate focal length of a lens is shown in Fig.6.

Experimenting with a lens in front of the Transmitter’s ultrabright light emitting diode (l.e.d.) to check its operating range. With no lens it reached four metres and with it achieved a range of around 15 metres. The completed Receiver board is shown below left.
Setting Up and Use

Begin the setting up procedure by turning the Receiver’s preset Gain control VR1 up (clockwise) about one-third. If the circuit is powered up under a.c. lighting, a soft hum should be heard. If the volume of the hum varies as you move your hand across photodiode D3, this is a likely indication that all is well with the Receiver.

Now place the Transmitter about one metre from the Receiver, with the ultrabright l.e.d. D1 pointing directly at photodiode D3. When you power up the Transmitter, D1 should immediately illuminate, and there may be a squeal in loudspeaker LS1 due to acoustic feedback.

If there is no acoustic feedback, tap microphone MIC1. The tap should be heard in the loudspeaker. In the case of acoustic feedback, back-off (turn anticlockwise) preset VR1 slightly until the Receiver is silenced, then tap microphone MIC1 again. The tap should be heard in the loudspeaker.

From here on, it is now merely a matter of “pushing the boundaries” by increasing the range, experimenting with the gain of the Receiver with preset VR1 (note that higher gain does not always translate to better performance), and by experimenting with lenses. It should be found that, with a single lens at the Transmitter, the Photonic Phone should operate over 10 metres’ distance with ease, and likely a good deal further.

Note that for two-way, “line-of-sight” communication you will require two sets of Photonic Phones.

Fig. 6. (a) Method of reducing mains lighting hum, (b) suggested adjustable lens mounting arrangement and (c) determining the approximate focal length of a lens.
The fact that a silicon transistor has a forward threshold potential of about 0.6 volts. Once that threshold has been reached, large increases in the base current produce little increase in the base voltage.

One way around this problem is to simply adjust the mathematics of the software to take the forward threshold voltage into account. A slight drawback of this method is that it reduces the effective resolution of the system, with output values from 0 to 60 being left unused. The alternative used here is to process the output voltage of IC1 using a simple non-inverting buffer amplifier based on IC2. However, the inclusion of D1 in the negative feedback network adds about 0.6 volts to the output potential from IC1, nullifying the forward threshold voltage of test components.

NPN Testing
The base of a npn test device is driven from the output of IC2 via resistor R2. The collector load resistor for an npn test transistor is R3, and IC3 is used as the voltage comparator. The Select In handshake input is used to monitor the output of IC3. R4 and R5 set the comparator’s threshold voltage at half the supply potential, or 2.5 volts in other words. The base current is incremented until the collector voltage falls below this level, which occurs with a collector current of just over 20 milliamps.

This is high enough to ensure that any test device will operate efficiently, and realistic readings should even be obtained when testing power transistors. On the other hand, the test current is not so high that small signal transistors are in danger of being zapped.

The base current is a little over eight microamps per LSB, so multiplying the final value output to the converter by eight gives the base current in microamps. The current gain of a transistor is equal to its collector current divided by the base current, and with this design the collector current is 20 milliamps (20000 microamps). Dividing 20000 by the final base current therefore gives the current gain of the test component. The mathematics can be simplified slightly, and dividing 2500 (20000/8 = 2500) by the final value sent to the converter gives the current gain of the test device.

PNP Testing
Some additional circuitry is needed in order to accommodate pnp test devices. The base current for a pnp test transistor is fed via R6 to a simple current mirror based on TR1 and TR2. The collector of TR2 drives the base of a pnp test device, and sinks a current that is appropriately equal to the input current via R6. Resistor R7 acts as the collector load for pnp test components, and IC4 acts as the voltage comparator that detects the collector voltage going through the half-supply level. Its output is monitored by the printer port’s Paper Out handshake line.

The connections to the two voltage comparators are such that their outputs go high when the 20 milliamp threshold current is exceeded. The software therefore has to increment the base current until a high logic level is detected from the relevant comparator. Rather than having npn/pnp switching, the interface has separate npn and pnp test sockets.

The circuit requires an accurate and stable +5V supply that can handle currents of up to 30 milliamps. The connections to the printer port are made using a piece of ...
The digital converter program described in the tester is an extension of the analogue to digital converter program in the article. The form has two labels (see Fig.3), one of which acts as a “Transistor Tester” heading. There are two command buttons, and operating the appropriate one takes a reading from an npn (Command1) or pnp (Command2) test transistor. The subroutine for the npn button is in Listing 1.

The routine is a For Next loop that outputs values from 1 to a maximum of 255 to the data lines of the printer port. The count is started at 1 rather than 0 in order to avoid errors later in the routine due to a division by zero.

Each time the value in variable “loopcount” is incremented, the corresponding current gain is calculated and displayed on the digital readout. However, the value is incremented so fast that only the final gain figure is actually displayed.

When bit 4 of the handshake input port (&H379) goes high, loopcount is set at 255 and the loop is brought to a halt. This line is placed at the end of the loop so that the display is left showing a valid reading.

If the measured current gain is less than 10, an If...Then instruction displays “OPEN” on the readout. This indicates that the test device is not exhibiting a significant amount of current gain and it has probably gone open circuit. It is important that each test device is checked initially without the base terminal connected. This should result in “OPEN” being displayed, because only minute leakage currents will flow through a serviceable device with no base current applied. Obtaining any gain reading when no base current is applied indicates that the test component has an excessively high leakage current and is faulty.

A current gain reading of 2500 is interpreted by another If...Then instruction that displays “CLOSED” on the digital readout. Real-world transistors have current gains of no more than about 1000, and a gain of 2500 indicates that the test component has gone closed circuit. A faulty device in this state will provide a “CLOSED” reading with or without the base terminal connected.

The routine for testing pnp transistors is essentially the same as one for checking npn devices. The only difference is that a masking value or 32 rather than 16 is used when testing the state of the handshake input line, so that the Paper Out line at bit 5 of the handshake input register is monitored.

Software

The sample program for the transistor tester is an extension of the analogue to digital converter program described in the previous Interface article. The form has two labels (see Fig.3), one of which acts as the digital readout, while the other just provides a “Transistor Tester” heading. There are two command buttons, and operating the appropriate one takes a reading from an npn (Command1) or pnp (Command2) test transistor. The subroutine for the npn button is in Listing 1.

The sample program for the transistor tester is an extension of the analogue to digital converter program described in the previous Interface article. The form has two labels (see Fig.3), one of which acts as the digital readout, while the other just provides a “Transistor Tester” heading. There are two command buttons, and operating the appropriate one takes a reading from an npn (Command1) or pnp (Command2) test transistor. The subroutine for the npn button is in Listing 1.

The routine is a For Next loop that outputs values from 1 to a maximum of 255 to the data lines of the printer port. The count is started at 1 rather than 0 in order to avoid errors later in the routine due to a division by zero.

Each time the value in variable “loopcount” is incremented, the corresponding current gain is calculated and displayed on the digital readout. However, the value is incremented so fast that only the final gain figure is actually displayed.

When bit 4 of the handshake input port (&H379) goes high, loopcount is set at 255 and the loop is brought to a halt. This line is placed at the end of the loop so that the display is left showing a valid reading.

If the measured current gain is less than 10, an If...Then instruction displays “OPEN” on the readout. This indicates that the test device is not exhibiting a significant amount of current gain and it has probably gone open circuit. It is important that each test device is checked initially without the base terminal connected. This should result in “OPEN” being displayed, because only minute leakage currents will flow through a serviceable device with no base current applied. Obtaining any gain reading when no base current is applied indicates that the test component has an excessively high leakage current and is faulty.

A current gain reading of 2500 is interpreted by another If...Then instruction that displays “CLOSED” on the digital readout. Real-world transistors have current gains of no more than about 1000, and a gain of 2500 indicates that the test component has gone closed circuit. A faulty device in this state will provide a “CLOSED” reading with or without the base terminal connected.

The routine for testing pnp transistors is essentially the same as one for checking npn devices. The only difference is that a masking value or 32 rather than 16 is used when testing the state of the handshake input line, so that the Paper Out line at bit 5 of the handshake input register is monitored.

Each time the value in variable “loopcount” is incremented, the corresponding current gain is calculated and displayed on the digital readout. However, the value is incremented so fast that only the final gain figure is actually displayed.

When bit 4 of the handshake input port (&H379) goes high, loopcount is set at 255 and the loop is brought to a halt. This line is placed at the end of the loop so that the display is left showing a valid reading.

If the measured current gain is less than 10, an If...Then instruction displays “OPEN” on the readout. This indicates that the test device is not exhibiting a significant amount of current gain and it has probably gone open circuit. It is important that each test device is checked initially without the base terminal connected. This should result in “OPEN” being displayed, because only minute leakage currents will flow through a serviceable device with no base current applied. Obtaining any gain reading when no base current is applied indicates that the test component has an excessively high leakage current and is faulty.

A current gain reading of 2500 is interpreted by another If...Then instruction that displays “CLOSED” on the digital readout. Real-world transistors have current gains of no more than about 1000, and a gain of 2500 indicates that the test component has gone closed circuit. A faulty device in this state will provide a “CLOSED” reading with or without the base terminal connected.

The routine for testing pnp transistors is essentially the same as one for checking npn devices. The only difference is that a masking value or 32 rather than 16 is used when testing the state of the handshake input line, so that the Paper Out line at bit 5 of the handshake input register is monitored.

Each time the value in variable “loopcount” is incremented, the corresponding current gain is calculated and displayed on the digital readout. However, the value is incremented so fast that only the final gain figure is actually displayed.

When bit 4 of the handshake input port (&H379) goes high, loopcount is set at 255 and the loop is brought to a halt. This line is placed at the end of the loop so that the display is left showing a valid reading.

If the measured current gain is less than 10, an If...Then instruction displays “OPEN” on the readout. This indicates that the test device is not exhibiting a significant amount of current gain and it has probably gone open circuit. It is important that each test device is checked initially without the base terminal connected. This should result in “OPEN” being displayed, because only minute leakage currents will flow through a serviceable device with no base current applied. Obtaining any gain reading when no base current is applied indicates that the test component has an excessively high leakage current and is faulty.

A current gain reading of 2500 is interpreted by another If...Then instruction that displays “CLOSED” on the digital readout. Real-world transistors have current gains of no more than about 1000, and a gain of 2500 indicates that the test component has gone closed circuit. A faulty device in this state will provide a “CLOSED” reading with or without the base terminal connected.

The routine for testing pnp transistors is essentially the same as one for checking npn devices. The only difference is that a masking value or 32 rather than 16 is used when testing the state of the handshake input line, so that the Paper Out line at bit 5 of the handshake input register is monitored.
UK readers you can SAVe 71p on every issue of EPE

How would you like to pay £2.58 instead of £3.30 for your copy of EPE?
Well you can – just take out a one year subscription and save over 71p an issue, or £8.60 over the year

You can even save over 92p an issue if you subscribe for two years – a total saving of £22.20

Overseas rates also represent exceptional value

You also:

- Avoid any cover price increase for the duration of your subscription
- Get your magazine delivered to your door each month
- Ensure your copy, even if the newsagents sell out

Order by phone or fax with a credit card or by post with a cheque or postal order, or buy on-line from www.epemag.co.uk (click on “Subscribe Now”)

ONLINE SUBSCRIPTIONS

Subscriptions can only start with the next available issue.

SAVE 71p on every issue of EPE

SUBSCRIPTION ORDER FORM

☐ 6 Months: UK £16.50, Overseas £19.50 (standard air service), £28.50 (express airmail)
☐ 1 Year: UK £31.00, Overseas £37.00 (standard air service), £55 (express airmail)
☐ 2 Years: UK £57.00, Overseas £69.00 (standard air service), £105 (express airmail)

To: Everyday Practical Electronics, Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Tel: 01202 873872. Fax: 01202 874562. Email: subs@epemag.wimborne.co.uk. Also via the Web at http://www.epemag.co.uk. Subscriptions start with the next available issue. We accept MasterCard, Amex, Diners Club, Maestro or Visa. (For past issues see the Back Issues page.)

I enclose payment of £ (cheque/PO in £ sterling only), payable to Everyday Practical Electronics

My card number is: ..

Signature ..

Card Security Code (The last 3 digits on or just under the
signature strip)

Card Ex. Date Maestro Issue No.

Subscriptions can only start with the next available issue.
EPE IS PLEASED TO BE ABLE TO OFFER YOU THESE

ELECTRONICS CD-ROMS

ELECTRONIC PROJECTS

Electronic Projects is split into two main sections: Building Electronic Projects contains comprehensive information about the components, tools and techniques used in developing projects from initial concept through to final circuit board production. Extensive use is made of video presentations showing and construction techniques. The second section contains a set of ten projects for students to build, ranging from simple sensor circuits through to power amplifiers. A shareware version of Matrix’s CADPACK schematic capture, circuit simulation and p.c.b. design software is included. The projects on the CD-ROM are: Logic Probe; Light, Heat and Moisture Sensor; NES555 Timer; Egg Timer; Dice Machine; Bike Alarm; Stereo Mixer; Power Amplifier; Sound Activated Switch; Reaction Tester. Full parts lists, schematics and p.c.b. layouts are included on the CD-ROM.

ELECTRONIC CIRCUITS & COMPONENTS V2.0

Provides an introduction to the principles and application of the most common types of electronic components and shows how they are used to form complete circuits. The virtual laboratories, worked examples and pre-designed circuits allow students to learn, experiment and check their understanding. Version 2 has been considerably expanded in almost every area following a review of major syllabuses (GCSE, GNVQ, A level and HNC). It also contains both European and American circuit symbols. Sections include: Fundamentals: units & multiples, electricity, electric circuits, alternating circuits. Passive Components: resistors, capacitors, inductors, transformers. Semiconductors: diodes, transistors, op.amps, logic gates. Passive Circuits: Active filters. The Parts Gallery will help students to recognise common electronic components and their corresponding symbols in circuit diagrams. Included in the Institutional Versions are multiple choice questions, exam style questions, fault finding virtual laboratories and investigations/worksheets.

ANALOGUE ELECTRONICS

Analogue Electronics is a complete learning resource for this most difficult branch of electronics. The CD-ROM includes a host of virtual laboratories, animations, diagrams, photographs and text as well as a SPICE electronic circuit simulator with over 50 pre-designed circuits. Sections on the CD-ROM include: Fundamentals – Analogue Signals (5 sections), Transistors (4 sections), Waveshaping Circuits (6 sections), Op.Amps – 17 sections covering everything from Symbols and Signal Connections to Differentiators. Amplifiers – Single Stage Amplifiers (9 sections), Multi-stage Amplifiers (3 sections), Filters – Passive Filters (10 sections), Phase Shifting Networks (4 sections), Active Filters (6 sections), Oscillators – 6 sections from Positive Feedback to Crystal Oscillators. Systems – 12 sections from Audio Pre-Amplifiers to 8-Bit ADC plus a gallery showing representative p.c.b. photos.

DIGITAL ELECTRONICS V2.0

Digital Electronics builds on the knowledge of logic gates covered in Electronic Circuits & Components (opposite). It takes students through the subject of digital electronics up to the operation and architecture of microprocessors. The virtual laboratories allow users to operate many circuits on screen. Covers binary and hexadecimal numbering systems, ASCII, basic logic gates, monostable action and circuits, bistables – including JK and D-type flip-flops. Multiple gate circuits, equivalent logic functions and specialised logic functions. Introduces sequential logic including clocks and clock circuits, counters, binary coded decimal and shift registers. A/D and D/A converters, traffic light controllers, memories and microprocessors – architecture, bus systems and their arithmetic logic units. Sections on Boolean Logic and Venn diagrams, displays and chip types have been expanded in Version 2 and new sections include shift registers, digital fault finding, programmable logic controllers and microcontrollers. The Institutional versions now also include several types of assessment for supervisors, including worksheets, multiple choice tests, fault finding exercises and examination questions.

ANALOGUE FILTERS

Analogue Filters is a complete course in designing active and passive filters that makes use of highly interactive virtual laboratories and simulations to explain how filters are designed. It is split into five chapters: Revision which provides underpinning knowledge required for those who need to design filters. Filter Basics which is a course in terminology and filter characterization, important classes of filters, filter order, filter impedance and impedance matching, and effects of different filter types. Advanced Theory which covers the use of filter tables, mathematics behind filter design, and an explanation of the design of active filters. Passive Filter Design which includes an expert system and filter synthesis tool for the design of low-pass, high-pass, band-pass, and band-stop filters. Butterworth and Chebyshev ladder filters. Active Filter Design which includes an expert system and filter synthesis tool for the design of low-pass, high-pass, band-pass, and band-stop filters. Butterworth and Chebyshev.

prices

<table>
<thead>
<tr>
<th>Prices for each of the CD-ROMs above are:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hobbyist/Student……………………………………£45 inc VAT</td>
</tr>
<tr>
<td>Institutional (Schools/HE/FE)………………£99 plus VAT</td>
</tr>
<tr>
<td>Institutional 10 user (Network Licence)…..£249 plus VAT</td>
</tr>
<tr>
<td>Site Licence……………………………………….£499 plus VAT</td>
</tr>
</tbody>
</table>

(UK and EU customers add VAT at 17.5% to “plus VAT” prices)

ELECTRONICS CAD PACK

Electronics CADPACK allows users to design complex circuit schematics, to view circuit animations using a unique SPICE-based simulation tool, and to design printed circuit boards. CADPACK is made up of three separate software modules. (These are restricted versions of the full Laboratory software.) ISIS Lite which provides full schematic drawing features including full control of drawing appearance, automatic wire routing, and over 6,000 parts. PROSPICE Lite (integrated into ISIS Lite) which uses unique animation to show the operation of any circuit with mouse-operated switches, pots, etc. The animation is compiled using a full mixed mode SPICE simulator. ARES Lite PCB layout software allows professional quality PCBs to be designed and includes advanced features such as 16-layer boards, SMT components, and an auto-router operating on user generated Net Lists.

ROBOTICS & MECHATRONICS

Case study of the Milford Instruments Spider

Robotics and Mechatronics is designed to enable hobbyists/students with little previous experience of electronics to design and build electromechanical systems. The CD-ROM deals with all aspects of robotics from the control systems used, the transducers available, motors/actuators and the circuits to drive them. Case study material (including the NASA Mars Rover, the Milford Spider and the Furby) is used to show how practical robotic systems are designed. The result is a highly stimulating resource that will make learning, and building robotics and mechatronic systems easier. The Institutional versions have additional interactive virtual laboratories.

- Little previous knowledge required
- Mathematics is kept to a minimum and all calculations are explained
- Clear circuit simulations

PCB Layout

Electronics CADPACK allows users to design complex circuit schematics, to view circuit animations using a unique SPICE-based simulation tool, and to design printed circuit boards. CADPACK is made up of three separate software modules. (These are restricted versions of the full Laboratory software.) ISIS Lite which provides full schematic drawing features including full control of drawing appearance, automatic wire routing, and over 6,000 parts. PROSPICE Lite (integrated into ISIS Lite) which uses unique animation to show the operation of any circuit with mouse-operated switches, pots, etc. The animation is compiled using a full mixed mode SPICE simulator. ARES Lite PCB layout software allows professional quality PCBs to be designed and includes advanced features such as 16-layer boards, SMT components, and an auto-router operating on user generated Net Lists.
TEACH-IN 2000 – LEARN ELECTRONICS WITH EPE

EPE's own Teach-In CD-ROM, contains the full 12-part Teach-In series by John Becker in PDF format plus the Teach-In interactive software (Win 95, 98, ME and above) covering all aspects of the series. We have also included Alan Winstanley's highly acclaimed Basic Soldering Guide which is fully illustrated and which also includes Desoldering. The Teach-In series covers: Code Colors and Resistors, Capacitors, Potentiometers, Sensor Resistors, Ohm's Law, Diodes and I.E.D.s, Waveforms, Frequency and Time, Logic Gates, Binary and Hex Logic, Op-amps, Comparators, Mixers, Audio and Sensor Amplifiers, Transformers and Rectifiers, Voltage Regulation, Integration, Differentiation, 7-segment Displays, L.C.D.s, Digital-to-Analogue, Transformers and Rectifiers, Voltage Regulation, Integration, Differentiation, 7-segment Displays, L.C.D.s, Digital-to-Analogue, and Linear Circuits. Teach-In 2000 includes Desoldering. The Teach-In which is fully illustrated and which also includes a simple PC interface (Win 95, 98, ME ONLY) so you can use your PC as a basic oscilloscope with the various circuits.

A hands-on approach to electronics with numerous breadboard circuits to try out. £12.45 including VAT and postage. Requires Adobe Acrobat (available free from the Internet – www.adobe.com/acrobat).

FREE WITH EACH TEACH-IN CD-ROM – Electronics Hobbyist Compendium 80-page book by Robert Penfold. Covers Tools For The Job; Component Testing; Oscilloscope Basics.

ELECTRONICS IN CONTROL

Two colourful animated courses for students on one CD-ROM. These cover Key Stage 3 and GCSE syllabuses. Key Stage 3: A pictorial look at the Electronics section featuring animations and video clips. Provides an ideal introduction or revision guide, including multi-choice questions with feedback. GCSE: Aimed at the Electronics in many Design & Technology courses, it covers many sections of GCSE Electronics. Provides an ideal revision guide with Homework Questions on each chapter. Worked answers with an access code are provided on a special website.

Single User £29 inc. VAT. Multiple User £39 plus VAT

Student copies (available only with a multiple user copy) £8 plus VAT (UK and EU customers add VAT at 17.5% to “plus VAT” prices)

MODULAR CIRCUIT DESIGN

Contains a range of tried and tested analogue and digital circuit modules, together with the knowledge to use and interface them. Thus allowing anyone with a basic understanding of circuit symbols to design and build their own projects. Version 3 includes data and circuit modules for a range of popular PICs; includes PICAXE circuits, the system which enables a PIC to be programmed without a programmer, and without removing it from the circuit. Shows where to obtain free software downloads to enable BASIC programming.

Essential for anyone wanting to undertake GCSE or “A” level electronics or technology and for hobbyists who want to get to grips with project design. Over seventy different input, Processor and Output modules are illustrated and fully described, together with detailed information on construction, fault finding and components, including circuit symbols, pinouts, power supplies, decoupling etc.

Single User £19.95 inc. VAT. Multiple User £34 plus VAT

(£19.95 inc. VAT. Multiple User £34 plus VAT) (UK and EU customers add VAT at 17.5% to “plus VAT” prices)

DIGITAL WORKS 3.0

Digital Works Version 3.0 is a graphical design tool that enables you to construct digital logic circuits and observe their behaviour. It is so simple to use that it will take you less than 10 minutes to make your first digital design. It is so powerful that you will never outgrow its capability ● Software for simulating digital logic circuits ● Create your own macros – highly scalable ● Create your own circuits, components, and i.c.s ● Easy-to-use digital interface ● Animation brings circuits to life ● Fast library of logic macros and 74 series i.c.s with data sheets ● Powerful tool for designing and learning.

Hobbyist/Student £45 inc. VAT. Institutional £69 plus VAT. Institutional 10 user £249 plus VAT. Site Licence £599 plus VAT.

ELECTRONIC COMPONENTS PHOTOS

A high quality selection of over 200 JPG images of electronic components. This selection of high resolution photos can be used to enhance projects and presentations or to help with training and educational material. They are royalty free for use in commercial or personal printed projects, and can also be used royalty free in books, catalogues, magazine articles as well as worldwide web pages (subject to restrictions – see licence for full details).

Also contains a FREE 30-day evaluation of Paint Shop Pro 6 – Paint Shop Pro image editing tips and on-line help included!

Price £19.95 inc. VAT

CD-ROM ORDER FORM

CD-ROM ORDER FORM

Please send me:

- Electronic Projects
- Electronic Circuits & Components V2.0
- Analogue Electronics
- Digital Electronics V2.0
- Filters
- Electronic CAP Pack
- Robotics & Mechatronics
- Assembly for PICmicro V2
- C for PICmicro V2
- Flowcode V2 for PICmicro
- Digital Works 3.0
- PICmicro Development Board V2 (hardware)
- Development Board UK plugtop power supply
- Development Board 25-way connecting lead
- Teach-In 2000 – FREE BOOK
- Electronic Components Photos
- Electronics In Control – Single User
- Electronics In Control – Multiple User
- Modular Circuit Design – Single User
- Modular Circuit Design – Multiple User

Please charge my Visa/Mastercard/Amex/Diners Club/Switch: £

Order number.

Full name: ... Post code: Tel. No:

Signature: ..

I enclose cheque/PO in £ sterling payable to WIMBORNE PUBLISHING LTD for £

Please charge my Visa/Mastercard/Amex/Diners Club/Switch: £

Valid From: ... Card expiry date:

Card No: .. Switch Issue No.

Card Security Code (The last 3 digits on or just under the signature strip)

ORDERING ALL PRICES INCLUDE UK POSTAGE

Student/Single User/Standard Version price includes postage to most countries in the world. EU residents outside the UK add £5 for airmail postage per order.

Institutional, Multiple User and Deluxe Versions – overseas readers add £5 to the basic price of each order for airmail postage (do not add VAT unless you live in an EU (European Union) country, then add 17.5% VAT or provide your official VAT registration number).

Send your order to:

Direct Book Service
Wimborne Publishing Ltd
408 Wimborne Road East
Ferndown, Dorset BH22 9ND

To order by phone ring 01202 873872. Fax: 01202 874562

Goods are normally sent within seven days

E-mail: orders@wimborne.co.uk

Online shop:
www.epemag.wimborne.co.uk/shopdoor.htm

Everyday Practical Electronics, October 2005

719
Among the many gimmicks fitted to modern top-of-the-range cars, a parking radar would rank as one of the more useful. Presented now is a little unit that is both inexpensive and easily fitted to any car (even an "old banger") and should help to prevent expensive mishaps!

The unit uses ultrasonics to determine the distance to an obstruction, the presence of which is indicated initially by an i.e.d. As the distance is reduced, a sounder emits a tone that rises in pitch to give a rough indication of the distance before impact!

As well as its intended use, this unit could also be suitable for a blind or partially sighted person to indicate the presence of obstacles in their path.

Basic Operation

All radars operate on more or less the same principle – a signal is transmitted which bounces back from the target to a receiver, which measures the time taken for the echo to return.

For long distance radar, radio frequency signals are used, but for short range applications (up to a few tens of metres) ultrasonics offer a simpler method. Despite the frequency being beyond the range of human hearing, the speed of the sound is still roughly 300m/sec, or 1m every 3ms.

This sort of time is easily resolved using ordinary components. Ultrasonic beams are also moderately directional (typically having a beam width of about 30o) so that only the object roughly in front of the transmitter should be detected.

The Parking Radar block diagram is shown in Fig.7.1. The master oscillator controls a 40kHz oscillator which drives an ultrasonic transmitter producing an ultrasonic beam directed at the target. The beam is reflected back, picked up by the ultrasonic receiver whose output signal is amplified. The resulting signal is used to set a bistable which has been previously reset at the start of the transmission.

The result is a pulsed output from the bistable. The duration of the pulses depends on the time between the transmission and its reception. Fig.7.2 illustrates the waveforms at various points in the circuit when the distance is large, medium and small. At very large distances (not shown) the reflected signal is too small to set the bistable and so the output remains low, while at decreasing distances, the output spends more and more time in the logic high state.

This p.w.m. (pulse width modulated) waveform is fed to a simple integrator which produces a d.c. voltage proportional to the distance from the target. This could be read on a suitably calibrated meter but here it is used to control a voltage controlled oscillator (VCO) which produces an audio tone increasing in pitch as the distance to the target is reduced.

The range obtainable from such a system is limited by four factors: the power transmitted; the gain of the echo amplifier;
target reflection efficiency; the direction in which the echo is reflect-
ed. This will obviously be different for large flat surfaces perpendicu-
lar to the beam than for irregular or angled surfaces which will tend to
absorb or disperse the signal rather than reflect it towards the receiv-
er.

Sophisticated ranging systems include a variable gain amplifier to
amplify weak received signals more than strong ones to provide a con-
stant amplitude return signal to get around these problems. Fortunately
in this application, where a miss is as good as a mile, we are only inter-
ested in short ranges (normally less than one
metre) which make such measures largely
unnecessary, even with poorly reflecting
surfaces.

Circuit Diagram

The complete circuit diagram for the Parking Radar is shown in
Fig.7.3.

The master oscillator formed around Schmitt NAND gate IC1a
produces short positive-going pulses of about 0.4ms duration
every 4ms, as defined by components C1, R1, R2 and D1. When
IC1a output pin 10 goes high, the oscillator built around IC1b is
enabled and oscillates at a frequency of 40kHz, adjustable by pre-
set VR1. IC1c inverts the output of IC1b, and transducer TX1 is
driven in anti-phase by both gates for maximum power output.

When the output of IC1a goes low, it switches off the transmis-
sion. It also generates a pulse across capacitor C7, which triggers
the bistable formed around IC2a and IC2b.

The echo signal reflected from the target is picked up by transducer RX1 and amplified by the circuit around transistors TR1 and TR2. The
reset input of the bistable is held just above the logic threshold of the
gate by the potential divider formed by resistors R8 and R9. Transistor
TR2’s collector (c) is coupled to this input via capacitor C8. The out-
put of IC2a (and thus IC2c) is therefore a rectangular waveform which
goes low when the transmitted signal ends and high when it is
received after being reflected.

The distance range at which the amplified echo signal is large enough
to reset the bistable is about one metre with the components shown,
although this can be varied somewhat by altering the value of R9. At this
range i.e.d. D2, which is controlled by the output from IC1c, begins to
turn on giving an indication of the presence of an obstacle.

The output from IC2c also feeds into the integrator formed around
R12 and C9. The voltage across C9 rises according to the time for
which the output of IC2c is high. It increases as the range decreases.

A simple voltage controlled oscillator (VCO) is formed by IC1d
and its associated components. As the voltage across C9 rises,
transistor TR3 is turned on harder and passes a greater current,
causing capacitor C10 to charge faster. When the voltage at the
input of IC1d falls below the lower logic threshold, the output goes
high, discharging C10 via D3 and R16.

Although the discharge time remains constant, the charge time falls and consequently the oscillation frequency rises with
increased current flowing into the base (b) of TR3. This is repro-
duced by the piezo buzzer WD1 as a tone with a rising pitch. The
frequency varies from low frequency clicks at a range of around
1m, to about 300Hz when the range has fallen to 5cm. Resistor

Fig.7.3. Full circuit diagram for the Parking Radar
R15 is included to suppress oscillation due to leakage when TR3 is off.

Construction

Printed circuit board component and track layout details are shown in Fig. 7.4. This board is available from the EPE PCB Service, code 533.

The board should be assembled in order of ascending component size. Normal precautions should be observed regarding component orientation for diodes, transistors etc. and when handling the CMOS i.c.s. Use sockets for i.c.s, but do not insert the i.c.s. until the board has been fully checked.

Pads for the battery connector are provided although some form of d.c. plug and socket may be more appropriate in this application. Care should be taken to ensure the correct polarity of the supply.

Transducers TX1 and RX1 are not interchangeable in this application. Their function should be marked on their case. The pin connected to the case is the 0V terminal. The transducers should be mounted on the p.c.b. pads provided, not on extension leads. Although the prototype used ordinary transducers, waterproof ones are preferable.

The only setting up required is the adjustment of VR1 to obtain a 40kHz signal across TX1. This is best done using an oscilloscope but in the absence of one, the voltage across RX1 or at TR2 collector (c) can be monitored and VR1 adjusted for maximum echo signal strength.

The circuit is fairly uncritical in component values but the values of R8 or R9 may need to be altered to ensure that the quiescent voltage (when no signal is present) at their junction is above the logic high threshold of IC2a. Typically, this means greater than about 5V with a 9V supply.

Enclosures

The p.c.b. should be housed in a suitable enclosure mounted somewhere on the back of the car. The type will depend on individual circumstances. It needs to protect the components from moisture and dampness. Added protection can be given by coating the p.c.b. with a “conformal” spray.

The l.e.d. and buzzer are mounted in a separate case connected back to the p.c.b. If preferred, the buzzer may be connected to the 0V line rather than to +9V, which will enable a 3-core cable to be used for the overall assembly interconnections.

Since the unit has a minimum range indication of about 5cms, note that the warning tone will not increase in frequency once this distance is reached. The circuit therefore does not give an indication of distance down to zero as this will normally be indicated by a crunching sound!

The maximum range is around one metre (depending on the target). This unit is not suited to modifying for greater distance detection.

The circuit should be powered by a 9V battery, although operation at 12V is also possible. The total current drawn at 9V is around 1.5mA, rising to some 10mA when sounding, so that an on/off switch is recommended. This can be a panel mounted type which can be switched on manually or by a relay activated by the reversing light when the reverse gear is selected if automatic switching is preferred. For the other applications mentioned, different arrangements for this will no doubt need to be devised.

Components

<table>
<thead>
<tr>
<th>PARKING RADAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistors</td>
</tr>
<tr>
<td>R1 8k2k</td>
</tr>
<tr>
<td>Capacitors</td>
</tr>
<tr>
<td>C1,C4,C6 100n polyester or ceramic (3 off)</td>
</tr>
<tr>
<td>Potentiometer</td>
</tr>
<tr>
<td>VR1 470k skeleton preset</td>
</tr>
<tr>
<td>Semiconductors</td>
</tr>
<tr>
<td>D1,D3 1N4148 signal diode (2 off)</td>
</tr>
<tr>
<td>Miscellaneous</td>
</tr>
<tr>
<td>TX1 40kHz ultrasonic transmitter (see text)</td>
</tr>
</tbody>
</table>

Printed circuit board, available from the EPE PCB Service, code 533; 14-pin d.i.l. socket (2 off); cases to suit; 9V battery and clip (see text); connecting wire; solder etc.

Approx. Cost Guidance Only

£15 excl case and batts

Fig. 7.4. Printed circuit board component layout, full underside copper foil master and off-board wiring for the Parking Radar module.
Telephone Switch

This simple Telephone Switch will enable you to remotely switch an appliance on or off simply by phoning home a specific number of times free of charge from anywhere in the world. Now how’s that for remote control?

Basic Operation

The block diagram of Fig.7.5 shows that the basic operation is based on a counter and a timing unit built around a monostable which together control a bistable. The telephone rings are detected by an input circuit which provides an output pulse, the duration of which is determined by the length of the ringing signal.

A single pulse is generated each time, no matter how long the phone rings. The first ring resets the counter and also sets the monostable which has an adjustable period of between about 90 and 180 seconds.

The number of calls which occur before the monostable times out are counted and if this coincides with a pre-set number chosen, a bistable is either set or cleared. The bistable controls a transistor which drives a relay enabling any appliance from a lamp to a heating system to be switched on or off as required. The number of calls to switch the output on and off has been chosen to be five and three respectively, although this can be changed if required.

The circuit obviously cannot discriminate between a routine call to your number or your own call, but since it is most unlikely that anyone will call your number three times in the space of one and a half minutes, the system has a high immunity to false switching. Anyone trying to contact you would no doubt hang up to allow the phone to be answered. They would thus be unable to make the required number of calls before the monostable timed out, even if they tried again a short time later.

Ringing-In

A problem could arise, however, if someone just happens to ring while you were in the middle of making your sequence of calls, in which case the appliance could end up being switched on when you wanted it switched off. This is not very likely as the caller would have to make his/her call immediately after your last one but before the monostable had timed out. In order to ensure that even this cannot happen, the difference in the number of calls required to switch the output on or off is made equal to two.

In this scenario, an engaged tone will probably be heard which should alert you to the possibility that the system may have gone wrong. Since this simple circuit cannot indicate the state of its output to you, it would be quite easy to lose track of whether the output was on or off. A Set/Reset bistable has therefore been used in preference to a toggle type so that a different number of calls is required to switch the relay on from that required to switch it off.

It is therefore an easy matter to repeat the required sequence some time later if you are not sure that the unit responded correctly to the earlier sequence, in the full knowledge that you will not inadvertently switch the unit on when you wanted it off, or vice-versa.

Note that the circuit does not count the individual rings themselves, which normally (in the UK) occur as pairs with an equal period of silence between them.

This pattern is generated by the local exchange and may be different to the pattern which the caller hears in his phone.

This means that the home number must be re-dialed the number of times required to switch the unit on or off. The phone should be allowed to ring at least three times before hanging up to ensure that the signal has got through.

More rings can be allowed if required but as the monostable starts timing from the beginning of the first ring, time must be allowed to make the required number of calls.

Components

TELEPHONE SWITCH

<table>
<thead>
<tr>
<th>Resistor</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>680k</td>
<td>See SHOP</td>
</tr>
<tr>
<td>R2, R5, R6</td>
<td>1k (3 off)</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>10k</td>
<td>See TALK</td>
</tr>
<tr>
<td>R4</td>
<td>470k</td>
<td></td>
</tr>
<tr>
<td>R7</td>
<td>1M5</td>
<td>See text</td>
</tr>
<tr>
<td>R8</td>
<td>100k</td>
<td>See text</td>
</tr>
<tr>
<td>All 0.25W 5% carbon film</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Potentiometer

<table>
<thead>
<tr>
<th>Potentiometer</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR1</td>
<td>1M skeleton preset</td>
</tr>
</tbody>
</table>

Capacitors

<table>
<thead>
<tr>
<th>Capacitor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>10µ radial elect. 16V</td>
</tr>
<tr>
<td>C2</td>
<td>10µ disc ceramic 16V (2 off)</td>
</tr>
<tr>
<td>C3, C4</td>
<td>100µ radial elect. 16V (2 off)</td>
</tr>
</tbody>
</table>

Semiconductors

<table>
<thead>
<tr>
<th>Diode</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>5mm red l.e.d.</td>
</tr>
<tr>
<td>D2</td>
<td>5mm green l.e.d.</td>
</tr>
<tr>
<td>D3</td>
<td>1N4148 signal diode</td>
</tr>
</tbody>
</table>

This block diagram shows the basic operation of the Telephone Switch. The input circuit detects telephone rings and triggers a monostable, which together with a bistable control the relay. The counter is used to keep track of the number of calls required to switch the appliance on or off.

Approx. Cost Guidance Only

£15 excl case and power supply
The complete circuit diagram for the Telephone Switch is shown in Fig. 7.6. The circuit has been designed so that no direct connection to the phone line is required. Two choices of interface can be made, one optical, the other audio.

The optical interface can be via a commercial plug-in extension ringer unit. As well as an audio output, these normally have an i.e.d. which flashes in time with each ring. In Fig. 7.5, a phototransistor, TR1, detects the flashing i.e.d. and its output is fed to the inputs of Schmitt NAND gate IC1a.

If an extension ringer is not available, the audio input circuit of Fig. 7.7 may be used instead. The phone rings, detected by microphone MIC1, are amplified by transistor TR3 and fed to an npn transistor used as TR1 in place of the phototransistor.

Whichever method is used, when the telephone rings, TR1 will switch on causing capacitor C1 to charge and the outputs of IC1a will therefore remain low throughout the overall time that the telephone rings.

The output from IC1a also feeds to IC1d, which drives i.e.d. D1 via buffer transistor R2. The i.e.d. indicates when the circuit responds to a call and it should remain on (and not flash) until the call is terminated.

When the monostable is triggered, the output of IC1b goes high (indicated by i.e.d. D2). This causes counter IC2 to be reset via C2, and the output of IC1c to go low, triggered via C3. With IC1c output low, gates IC3a and IC3b are disabled, preventing the output bistable formed by gates IC3c and IC3d, from changing state.

Time Out

Each time the call is terminated the output of IC1a will go high, switching off i.e.d. D1 and causing the counter to advance but not affect the monostable, which remains in its triggered state with i.e.d. D2 turned on.

Eventually, when the monostable times out after a period determined by the value of C3 and R4/VR1, the output of IC1c will go high, enabling gates IC3a and IC3b. If three or five calls have been received by this time, then counter outputs Q3 or Q5 will be high, causing the output of either gate IC3b or IC3a to go low.

If gate IC3a goes low, the bistable will be set with the output of IC3c going high. This switches on TR2 via R6 and turns on relay RLA, switching on the supply to the load to be controlled.

If IC3b’s output goes low, however, the bistable will be cleared and the output of IC3c will go low, switching off TR2 and the relay. Diode D3 inhibits back-e.m.f. generation when the relay switches off.

If any other number of calls, except three or five, are received by the time that the monostable times out, counter outputs Q3 and Q5 will be low and the outputs of IC3b and IC3c will remain in their previous state, as will the relay. The circuit stays in this state until another call is received, which will again reset the counter and the operation will begin again. The output circuit will, however, only respond to three or five rings.
Power Supply

The unit can operate from a range of d.c. supply voltages, but 9V is suggested. It draws virtually no current (especially if the phototransistor input version is built) when no calls are being received. Current consumption will rise slightly when a call is received due mainly to the l.e.d.s, but will rise dramatically when the relay is energised.

A 9V battery supply can be used when testing the circuit, but for serious use a 9V d.c. mains adaptor is recommended, especially if the relay is to be left energised for long periods. A low voltage mains adapter of the type used for powering small appliances such as radios and calculators would be ideal. **Do not exceed a supply of 15V d.c.**

Construction

Printed circuit board component and track layout details are shown in Fig.7.8. This board is available from the EPE PCB Service, code 534.

The p.c.b will accommodate either version of the input circuit. If the phototransistor version is built, the microphone, TR3 and resistors R7 and R8 should be left out and the phototransistor fitted in place of TR1.

The phototransistor specified is housed in an l.e.d.-type package with only the collector and emitter terminals connected. There is no base lead and so the centre pad (b) on the p.c.b. for TR1 should be left unconnected. Note that the collector (c) terminal is adjacent to the flat area on the rim of the package so that this lead should go to the pad connected to the positive battery supply.

It will probably be necessary to mount the phototransistor on flying leads and these should be kept as short as possible. One possible method of coupling the phototransistor to the l.e.d. on the extension ringer is to use a clear epoxy resin to ensure a good light path between the two components. Once this has set it, it should be painted black or covered with an opaque material to ensure that ambient light does not upset the operation of the circuit.

Flying Leads

The board should be assembled and checked as stated previously. Note that the relay and microphone (if used) should be connected to the allocated pads by means of flying leads. The microphone is a piezo type more often encountered in designs as a sounder (it can work in either mode). Although the type used in the prototype had red and black leads, it may be connected exactly the same way around.

If possible, these leads should not be extended as this could make the circuit sensitive to stray electrical fields. The microphone should be placed close to a telephone or glued to an extension ringer to ensure that the circuit responds. In noisy environments it is possible that the circuit could be triggered by other random sounds and care should be taken to ensure that this cannot happen by shielding the microphone. If these efforts prove unsuccessful, the phototransistor option should be used.

Relay

The relay should be chosen to suit the supply voltage, although in practice most relays will operate from a range of voltages. Most 12V relays for example will operate quite satisfactorily from a supply of 9V to 15V. A higher voltage rating is to be preferred as these will generally have a higher coil resistance and therefore draw a lower current when operating.

The relay contacts must be rated for the appliance to be switched. Do not connect the relay to an a.c. mains powered appliance unless you are suitably qualified or supervised.

Depending on the application, it may be desirable to mount the circuit in a box. The choice of case is yours. In many cases it may then be more convenient to mount the l.e.d.s on the panel, in which case the leads may simply be extended as required (although in use they are not really required as, hopefully, there will not be anyone at home to observe them!). Holes will also be required for the microphone or photo transistor as well as sockets for a d.c. supply.

Testing

The circuit may be tested and set up by connecting a 9V battery and a temporary l.e.d. (in series with a suitable ballast resistor of say 1k) across the relay coil terminals. When the microphone is tapped (or the phototransistor illuminated), both l.e.d.s D1 and D2 should light. D1 should switch off shortly afterwards while D2 should remain on.

The circuit should be activated a number of times by tapping the microphone or switching on the phototransistor, making sure each time that D1 switches off again. If five such “inputs” are made within the time D2 is on, the temporary l.e.d. should light (or the relay switch on) when D2 switches off. Repeating the procedure with only three “inputs” should cause the output to switch off, while any other number of “inputs” made within the time that D2 is on should be ignored by the circuit.

Once this has been done, it would be best to “phone a friend” or at least get him to phone you. When your phone rings, make sure that l.e.d. D1 only lights once and remains on for the duration of the ringing call. If it follows the individual rings by switching off each time, the value of R1 or C1 should be increased.

Do not make the values of R1 or C1 much larger than necessary to achieve this because the l.e.d. may then remain on for too long after the call has terminated and the circuit could fail to recognise the next call. The components specified should not need to be altered in the majority of cases.

It then only remains to set preset VR1 for a monostable time (D2 on) sufficiently long to enable five separate calls to be made to the number. This will obviously depend on how many digits must be dialled and if a re-dial facility is used, but the time should be made as short as possible to minimise the possibility of false switching.

Remember that extra digits such as area codes may need to be dialled, especially if the device is to be used from abroad. Of course, this unit has been designed to switch the output on after five calls and off after three but this could be easily changed by utilising the other outputs of the 4017 counter.

Next Month: Weather Vane Repeater and a Noughts & Crosses Emigma (see below).
Following on from last month, our “consultant surgeon” looks into some chopper op.amp i.c.s and offers some circuit advice on how to use them

LAST month, in response to one of the threads on the EPE Chat Zone, we looked at the theory of chopper stabilised amplifiers (also known as auto-zeroing amplifiers). These circuits have very low drift and are therefore suitable for use with very low frequency signals, where slow changes in the amplifier’s offsets with time due to factors such as temperature and power supply fluctuations cannot be easily blocked or filtered out.

We discussed how these circuits achieved high precision by continuously nulling their own offsets. This month we will look at a couple of real chopper amplifier chips, with which you might like to experiment.

For the Chop

The TLC2654 is a high-precision chopper-stabilized operational amplifier from Texas Instruments. It has very good d.c. precision, featuring an extremely low change in offset voltage with temperature of around 0.003µV/°C, and a very low offset change in offset voltage with temperature of around 1µV maximum.

These figures are much better than can be achieved with ordinary operational amplifiers. In addition, as we explained last month, low-frequency noise is significantly reduced compared with ordinary operational amplifiers by the chopper stabilization due to the reduction of 1/f noise.

The TLC2652, another chopper-amp from Texas Instruments, has even better noise performance than the TLC2654, but less precision. You have to choose the best chip for the job you want it to do. Of course other manufacturers make chopper stabilised amplifiers too, such as the National Semiconductor LMV2011, the Linear Technology LTC1050, the Analog Devices AD8551 and the Microchip TC7650. All have different combinations of capabilities and features. Both the TLC2652 and TLC2654 are available from Farnell in 8-pin d.i.l. packages for around £4. They also stock the LTC1050 and one or two other choppers.

The TLC2652 has a very high input impedance CMOS input stage and is particularly suitable for low-level signal processing applications such as strain gauges, thermocouples, and other transducer amplifiers. It has a default chopping frequency of 450Hz.

The higher chopping frequency of the TLC2654, compared with the TLC2652, accounts for the better noise performance and bandwidth, which covers a frequency spectrum from near d.c. to 10kHz, with best performance up to 5kHz. Like the TLC2652, it is suitable for wide-bandwidth low frequency and subsonic applications and is also appropriate for use with strain gauges and thermocouples.

A Packaged Deal

Both the TLC2652 and TLC2654 are available in 8-pin and 14-pin d.i.l. versions and have the pinouts shown in Fig.1. On the 8-pin version you get the dual power supply (VDD+ and VDD-), differential inputs (IN- and IN+), and output (OUT) that you would expect with any operational amplifier, plus three other less familiar pins: CXA, CXB and CLAMP.

These are for the nulling capacitors and clamping feature, which we will look at in more detail later. The 14-pin version includes provision for an external clock (INT/EXT, CLK IN, CLK OUT) and a special connection point for the nulling capacitors (C RETURN).

A number of other chopper stabilized op.amps have the same or similar pin connections, for example the TC7650. The LTC1050 is different: it does not need external capacitors so pin 1 and pin 8 are no-connections and has a clock input on pin 5.

The CXA and CXB pins are used to connect two capacitors which are required for operation of these amplifiers. The capacitors are used for holding the nulling trim voltage, as explained last month.

However, the user does not have to control the chopping process in any way and these devices can simply be used as operational amplifiers. The chopping frequency is fixed by the internal oscillator and is invisible to the user. The 14-pin versions do provide the user with more control – the chopping can be driven from an external clock.

The capacitors connected to CXA and CXB should be in the range of 0·1µF to 1µF and located as close as possible to the pins. On the 8-pin versions of the chips the other end of each capacitor is connected to either VDD+ or VDD- (see Fig. 2). On the 14-pin version there is a special C RETURN pin to which the capacitors can be connected. In applications needing a fast response use high-quality film capacitors such as mylar, polystyrene, or polycarbonate. In other applications, ceramic or other low-grade capacitor are satisfactory.
In Response

One problem with chopper amplifiers that we did not discuss last month is their response to overload conditions, which occur when very large input signals push the output into saturation at one of the supply rails. Under these conditions the circuit is no longer a linear amplifier and is therefore unable to find the correct nulling voltage to compensate for offsets.

Thus, after an overload, a chopper amp may take some time to recover to full performance. The CLAMP pin provides a means by which the internal circuitry can detect overload conditions and hence prevent the amplifier from becoming heavily saturated. This in turn speeds up recovery once the overload condition is removed.

If clamping is required the CLAMP pin is connected to the inverting input IN- (in parallel with the closed-loop feedback resistor) (see Fig.3). If connected the clamp is automatically activated when the output is approximately 1V from either supply rail.

When activated the clamp reduces the gain of the amplifier and the output is prevented from going into saturation. Since the output must source or sink current through the clamp circuitry the maximum output voltage swing is slightly reduced when the clamp is used.

On Guard

In order to get the full benefit of high precision capabilities of chopper stabilised amplifiers, good circuit board layout is required. Problems are caused by leakage across the p.c.b. (printed circuit board), so thorough cleaning and drying after construction is important.

Also, a useful technique is to include an input guard in the p.c.b. layout. A guard is a p.c.b. copper track in a ring surrounding the input terminals, which absorbs leakage currents. The ring connects to a low impedance point ideally at the same common mode voltage as the inputs. The concept of the p.c.b. guard ring layout is shown in Fig.4, the actual layout for a given application will depend on the i.c. package used.

Chopper stabilised operational amplifiers can be used in the same circuit configurations as ordinary op. amps, including those for inverting and non-inverting amplifiers. These are shown in Fig.5. These schematics include the guard ring (the circles near the inputs). Two circles are drawn on the schematic as both inputs are guarded, but only one ring in created on the p.c.b., as shown in Fig. 4.

Of course, with the TLC2652 and TLC2654, and other choppers with external nulling capacitors, these are present whereas they may not be in a normal op. amp circuit. You may also use the clamp facility, but this is not included in Fig.5. If required, connect the clamp (pin 5) to the inverting input (pin 2) as shown in Fig.3.

On Guard

In order to get the full benefit of high precision capabilities of chopper stabilised amplifiers, good circuit board layout is required. Problems are caused by leakage across the p.c.b. (printed circuit board), so thorough cleaning and drying after construction is important.

Also, a useful technique is to include an input guard in the p.c.b. layout. A guard is a p.c.b. copper track in a ring surrounding the input terminals, which absorbs leakage currents. The ring connects to a low impedance point ideally at the same common mode voltage as the inputs. The concept of the p.c.b. guard ring layout is shown in Fig.4, the actual layout for a given application will depend on the i.c. package used.

Chopper stabilised operational amplifiers can be used in the same circuit configurations as ordinary op. amps, including those for inverting and non-inverting amplifiers. These are shown in Fig.5. These schematics include the guard ring (the circles near the inputs). Two circles are drawn on the schematic as both inputs are guarded, but only one ring in created on the p.c.b., as shown in Fig. 4.

Of course, with the TLC2652 and TLC2654, and other choppers with external nulling capacitors, these are present whereas they may not be in a normal op. amp circuit. You may also use the clamp facility, but this is not included in Fig.5. If required, connect the clamp (pin 5) to the inverting input (pin 2) as shown in Fig.3.

The gains of the circuits in Fig.5 are set by the values of resistors R1 and R2 in the usual way. The gain is R2/R1 for the inverting amplifier and 1+(R2/R1) for the non-inverting amplifier. Resistor R3 does not contribute to the gain setting, but is present to help minimise offsets. The value of R3 should be equal to the parallel combination of R1 and R2, that is (R1×R2)/(R1+R2). This value ensures that the impedance of the external circuit viewed from each input is equal, to minimise the difference in voltage drops due to input bias currents.
EPE TEACH-IN 2000 CD-ROM

The whole of the 12-part Teach-In 2000 series by John Becker (published in EPE Nov '99 to Oct 2000) is now available on CD-ROM. Plus the Teach-in 2000 Interactive software (Win 95, 98, ME and above) covering all aspects of the series and Alan Winstanley's Basic Soldering software (Win 95, 98, ME and above) covering all aspects of basic electronics.

The series gives a hands-on approach to electronics with numerous breadboard circuits to try out, plus a simple computer interface (Win 95, 98, ME only) which allows a student to design a circuit using a basic oscilloscope.

ONLY £12.45 including VAT and p&p

FREE Electronics Hobbyist Compendium book with Teach-In 2000 CD-ROM

DIRECT BOOK SERVICE

The books listed have been selected by Everyday Practical Electronics editorial staff as being of special interest to everyone involved in electronics and computing. They are supplied by mail order to your door. Full ordering details are given on the last book.

For a further selection of books see the next two issues of EPE.

NOTE: ALL PRICES INCLUDE UK POSTAGE

Radio

A waveform to combat signals on spurious responses; An audio notch filter; A parametric equaliser; C.W. and S.B.B. audio filters; Simple noise limiter; A speech processor; A volume expander.

Projects include a crystal oscillator, and RTTY/C.W. tone decoder, and a RTTY serial to parallel converter. Also interesting and useful circuits for short wave enthusiasts.

92 pages
Order code BP304 £4.45

An Introduction to Amateur Radio L D Poole

Amateur radio is a unique and fascinating hobby which has attracted thousands of people since it began at the turn of the century. This book gives the newcomer a comprehensive and easy to understand guide through the subject so that the reader can get involved in the hobby. It then remains an essential reference volume to use in the short term and again. Topics include the basic aspects of the hobby, such as operating procedures, tuning and setting up a station, buying an HF transceiver. Other books covered include propagation, receivers, transmitters and aerials etc.

150 pages
Order code BP267 £4.45

Computers and Computing

Assuming no prior knowledge of microcontrollers and introducing the PIC’s capabilities through simple projects, this book is ideal for use in schools and colleges. It is the ideal introduction for students, teachers, technicians and electronics enthusiasts. The step-by-step explanations make it ideal for self-study too: this is not a reference book – you start work with the PIC straight away.

This revised second edition covers the popular reprogrammable EEPROM PICs: P16C84/16F84 as well as the PIC18F452.

270 pages
Order code NE36 £15.99

eBay for Beginners

There are two kinds of people, those who are trading on eBay and the rest who are missing out. Though eBay has been embraced by entrepreneurs all over the world, it remains the peoples’ site and offers the largest market for the smallest fee.

eBay presents an opportunity for everyone, the trick is to master it. This book shows you how to start trading on eBay UK. It also offers advice on getting organised and planning your eBay site.

The book has been developed from Cherry’s popular course on computing for hobbyists: ‘Technological Simpletons’. In addition to fully explaining eBay and how to trade on it there are sections on PayPal, producing pictures of your sale items, fees and accounts, safety and security including what to do when things go wrong and what protection is provided.

178 pages
Order code BP56 £8.99

Newbies PC Troubleshooting

Howard Anderson, Mike Tookey

This essential data for PC fault-finding and upgrading. This book provides a concise and compact reference that describes, in a clear and straightforward manner, the principles and practice of fault-finding and upgrading PCs and peripherals. The book is aimed at anyone who is involved with the installation, configuration, maintenance, upgrading, repair or support of PC systems. It also provides non-technical users with sufficient background information, charts and checklists to enable the diagnosis of and help to carry out simple repairs and repairs. In order to reflect rapid changes in computer technology both hardware and software the new edition has been completely revised and rewritten.

256 pages
Order code NE41 £11.99

Robotics

INTRODUCING ROBOTICS WITH LEGO MINDSTORMS Robert Penfold

Shows the reader how to build a variety of increasingly sophisticated computer controlled robots using the innovative Lego Mindstorms® robot building kit.

£16.99
Order code BP79

More Advanced Robotics with LEGO Mindstorms Robert Penfold

This book describes a number of electronic circuits, most of which are quite simple, which can be used to enhance the performance of more advanced robotic systems. The circuits covered include: An aerial tuning unit, A simple aerial active; An add-on to a robot for portable use.

£18.99
Order code NE30

The Internet for the Older Generation Jim Gatley

Especially written for the over 50s. Uses only clear and easy-to-understand language. Larger type size for easy reading. Provides basic knowledge to give you confidence to join the close online computer class. This book explains how to use your PC on the Internet and covers almost every other thing. Choosing and setting up your computer for the Internet. Getting connected to the Internet. Sending and receiving emails, photograpthes, etc., so that you can keep in touch with family and friends all over the world. Searching for and saving information on any subject. On-line shopping and home banking. Setting up your own web site.

£8.99
Order code BP900

How to Build Your Own PC – Third Edition Morris Roseenthal

More and more people are building their own PCs. They gain more value for their money, they create exactly the machine they want, and the work is highly satisfying and actually fun. That is, if they have a unique beginnner’s guide like this one, which visually demonstrates how to construct a state-of-the-art computer from start to finish.

£16.49
Order code MGH1

£19.99
Order code MGH2

Pic Your Personal Introductory Course

John Morton

Discover how to create your own PIC microcontroller based project which could revolutionise your electronics construction work. A comprehensive guide for hobbyists and craftsmen including selecting the PIC microcontroller and running with the PIC microcontroller. The PIC is one of the most popular of the microcontrollers that are eagerly looking for.

£20.99
Order code MGH1

£9.99
Order code MGH2

EPE Teach-In 2000 CD-ROM

Becker (published in EPE Nov ‘99 to Oct 2000) is now available on CD-ROM. Plus the Teach-in 2000 Interactive software (Win 95, 98, ME and above) covering all aspects of this series and Alan Winstanley’s Basic Soldering software (Win 95, 98, ME and above) covering all aspects of basic electronics.

The series gives a hands-on approach to electronics with numerous breadboard circuits to try out, plus a simple computer interface (Win 95, 98, ME only) which allows a student to design a circuit using a basic oscilloscope.

Only £12.45 including VAT and p&p

£16.99
Order code MGH1

£18.99
Order code MGH2

EPE Teach-In 2000 CD-ROM

Becker (published in EPE Nov ‘99 to Oct 2000) is now available on CD-ROM. Plus the Teach-in 2000 Interactive software (Win 95, 98, ME and above) covering all aspects of this series and Alan Winstanley’s Basic Soldering software (Win 95, 98, ME and above) covering all aspects of basic electronics.

The series gives a hands-on approach to electronics with numerous breadboard circuits to try out, plus a simple computer interface (Win 95, 98, ME only) which allows a student to design a circuit using a basic oscilloscope.

Only £12.45 including VAT and p&p

BASIC RADIO PRINCIPLES AND TECHNOLOGY Ian Poole

Radio technology is becoming increasingly important in today’s high technology society. There are the traditional uses of radio in navigation and point to point radio as well as the new technologies of satellites and cellular phones. All of these developments mean there is a growing need for radio engineers at all levels.

263 pages
£16.49
Order code NE30

PROJECTS FOR RADIO AMATEURS AND S/W.L.S. R A Penfold

This book describes a number of electronic circuits, most of which are quite simple, which can be used to enhance the performance of more advanced robotic systems. The circuits covered include: An aerial tuning unit, A simple aerial active; An add-on to a robot for portable use.

£18.99
Order code NE30

Radio

The Internet for the Older Generation Jim Gatley

Especially written for the over 50s. Uses only clear and easy-to-understand language. Larger type size for easy reading. Provides basic knowledge to give you confidence to join the close online computer class. This book explains how to use your PC on the Internet and covers almost every other thing. Choosing and setting up your computer for the Internet. Getting connected to the Internet. Sending and receiving emails, photographs, etc., so that you can keep in touch with family and friends all over the world. Searching for and saving information on any subject. On-line shopping and home banking. Setting up your own web site.

£8.99
Order code BP900

How to Build Your Own PC – Third Edition Morris Roseenthal

More and more people are building their own PCs. They gain more value for their money, they create exactly the machine they want, and the work is highly satisfying and actually fun. That is, if they have a unique beginnner’s guide like this one, which visually demonstrates how to construct a state-of-the-art computer from start to finish.

£16.49
Order code MGH1

£19.99
Order code MGH2

Pic Your Personal Introductory Course

John Morton

Discover how to create your own PIC microcontroller based project which could revolutionise your electronics construction work. A comprehensive guide for hobbyists and craftsmen including selecting the PIC microcontroller and running with the PIC microcontroller. The PIC is one of the most popular of the microcontrollers that are transforming electronic project work and product design.

£20.99
Order code MGH1

£9.99
Order code MGH2

EPE Teach-In 2000 CD-ROM

Becker (published in EPE Nov ‘99 to Oct 2000) is now available on CD-ROM. Plus the Teach-in 2000 Interactive software (Win 95, 98, ME and above) covering all aspects of this series and Alan Winstanley’s Basic Soldering software (Win 95, 98, ME and above) covering all aspects of basic electronics.

The series gives a hands-on approach to electronics with numerous breadboard circuits to try out, plus a simple computer interface (Win 95, 98, ME only) which allows a student to design a circuit using a basic oscilloscope.

Only £12.45 including VAT and p&p
Music, Audio and Video

STARTING ELECTRONICS, THIRD EDITION
KATHY BRINDLE
A punchy practical introduction to self-build electronics. The ideal starting point for home experimentors, techni-
cians and students who want to develop the real hands-on skills of electronics construction.
A highly practical introduction for hobbyists, students, and professionals. Kathy Brindley introduces the
functions of the main component types, their uses, and the basic principles of building and designing electronic cir-
cuits.

Boardlayout breadboards make this very much a ready-to-run book for the experimenter, and the use of multimeter, but not oscilloscopes, and readily available, inexpensive compo-
nents makes this practical work achievable in a home or school setting as well as a fully equipped lab.

£19.95

CD-ROM

THE AMATEUR SCIENTIST
The complete collection of The Amateur Scientist articles from Scientific American magazine.
Over 1,000 classic science pro-
jects from a renowned source of science. The book is full of tips, instructions, and guidance on setting up and using the projects, this
valuable book will save you a small fortune.

£17.99

CD-ROM

VIDEO PROJECTS FOR THE ELECTRONICS CONSTRUCTOR
R. A. Penfold
Written by highly respected author R. A. Penfold, this book contains a collection of electronic projects spe-
cially designed for video enthusiasts. All the projects can be simply constructed, and most are suitable for the
amateur to project construction, as they are assembled on stripboard.

£17.99

CD-ROM

THE INVENTOR OF STEREO – THE LIFE AND WORKS
R. A. Penfold
This book is the definitive study of the life and works of Alan Dower Blumlein. Blumlein was deeply engaged in the very secret world of radar de-
velopment and contributed enormously to the system eventually to become ‘H2S’ – blind-bombing radar. Tragically,
during an experimental H2S flight in June 1942, the Halifax bomber in which Blumlein and several
officers were flying, crashed and all aboard were killed. He was just days short of his thirty-ninth birth-
day.

£19.95

CD-ROM

THE AMATEUR SCIENTIST

NEW

Over 1,000 pages of helpful science techniques that never appeared in Scientific
American.
Exhaustive science projects in: Astronomy; Earth Science; Biology; Physics; Chemistry; Weather . . . and much more!
The most complete resource ever assembled for hobbyists, and professionals looking for novel solutions to research
problems. Includes extensive Science Software Library with even more science tools.

£19.95

CD-ROM

BOOK PLUS CD-ROM

BEBO T TO THE BOOLEAN BOOGIE
Clive (Max) Maxfield
This follow-on to Bebop to the Beat should be in every multimedia extravaganza of information and engin-
erieputer peripherals in an extremely realistic manner. In

£7.45

CD-ROM

STARTING ELECTRONICS, THIRD EDITION
KATHY BRINDLE
A punchy practical introduction to self-build electronics. The ideal starting point for home experimentors, techni-
cians and students who want to develop the real hands-on skills of electronics construction.
A highly practical introduction for hobbyists, students, and professionals. Kathy Brindley introduces the
functions of the main component types, their uses, and the basic principles of building and designing electronic cir-
cuits.

Boardlayout breadboards make this very much a ready-to-run book for the experimenter, and the use of multimeter, but not oscilloscopes, and readily available, inexpensive compo-
nents makes this practical work achievable in a home or school setting as well as a fully equipped lab.

£19.95

CD-ROM

THE AMATEUR SCIENTIST
The complete collection of The Amateur Scientist articles from Scientific American magazine.
Over 1,000 classic science pro-
jects from a renowned source of science. The book is full of tips, instructions, and guidance on setting up and using the projects, this
valuable book will save you a small fortune.

£17.99

CD-ROM

VIDEO PROJECTS FOR THE ELECTRONICS CONSTRUCTOR
R. A. Penfold
Written by highly respected author R. A. Penfold, this book contains a collection of electronic projects spe-
cially designed for video enthusiasts. All the projects can be simply constructed, and most are suitable for the
amateur to project construction, as they are assembled on stripboard.

£17.99

CD-ROM

THE INVENTOR OF STEREO – THE LIFE AND WORKS
R. A. Penfold
This book is the definitive study of the life and works of Alan Dower Blumlein. Blumlein was deeply engaged in the very secret world of radar de-
velopment and contributed enormously to the system eventually to become ‘H2S’ – blind-bombing radar. Tragically,
during an experimental H2S flight in June 1942, the Halifax bomber in which Blumlein and several
officers were flying, crashed and all aboard were killed. He was just days short of his thirty-ninth birth-
day.

£19.95

CD-ROM

THE AMATEUR SCIENTIST

NEW

Over 1,000 pages of helpful science techniques that never appeared in Scientific
American.
Exhaustive science projects in: Astronomy; Earth Science; Biology; Physics; Chemistry; Weather . . . and much more!
The most complete resource ever assembled for hobbyists, and professionals looking for novel solutions to research
problems. Includes extensive Science Software Library with even more science tools.

£19.95

CD-ROM
Everyday Practical Electronics, October 2005

1. MICROCONTROLLER COOKBOOK

R. A. Penfold

Starting with mechanical faults such as dry joints, short-circuits etc, coverage includes linear circuits, using a meter to make voltage checks, signal tracing techniques and fault finding on logic circuits. The final chapter covers ways of testing a wide range of electronic components, such as resistors, capacitors, operational amplifiers, diodes, transistors, SCRs and triacs, with the aid of only a limited amount of test equipment.

The construction and use of a Triad Continuity Tester, a Signal Tracker, a Logic Probe and a CMOS Tester are also included.

136 pages
Order code BP371 £5.45

2. PRACTICAL FIBRE-OPTIC PROJECTS

R. A. Penfold

While fibre-optic cables may have potential advantages over ordinary electric cables, for the electronics enthusiast it is probably the novelty value that makes them worthy of exploration. Fibre-optic cables provide an innovative interesting alternative to electric cables, but in most cases they also represent a practical approach to the problem. This book provides a number of tried and tested circuits for projects that utilize fibre-optic cables.

The projects include: Simple audio links, FM audio link, P.W.M. audio links, Simple d.c. links, P.W.M. d.c. link, P.W.M. motor speed control, RS232 data links, MIDI link, Loop alarms, R.F. meter.

All the components used in these designs are readily available, none of them require the constructor to take out a second mortgage.

132 pages
Order code BP332

3. ELECTRONIC PROJECTS FOR EXPERIMENTERS

R. A. Penfold

Many electronic hobbyists who have been pursuing their hobby for a number of years seem to suffer from the dreaded “seam it all before” syndrome. This book is fairly and squarely aimed at sufferers of this complaint, plus any other electronics enthusiasts who yearn to try something a bit different. No doubt many of the projects featured here have practical applications, but they are all worth a try for their intrinsic value alone.

The subjects covered include: Magnetic field detector, Basic Hall effect compass, Hall effect audio isolator, Voice scrambler/descrambler, Bat detector, Bat style echo location, Noise cancelling, LED stroboscope, infra-red “torch”, Electronic breeze detector, Class D power amplifier, Smith gauge amplifier, Super hearing aid.

138 pages
Order code BP371 £5.45

4. Project Building & Testing

BOOK ORDERING DETAILS

All prices include UK postage. For postage to Europe (air) and the rest of the world (surface) please add £2 per book. For the rest of the world airmail add £3 per book. CD-ROM prices include VAT and/or postage to anywhere in the world. Send a PO, cheque, international money order (£ sterling only) made payable to Direct Book Service or card details, Visa, Mastercard, Amex, Diners Club or Maestro to:

DIRECT BOOK SERVICE, WIMBORNE PUBLISHING LTD., 408 WIMBORNE ROAD EAST, FERNDOWN, DORSET BH22 9ND.

Orders are normally sent out within seven days of receipt, but please allow 28 days for delivery. Please check price and availability (see latest issue of Everyday Practical Electronics) before ordering from old lists.

For a further selection of books and CD-ROMs see the next two issues of EPE.

For a further selection of books see the next two issues of EPE.

Tel 01202 873872 Fax 01202 874562 Email: dbs@epemag.wimborne.co.uk

Order from our online shop at: www.epemag.co.uk/shopdoor.htm

BOOK/CD-ROM ORDER FORM

Full name:
Address:
Signature:
Telephone No:
Card Number:
Maestro Issue No:
Card Security Code:
Card expiry date:
Order code:
Please send book/CD-ROM order codes:
Please continue on separate sheet of paper if necessary

If you do not wish to cut your magazine, send a letter or copy of this form
LETTER OF THE MONTH

Dalek Gigs!

I’ve recently been chatting with Mike Boyden, who has built several of my Cybervox Dalek voice emulators (July ‘05) and which are being used by various Dalek “clubs”. The concept of such “clubs” greatly amused my wife and I told Mike so. He replied:

Tell your wife that Dalek stuff is far too serious a matter to be left in the hands of children! (I only found out about it when approached by a local guy who bought a Dalek from a (BBC licensed would you believe) workshop. He earns a very tidy sum doing “gigs” with his Dalek which have included (and I am not making this up):

- Weddings
- A funeral (to press the button to move the casket into the next world – I kid you not)

Mike Boyden, via email

That’s hilarious Mike, thanks for sharing it. And thanks too for your July offering in this issue – the Dalek lighting interface for Cybervox. I should’ve thought of doing that myself originally!

PIC Spanish Translator

Dear EPE,

After recently building your wonderful TK3 PIC programmer, and going through the PIC Tutorial, I have been considering trying to develop a Spanish translator/study aid and was wondering whether you have anything similar planned for a future project?

Ideally I would like voice playback and recognition but maybe this would be stretching a PIC too far! Playback seems possible though by using a PWM output as the D to A converter but it would require an awfully large memory to store the samples. And of course something similar to the Crossword Solver (May ’05) would suffice if it had the added feature of a couple of games, hangman etc, to help you learn new vocabulary. Again though I’m coming across problems in getting a dictionary file that I could use to base the design on and that comes in a compressed format so it will fit into a PIC’s program memory along with the program code.

My final point is whether to code in assembly language, C or even BASIC? It seems that the device doesn’t need to run extremely quickly so I’m thinking that C or BASIC may be the best way to go if I can get my hands on a freeware compiler.

I’d like to actually get this design off the ground one day and so I was hoping that you or one of your readers could possibly point me in the right direction or have any advice.

Thank you for listening and supplying such a thought provoking magazine. Hoping that now I have TK3 up and running and with the help of your magazine I may at last be able to build my own PIC controlled device.

Lee Archer, via email

Thanks for the kind words Lee! A translator is not something that should be undertaken lightly by anyone. Whilst in principle the technique needed is simple, its implementation would be complex because of the vast vocab such a device would need, and that needs lots of memory. And voice recognition is way beyond what hobbyists can realistically achieve.

Also, there are commercial devices available, I have a German/English unit for instance – key in a word in either language and the equivalent in the other is shown on screen.

I’m not a great user of C and would suggest that the compactness of code written in PIC assembler might be better.

So best of luck if you attempt it, but it’s not something I would feel comfortable trying, although I recognise the challenge!

Crossword Update

Dear EPE,

As a result of chatting with several readers I have made some updates to the Crossword Solver code (May ’05).

These changes address the following issues:

1. The l.c.d. access routines would not always start properly on power up.
2. Words greater than 16 characters in length had a character missing when displayed.
3. The unit did not reject a request for a word longer than its biggest entry, resulting in rubbish being displayed.

That was quite handy feedback from readers since I am using the 4-bit display method in my forthcoming Camera Watch Mk2 project!

A quick question – do you have any PIC assembly code, or an algorithm, for taking a 16-bit unsigned binary number and displaying it in decimal ASCII? All the algorithms I have come across use the “divide by 10” technique which is quite “expensive”, even on a PIC18F. I’ll use them if necessary but I was wondering if there was a better algorithm?

Mike Hibbett, via email

Thanks for the updated code Mike, which is now on our Downloads site (via www.epemag.co.uk).

Regarding your query, I use Peter Hemsley’s BIN2DEC (binary to decimal) routine, then OR (or ADD) 48 to all decimal digit values (each 0 to 9) so that an l.c.d. shows them as ASCII characters. You’ll find many examples of my use of this in my published software. Peter’s excellent 32-maths routines are on our Downloads site.

Rally Components

Dear EPE,

Your July ’05 Letter of the Month cast doubts about buying cheap bargain components at rallies. I agree it is most frustrating to spend time and effort constructing a project, only to find it doesn’t work because of cheap faulty components.

This is self-inflicted punishment. If one goes to the time and trouble to remove components from disregarded p.c.b.s and expect them to work – well, I wonder! My time is more valuable than that wasted exercise.

I consider it good practice to test all the components before I solder them into a project to verify they are within the correct tolerance. This saves time trying to trace a defective component after the circuit is built.

I buy my spares from a reputable small firm which attends all the major rallies, and is very reasonable-priced.

Ken Barry, Blackpool, via email

Thanks for that Ken.

WIN AN ATLAS LCR ANALYSER WORTH £69

An Atlas LCR Passive Component Analyser, kindly donated by Peak Electronic Design Ltd, will be awarded to the author of the Letter Of The Month each month.

The Atlas LCR automatically measures inductance from 1µH to 10H, capacitance from 1pF to 10,000µF and resistance from 1Ω to 2MΩ with a basic accuracy of 1%.

Email: john.becker@wimborne.co.uk

John Becker addresses some of the general points readers have raised. Have you anything interesting to say? Drop us a line!
As One Door Opens ...

Dear EPE,

I feel that the increased availability of the Internet and “black box” technology has been the final “nail in the coffin” for hobbies like amateur radio, weather satellite receiving and data communications by the airwaves. Increased competition in the consumer electronics and manufacturing industry has also made the hobbyist construction of audio equipment largely unfeasible. But I’m pleased that EPE continues to contain many inevitable designs.

We must, however, remember that current projects using the PIC processors may seem impressive today but years ago a designer would only have had a limited armoury of components including passive devices, semiconductors and a range of discrete analogue and digital i.c.s. Here the hardware design would have to be finalised and could not be “tweaked” later in the software.

What of the future for amateur electronics? The promised invasion of surface mounted devices failed to lead to the demise of line-integrated circuits as the EU safety and EMC directive failed to stem the interest in amateur electronics and I don’t suppose the introduction of lead-free solder in the future will do so either.

As long as there are people willing to design and publish high quality electronic projects and manufacturers produce suitable devices there seems no need to worry about the popularity of the hobby.

Chris Lewis, via email

To take your first point first, Chris, I think many will disagree with you about the demise of amateur radio. There is considerable evidence of thriving HAM activity, even though it may no longer be publicised so heavily as it used to be.

Furthermore, despite the availability of low cost (and not so low cost) audio equipment, there is still an interest in building one’s own amplifier, and indeed there is considerable fascination to be gained by doing so. Reader response to Raymond Haigh’s articles in this area prove the point.

But you are right about PICs in a sense – technology does move on, and techniques change because of that. Sooner or later something more advanced than a microcontroller may indeed come along and ultimately replace it.

It’s a case of “as one door opens another one shuts – partly”. The microcontroller is not going to disappear until something better appears, even then it is likely to continue to exist alongside the new technology. Look at how valves were once dominant, but when transistors came along, valves were not totally ousted, and continue to be used even now in several forms. Nor have i.c.s replaced transistors. There is a role for both.

And as long as technology exists, there will always be those who wish to explore it in a variety of ways, including the construction of designs based upon it, and so will magazines like EPE cater for such interests, in both practical and tutorial roles.

Pain Monitor

Dear EPE,

I read with interest your article on how to build a pain monitor (Aug ’05). We have developed a number of advanced units similar to yours (8051 based) over the last six years and have presented many studies, using the devices, to consultant anaesthetists at national meetings. Our professor is head of the pain management service at the University Hospitals of Leicester and director of UH London research and development, he specialises in pain management.

We have conducted considerable research in the area of portable pain measurement devices and have worked with large companies like Osk to evaluate our devices. We are looking into commercial opportunities, but unfortunately the market is very small and the free pain gauge that you show is widely used, even though it is not the correct format compared to paper VAS scores.

There was a commercial unit sold called the Clinitrac, this is no longer available due to poor sales and the advent of DPA questionnaire systems with VAS. PDA systems have been validated and are widely used by drug companies and researchers of chronic and acute pain, although we feel that they are not entirely suitable.

I think that your unit would be useful for a doctor/patient that wishes to gain a rough estimate of pain scores but would not be suitable for controlled research data.

Of course, if we could really measure pain electronically, instead of the subjective measures currently used, the unit would be on every doctors wish list. The problem is as elusive as measurement of depth of anaesthesia, although some progress has been made in this area.

I like your wildlife monitor idea, given folks increased interest in the environment, this has great potential and would provide very useful data for researchers in this area.

Ed Pallett, University Division of Anaesthesia, Leicester Royal Infirmary, via email

Thanks for your interesting letter Ed, which I sent on to Mark Piper, the anaesthetist who inspired my design. One of the first questions I asked him was about electrically monitoring pain, and he confirmed it’s not possible, although I had expected that there might be brain waves which could be monitored in this respect.

Laser ranges with PICs

Dear EPE,

Reading the August ’05 Readout, I thought you might like to ponder the way radio altimetry worked. The frequency of transmission is linearly swept so that the return is at a slightly different frequency to the transmission, and the difference gives the range. If the difference frequency is small enough it could be handled by a PIC?” But I don’t know if the frequency of a laser can be swept.

John Waller, Plainfield, USA, via email

That’s intriguing John! I’ll think on it, thank you.

GPS Validity

Dear EPE,

I refer to my letter about GPS validity in Aug ’05 (thanks for printing it by the way).

It seems to me the Standard is not so standard after all! Perhaps I should explain a bit more. The values I refer to come directly from the NMEA GGA Standard and the validity flag can actually have any value from 0 to 8 (although many values are not used). This standard is used by all professional GPS equipment, Trimble Navigation is probably the industry standard.

The following was copied from www.gpsinformation.org/dale/nmea.htm

GGA – essential fix data which provide 3D location and accuracy data, e.g.:

SGPGGA,123519,4807.038,N,01131.000,E,1,8,0.9,545.4,M,46.9,M,*47

GGA Global Positioning System Fix Data
123519 Fix taken at 12:35:19 UTC
4807.038,N Latitude 48 deg 07.038' N
01131.000,E Longitude 11 deg 31.000' E
1 Fix quality: 0 = invalid
2 = DGPS fix
3 = PPS fix
4 = Real Time Kinematic
5 = Float RTK
6 = Estimated (dead reckoning) (2.3 feature)
7 = Manual input mode
8 = Simulation mode
08 Number of satellites being tracked
0.9 Horizontal dilution of position
545.4,M Altitude, Meters, above mean sea level
46.9,M Height of geoid (mean sea level) above WGS84 ellipsoid
(2.3 feature)
(empty field) DGPS update
(empty field) DGPS station ID number
*47 checksum data, always begins with *

Colin Gill, via email

Now the fog clears – thanks for the info Colin! So I’ll keep my decoding as is for GPRMC (I don’t use GGA).

FR4 Laminate

Dear EPE,

I have been buying your mag for years now and this is the first time I have needed to ask a question. I need to get hold of some unclad, i.e. plain with no copper, FR4 laminate, or equivalent, to make a circuit board that I will put turret tags or equivalent onto.

Can you point me in a direction where I can get some?

Paul, via email

Sorry Paul, I regret that I don’t know of any supplier – ask readers directly through our Chat Zone (via www.epemag.co.uk). By quoting you now in Readout, let’s see if this also get you any reader response via the editorial office.

EVERYDAY PRACTICAL ELECTRONICS, OCTOBER 2005
Printed circuit boards for most recent EPE constructional projects are available from the PCB Service, see list. These are fabricated in glass fibre and are fully drilled and roller trimmed. All prices include VAT and postage and packing. Add £1 per board for airmail outside of Europe. Remittances should be sent to The PCB Service, Everyday Practical Electronics, Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, BH22 9ND. Tel: 01202 874276; Fax 01202 874422; Email: orders@epemag.wimborne.co.uk. On-line Shop: www.epemag.wimborne.co.uk/shopdoor.htm. Cheques should be crossed and made payable to Everyday Practical Electronics (Payment in £ sterling only).

Everyday Practical Electronics, October 2005

A large number of older boards are listed on our website. Boards can only be supplied on a payment with order basis.

<table>
<thead>
<tr>
<th>PROJECT TITLE</th>
<th>Order Code</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infra-Guard</td>
<td>APR '04</td>
<td>£5.07</td>
</tr>
<tr>
<td>★ Moon Clock</td>
<td>442</td>
<td>£5.71</td>
</tr>
<tr>
<td>★ Teach-In '04 Part 6 – Software only</td>
<td>443</td>
<td>£5.91</td>
</tr>
<tr>
<td>EPE Seismograph Logger</td>
<td>––</td>
<td>––</td>
</tr>
<tr>
<td>Control Board</td>
<td>445</td>
<td>£4.44</td>
</tr>
<tr>
<td>Sensor Amp. Board</td>
<td>446</td>
<td>£6.50</td>
</tr>
<tr>
<td>In-Car-Lap Top PBU</td>
<td>MAY '04</td>
<td>£4.60</td>
</tr>
<tr>
<td>Beat Balance Metal Detector</td>
<td>444</td>
<td>£4.60</td>
</tr>
<tr>
<td>Teach-In '04 Part 7 – Transmitter</td>
<td>445</td>
<td>£4.91</td>
</tr>
<tr>
<td>Receiver</td>
<td>446</td>
<td>£4.75</td>
</tr>
<tr>
<td>Moisture</td>
<td>447</td>
<td>£4.44</td>
</tr>
<tr>
<td>★ PIC Quickstep</td>
<td>JUNE '04</td>
<td>£5.71</td>
</tr>
<tr>
<td>Body Detector MkII</td>
<td>449</td>
<td>£4.91</td>
</tr>
<tr>
<td>★ Teach-In '04 Part 8 – Software only</td>
<td>450</td>
<td>£3.57</td>
</tr>
<tr>
<td>MIDI Synchroscope – Software only</td>
<td>––</td>
<td>––</td>
</tr>
<tr>
<td>Hard Drive Warbler</td>
<td>JULY '04</td>
<td>£4.60</td>
</tr>
<tr>
<td>★ Bongo Box</td>
<td>451</td>
<td>£6.02</td>
</tr>
<tr>
<td>Portable Mini Alarm – Sensor</td>
<td>452</td>
<td>£5.23</td>
</tr>
<tr>
<td>– Counter</td>
<td>453</td>
<td>£5.07</td>
</tr>
<tr>
<td>★ Teach-In '04 Part 9</td>
<td>––</td>
<td>––</td>
</tr>
<tr>
<td>PIC Combination Lock Alarm Monitor</td>
<td>454</td>
<td>£5.07</td>
</tr>
<tr>
<td>EPE Magnetometry Logger</td>
<td>455</td>
<td>£5.71</td>
</tr>
<tr>
<td>Keyring L.E.D. Torch</td>
<td>AUG '04</td>
<td>£4.12</td>
</tr>
<tr>
<td>★ Teach-In '04 Part 10 – PIC Curtain or Blind Windor</td>
<td>457</td>
<td>£5.39</td>
</tr>
<tr>
<td>Simple F.M. Radio – F.M. Tuner</td>
<td>458</td>
<td>£5.07</td>
</tr>
<tr>
<td>– Tone Control</td>
<td>459</td>
<td>£4.75</td>
</tr>
<tr>
<td>– Audio Power Amp (TDA2003)</td>
<td>460</td>
<td>£4.60</td>
</tr>
<tr>
<td>– Power Supply</td>
<td>461</td>
<td>£6.96</td>
</tr>
<tr>
<td>★ EPE Scooter</td>
<td>––</td>
<td>––</td>
</tr>
<tr>
<td>– Control Board</td>
<td>––</td>
<td>––</td>
</tr>
<tr>
<td>– Display Board</td>
<td>462</td>
<td>£7.93</td>
</tr>
<tr>
<td>– Slave Board</td>
<td>463</td>
<td>£5.55</td>
</tr>
<tr>
<td>★ PIC to Mouse/Keyboard – Software only</td>
<td>––</td>
<td>––</td>
</tr>
<tr>
<td>EPE Walt Zapper</td>
<td>SEPT '04</td>
<td>£4.90</td>
</tr>
<tr>
<td>★ Radio Control Fallsafe</td>
<td>465</td>
<td>£4.76</td>
</tr>
<tr>
<td>★ AlphaMouse Game</td>
<td>466</td>
<td>£4.60</td>
</tr>
<tr>
<td>★ Rainbow Lighting Controller – Software only</td>
<td>––</td>
<td>––</td>
</tr>
<tr>
<td>– Moon and Moon Clock Calendar</td>
<td>OCT '04</td>
<td>£5.55</td>
</tr>
<tr>
<td>Volt Checker</td>
<td>467</td>
<td>£4.20</td>
</tr>
<tr>
<td>★ Smart Karts – Software only</td>
<td>––</td>
<td>––</td>
</tr>
<tr>
<td>Logic-Pro</td>
<td>NOV '04</td>
<td>£4.86</td>
</tr>
<tr>
<td>Thunderstorm Monitor</td>
<td>470</td>
<td>£5.39</td>
</tr>
<tr>
<td>MW Amplitude Modulator</td>
<td>– V.O./Butter</td>
<td>471</td>
</tr>
<tr>
<td>– Modulator/PA</td>
<td>472</td>
<td>£5.07</td>
</tr>
<tr>
<td>– Power Supply</td>
<td>473</td>
<td>£4.76</td>
</tr>
<tr>
<td>Super Vibration Switch</td>
<td>DEC '04</td>
<td>£4.75</td>
</tr>
<tr>
<td>Wind Direction Indicator</td>
<td>474</td>
<td>£6.18</td>
</tr>
<tr>
<td>★ PIC Flasher Mk2 – Control Board</td>
<td>475</td>
<td>£4.75</td>
</tr>
<tr>
<td>– Transmitter</td>
<td>476</td>
<td>£4.44</td>
</tr>
<tr>
<td>– Multipurpose Board</td>
<td>478</td>
<td>£4.75</td>
</tr>
<tr>
<td>– Simple Cycler</td>
<td>479</td>
<td>£4.44</td>
</tr>
<tr>
<td>– Luxeon V Controller</td>
<td>480</td>
<td>£4.44</td>
</tr>
<tr>
<td>– Power Supply</td>
<td>481</td>
<td>£4.75</td>
</tr>
<tr>
<td>Light Detector</td>
<td>JAN '05</td>
<td>£4.94</td>
</tr>
<tr>
<td>★ Camera Watch</td>
<td>482</td>
<td>£6.03</td>
</tr>
<tr>
<td>Gate Alarm – Oscillator</td>
<td>483</td>
<td>£4.92</td>
</tr>
<tr>
<td>– Delay/Timer</td>
<td>484</td>
<td>£4.92</td>
</tr>
<tr>
<td>★ Sneaky – Transmitter</td>
<td>FEB '05</td>
<td>£4.60</td>
</tr>
<tr>
<td>★ PIC Electric Mk2 – Control</td>
<td>487</td>
<td>£5.87</td>
</tr>
<tr>
<td>– Sensor</td>
<td>488</td>
<td>£5.71</td>
</tr>
<tr>
<td>Sound Card Mixer</td>
<td>489</td>
<td>£7.29</td>
</tr>
<tr>
<td>Headphone Monitor</td>
<td>MAR '05</td>
<td>£5.71</td>
</tr>
<tr>
<td>EPE Cat Flap</td>
<td>490</td>
<td>£6.02</td>
</tr>
<tr>
<td>★ Bingo Box – Main</td>
<td>492</td>
<td>£9.04</td>
</tr>
<tr>
<td>– Big Digit Display</td>
<td>493</td>
<td>£10.31</td>
</tr>
<tr>
<td>Spotflex Radio– Tuner</td>
<td>APR '05</td>
<td>£5.55</td>
</tr>
<tr>
<td>– Digital</td>
<td>494</td>
<td>£5.71</td>
</tr>
<tr>
<td>– Audio Amplifier</td>
<td>495</td>
<td>£5.55</td>
</tr>
<tr>
<td>– Tuning Capacitor Board</td>
<td>496</td>
<td>£4.38</td>
</tr>
<tr>
<td>– Safety Service</td>
<td>497</td>
<td>£6.18</td>
</tr>
<tr>
<td>Back-To-Basics 1–Fridge/Freezer Door Alarm</td>
<td>498</td>
<td>£5.39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROJECT TITLE</th>
<th>Order Code</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crossword Solver</td>
<td>MAY '05</td>
<td>£6.66</td>
</tr>
<tr>
<td>20W Amplifier Module</td>
<td>500</td>
<td>£5.14</td>
</tr>
<tr>
<td>Back-To-Basics 2 – Water Level Alarm</td>
<td>501</td>
<td>£5.39</td>
</tr>
<tr>
<td>– Burgler Alarm</td>
<td>502</td>
<td>£5.87</td>
</tr>
<tr>
<td>★ PIC Ultrasound Scanner</td>
<td>JUN '05</td>
<td>£6.66</td>
</tr>
<tr>
<td>★ Radio Control Model Switcher</td>
<td>504</td>
<td>£5.87</td>
</tr>
<tr>
<td>Back-To-Basics 3–Scarecrow</td>
<td>505</td>
<td>£5.55</td>
</tr>
<tr>
<td>– Digital Lock</td>
<td>506</td>
<td>£6.66</td>
</tr>
<tr>
<td>Compact/Flash Interface Board</td>
<td>507</td>
<td>£6.66</td>
</tr>
<tr>
<td>LF/TVF Converter</td>
<td>JUL '05</td>
<td>£5.71</td>
</tr>
<tr>
<td>– Fixed Capacitor Board</td>
<td>508</td>
<td>£5.71</td>
</tr>
<tr>
<td>– Main/Oscillator Board</td>
<td>509</td>
<td>£5.86</td>
</tr>
<tr>
<td>– Buffer Amplifier</td>
<td>510</td>
<td>£5.23</td>
</tr>
<tr>
<td>– G-Multiplier</td>
<td>511</td>
<td>£5.23</td>
</tr>
<tr>
<td>– Tuning Capacitor Board</td>
<td>507</td>
<td>£4.28</td>
</tr>
<tr>
<td>Back-To-Basics 4 – Doorschime</td>
<td>512</td>
<td>£6.34</td>
</tr>
<tr>
<td>– Electronic Dice</td>
<td>513</td>
<td>£5.02</td>
</tr>
<tr>
<td>Cyberbox</td>
<td>514</td>
<td>£8.62</td>
</tr>
<tr>
<td>Multi-Clap Switch</td>
<td>515</td>
<td>£6.66</td>
</tr>
</tbody>
</table>

Audio System

– Preamplifier
– Mic. Supply Board
– Power Amp
– £1 per board for airmail outside of Europe
– Remittances should be sent to The PCB Service

Order Code Project Quantity Price

Card No.

Valid From Expiry Date

Card Security Code Switch/Maestro Issue No

(The last 3 digits on or just under the signature strip)

Signature

NOTE: You can also order p.c.b.s by phone, Fax, Email or via our Internet site on a secure server: http://www.epemag.wimborne.co.uk/shopdoor.htm
Everything you need to know to get started in repairing electronic equipment

- Around 900 pages
- Fundamental principles
- Troubleshooting techniques
- Servicing techniques
- Choosing and using test equipment
- Reference data
- Manufacturers’ web links
- Easy-to-use Adobe Acrobat format
- Clear and simple layout
- Vital safety precautions
- Professionally written
- Supplements

SAFETY: Safety Regulations, Electrical Safety and First Aid.

UNDERPINNING KNOWLEDGE: Electrical and Electronic Principles, Active and Passive Components, Circuit Diagrams, Circuit Measurements, Radio, Computers, Valves and Manufacturers’ Data, etc.

PRACTICAL SKILLS: Learn how to identify Electronic Components, Avoid Static Hazards, Carry Out Soldering and Wiring, Remove and Replace Components.

TEST EQUIPMENT: How to Choose and Use Test Equipment. Assemble a Toolkit, Set Up a Workshop, and Get the Most from Your Multimeter and Oscilloscope, etc.

SERVICING TECHNIQUES: The Manual includes vital guidelines on how to Service Audio Amplifiers. The Supplements include similar guidelines for Radio Receivers, TV Receivers, Cassette Recorders, Video Recorders, Personal Computers, etc.

TECHNICAL NOTES: Commencing with the IBM PC, this section and the Supplements deal with a very wide range of specific types of equipment – radios, TVs, cassette recorders, amplifiers, video recorders etc.

REFERENCE DATA: Diodes, Small-Signal Transistors, Power Transistors, Thyristors, Triacs and Field Effect Transistors. Supplements include Operational Amplifiers, Logic Circuits, Optoelectronic Devices, etc.

Full contents list available online at: www.epemag.wimborne.co.uk

SUPPLEMENTS: Additional CD-ROMs each containing approximately 500 pages of additional information on specific areas of electronics are available for £19.95 each. Information on the availability and content of each Supplement CD-ROM will be sent to you.

The essential reference work for everyone studying electronics

- Over 800 pages
- In-depth theory
- Projects to build
- Detailed assembly instructions
- Full components checklists
- Extensive data tables
- Manufacturers’ web links
- Easy-to-use Adobe Acrobat format
- Clear and simple layout
- Comprehensive subject range
- Professionally written
- Supplements

BASIC PRINCIPLES: Electronic Components and their Characteristics; Circuits Using Passive Components; Power Supplies; The Amateur Electronics Workshop; The Uses of Semiconductors; Digital Electronics; Operational Amplifiers; Introduction to Physics, including practical experiments; Semiconductors and Digital Instruments.

CIRCUITS TO BUILD: The Base Manual describes 12 projects including a Theremin and a Simple TENS Unit.

ESSENTIAL DATA: Extensive tables on diodes, transistors, thyristors and triacs, digital and linear i.c.s.

EXTENSIVE GLOSSARY: Should you come across a technical word, phrase or abbreviation you’re not familiar with, simply look up the glossary and you’ll find a comprehensive definition in plain English.

The Manual also covers Safety and provides web links to component and equipment Manufacturers and Suppliers.

Presentation: CD-ROM suitable for any modern PC. Requires Adobe Acrobat Reader which is included on the CD-ROM.

Wimborne Publishing Ltd, Dept Y10, 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Tel: 01202 873872. Fax: 01202 874562.

ORDER FORM

Simply complete and return the order form with your payment to the following address:

Wimborne Publishing Ltd,
Dept. Y10,
408 Wimborne Road East, Ferndown,
Dorset BH22 9ND
Price includes postage to anywhere in the World

We will happily exchange any faulty CD-ROMs but since the content can be printed out we do not offer a refund on these items.

Your CD-ROM(s) will be posted to you by first class mail or airmail, normally within four working days of receipt of your order.
If you want your advertisements to be seen by the largest readership at the most economical price our classified and semi-display pages offer the best value. The prepaid rate for semi-display space is £10 (+VAT) per single column centimetre (minimum 2·5cm). The prepaid rate for classified adverts is 40p (+VAT) per word (minimum 12 words).

All cheques, postal orders, etc., to be made payable to Everyday Practical Electronics. VAT must be added. Advertisements, together with remittance, should be sent to Everyday Practical Electronics Advertisements, 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Phone: 01202 873872. Fax: 01202 874562. Email: epeads@wimborne.co.uk

For rates and information on display and classified advertising please contact our Advertisement Manager, Stewart Kearn as above.

Everyday Practical Electronics reaches twice as many UK readers as any other UK monthly hobby electronics magazine, our sales figures prove it.

TOTALROBOTS

ROBOTICS, CONTROL & ELECTRONICS TECHNOLOGY
High quality robot kits and components
UK distributor of the G0P!c microcontroller
Secure on-line ordering
Rapid delivery
Highly competitive prices
Visit www.totalrobots.com
Tel: 01737 371688

X-10® Home Automation
We put you in control™
Why tolerate when you can automate?
An extensive range of 230V X-10 products
and starter kits available. Uses proven Power Line Carrier technology, no wires required.
Products Catalogue available Online.
Worldwide delivery.
Laser Business Systems Ltd.
E-Mail: info@laser.com
http://www.laser.com
Tel: (020) 8441 9788
Fax: (020) 8449 0430

N.R. BARDWELL LTD
ELECTRONIC COMPONENT SUPPLIES
Stock of L.E.D.s, Semiconductors, Resistors, Capacitors and many more items.
Send 44p for lists or visit our secure online ordering of www.bardwells.co.uk
288, Abbeydale Road, Sheffield. S7 1PFL Email - sales@bardwells.co.uk

www.pawbooks.co.uk
Using ICs. Pinout diagrams.
Numeric control.
Interactive Demonstrations.
Write, save, load your own programs.
See ICs working on screen.

BOWOOD ELECTRONICS LTD
Suppliers of Electronic Components
Place a secure order on our website or call our sales line
All major credit cards accepted
Web: www.bowood-electronics.co.uk
Unit 1, McGregor’s Way, Turnoaks Business Park, Chesterfield, S40 2WB. Sales: 01246 202222

BTEC ELECTRONICS TECHNICIAN TRAINING
NATIONAL ELECTRONICS
VCE ADVANCED ICT
HNC AND HND ELECTRONICS
FOUNDATION DEGREES
NVO ENGINEERING AND IT
DESIGN AND TECHNOLOGY
LONDON ELECTRONICS COLLEGE
20 PENNYWERN ROAD
EARLS COURT, LONDON SW5 9SU
TEL: (020) 7373 8721
www.lec.org.uk

Please mention EPE when replying to advertisements
To advertise your company
Contact: Stewart Kearn
Tel: 01202 873872
Email: stewart.kearn@wimborne.co.uk

MAKE YOUR HOBBY A BUSINESS.
Earn money making a unit for the partially sighted. Exclusive areas. Outlets provided.
Full assembly Instruction manual and suppliers. DETAILS 02392 830158

VALVES AND ALLIED COMPONENTS
IN STOCK.
Phone for free list. Valves, books and magazines wanted. Geoff Davies (Radio), tel. 01788 574774.

FREE! PROTOTYPE PRINTED CIRCUIT BOARDS!
Free prototype p.c.b. with quantity orders. Call Patrick on 028 9073 8897 for details. Agar Circuits, Unit 5, East Belfast Enterprise Park, 308 Albertbridge Road, Belfast BT5 4GX.

PRINTED CIRCUIT BOARDS – QUICK SERVICE.
Prototype and production artwork raised from magazines or draft designs at low cost. PCBs designed from schematics. Production assembly, wiring and software programming. For details contact Patrick at Agar Circuits, Unit 5, East Belfast Enterprise Park, 308 Albertbridge Road, Belfast BT5 4GX. Phone 028 9073 8897, Fax 028 9073 1802, Email agar@argonet.co.uk

½ PRICE VALVES AND RADIO & ELECTRONIC COMPONENTS
Catalogues available for £1 refundable on 1st order. Over 1480 different valves and over 500 radio/electronic components. W. Burcher, 676 Foxhall Road, Ipswich, Suffolk, IP3 8NQ. TEL: 01473 272218

WANTED GRUNDIG YACHT BOY RADIO.
Must be model 210 from between 1970-1974. Must be in mint condition. Will pay very good money for a set in mint condition. Contact Peter Tankard on Tel 0114 2316321