USB POWER INJECTOR
Automatically Feeds Extra Power Into The USB Line

RGB TO COMPONENT VIDEO CONVERTER
For Home Cinema Set-ups

MIND TRAINER
Exercise Your Grey Cells

New Series
C For PICs – Part 2
Creating Programs

$6.95 US $8.99 CAN
DEC 2006 PRINTED IN THE UK
WARNING!

The materials and works contained within *EPE Online* which are made available by Wimborne Publishing Ltd and TechBites Interactive Inc are copyrighted. You are permitted to make a backup copy of the downloaded file and one (1) hard copy of such materials and works for your personal use. International copyright laws, however, prohibit any further copying or reproduction of such materials and works, or any republication of any kind.

TechBites Interactive Inc and Wimborne Publishing Ltd have used their best efforts in preparing these materials and works. However, TechBites Interactive Inc and Wimborne Publishing Ltd make no warranties of any kind, expressed or implied, with regard to the documentation or data contained herein, and specifically disclaim, without limitation, any implied warranties of merchantability and fitness for a particular purpose.

Because of possible variances in the quality and condition of materials and workmanship used by readers, *EPE Online*, its publishers and agents disclaim any responsibility for the safe and proper functioning of reader-constructed projects based on or from information published in these materials and works. In no event shall TechBites Interactive Inc or Wimborne Publishing Ltd be responsible or liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or any other damages in connection with or arising out of furnishing, performance, or use of these materials and works.
Projects and Circuits

USB POWER INJECTOR by Jim Rowe
Feeds extra power into the USB line

10

RGB TO COMPONENT VIDEO CONVERTER by Jim Rowe
For home cinema set-ups

18

INGENUITY UNLIMITED – Sharing your ideas with others
1000-Year Flasher

37

LAPEL MICROPHONE ADAPTOR FOR PA SYSTEMS by John Clarke
Allows electret microphones to be used with PA systems

38

MIND TRAINER by Bart Trepak
A logic game to exercise your grey cells

50

Series and Features

TECHNO TALK by Mark Nelson
Banned Substances

14

PIC N’ MIX by Mike Hibbett
More about using MultiMedia Cards with PiCs

16

INTERFACE by Robert Penfold
Exploring the graphics capability of Visual Basic 2005 Express

26

C FOR PICs – Part 2 by Mike Hibbett
Creating Programs

28

CIRCUIT SURGERY By Ian Bell
Final close-up view of 555 timer circuit formulae

56

NET WORK – THE INTERNET PAGE surfed by Alan Winstanley
Recycle Risks Confirmed; A Better VNC; IP Cameras

59

Regulars and Services

EDITORIAL

7

NEWS – Barry Fox highlights technology’s leading edge
Plus everyday news from the world of electronics

8

CD-ROMS FOR ELECTRONICS
A wide range of CD-ROMs for hobbyists, students and engineers

34

BACK ISSUES
Did you miss these?

46

PIC RESOURCES CD-ROM
EPE PIC Tutorial V2, plus PIC Toolkit Mk3 and a selection of PIC related articles

48

SUBSCRIBE TO EPE and save money

54

ELECTRONICS MANUALS
The Modern Electronics Manual and Electronics Service Manual on CDROM

60

READOUT John Becker addresses general points arising

61

PIC PROJECTS
A plethora of PIC Projects on CD-ROM

64

DIRECT BOOK SERVICE
A wide range of technical books available by mail order, plus more CD-ROMs

65

EPE PCB SERVICE
PCBs for EPE projects

68

INDEX FOR VOLUME 35

69

ADVERTISERS INDEX

72

© Wimborne Publishing Ltd 2006. Copyright in all drawings, photographs and articles published in EVERYDAY PRACTICAL ELECTRONICS is fully protected, and reproduction or imitations in whole or in part are expressly forbidden.
NEW ELECTRONIC CONSTRUCTION KITS

This 30 in 1 electronic kit includes an introduction to electrical and electronic technology. It provides components that can be used to make a variety of experiments including Timers and Bungler Alarms. Requires: 3 x AA batteries. £15.00 ref BET1803

AM/FM Radio This kit enables you to learn about electronics and also put this knowledge into practice so you can see and hear the effects. Includes manual with explanations about the components and the electronic principles. Req’s: 3 x AA batteries. £13 ref BET1807

The 75 in 1 electronic kit includes an introduction to electrical and electronic technology. It provides components that can be used to make and test a variety of digital circuits, including Flip Flops and Counters. Req’s: 4 x AA batteries. £17 ref BET1804

We stock a range of solar photovoltaic panels. These are polycrystalline panels made from wafers of silicon laminated between an impact-resistant transparent cover and an EVA rear mounting plate. They are constructed with a integrated circuit to produce digital voice and sound experiments including Water, Sensors, Circuits and Oscillators. The kit then progresses to the use of an integrated circuit to produce digital voice and sound recording experiments such as Morning Call and Bungler Alarm. Requires: 3 x AA batteries. £20 ref BET1806

SOLAR PANELS

We stock a range of solar photovoltaic panels. These are polycrystalline panels made from wafers of silicon laminated between an impact-resistant transparent cover and an EVA rear mounting plate. They are constructed with a integrated circuit to produce digital voice and sound recording experiments such as Morning Call and Bungler Alarm. Requires: 3 x AA batteries. £20 ref BET1806

STIRLING ENGINES HB10 One of our range of Stirling engines The Bohm HB10 Stirling engine is available in both ready built and kit form. The power comes from a small air, water or ground. Ground heat source heat pumps are very efficient – in fact you will get 3-4 units of heat for every unit of electricity supplied to the heat pump. Basic component parts of a GSHP:

1. A heat pump packaged unit: Water/Water type. (approx. the size of a small fridge) containing two cold water connections and two heated water connections.
2. The heat source which is usually a closed loop of plastic pipe containing water with glycol or common salt to prevent the water from freezing. This pipe is buried in the ground in vertical bore holes or horizontal trenches. The trenches take either straight pipe or coiled (Slinky) pipe, buried about 1.5 to 2m below the surface. A large area is needed for this.
3. The heat distribution system. This is either underground heating pipes or conventional radiators of large area connected via normal water pipes.

HEAT PUMPS

Electrical input and controls. The system will require an electrical input energy, single phase is perfectly adequate for smaller systems. A specialised controller will be incorporated to provide temperature and timing functions of the system.

This type of installation offers many advantages.

a) The water-water heat pump unit is a sealed and reliable self contained unit.
b) There are no corrosion or degradation issues with buried plastic pipes.
c) The system will continue to provide the same output even during extremely cold spells.
d) The installation is fairly invisible, no tanks or outside unit to see.
e) No regular maintenance required.

STIRLING ENGINES HB10 One of our range of Stirling engines The Bohm HB10 Stirling engine is available in both ready built and kit form. The power comes from a small air, water or ground. Ground heat source heat pumps are very efficient – in fact you will get 3-4 units of heat for every unit of electricity supplied to the heat pump. Basic component parts of a GSHP:

1. A heat pump packaged unit: Water/Water type. (approx. the size of a small fridge) containing two cold water connections and two heated water connections.
2. The heat source which is usually a closed loop of plastic pipe containing water with glycol or common salt to prevent the water from freezing. This pipe is buried in the ground in vertical bore holes or horizontal trenches. The trenches take either straight pipe or coiled (Slinky) pipe, buried about 1.5 to 2m below the surface. A large area is needed for this.
3. The heat distribution system. This is either underground heating pipes or conventional radiators of large area connected via normal water pipes.

4. Electrical input and controls. The system will require an electrical input energy, single phase is perfectly adequate for smaller systems. A specialised controller will be incorporated to provide temperature and timing functions of the system.

This type of installation offers many advantages.

a) The water-water heat pump unit is a sealed and reliable self contained unit.
b) There are no corrosion or degradation issues with buried plastic pipes.
c) The system will continue to provide the same output even during extremely cold spells.
d) The installation is fairly invisible, no tanks or outside unit to see.
e) No regular maintenance required.

STIRLING ENGINES HB10 One of our range of Stirling engines The Bohm HB10 Stirling engine is available in both ready built and kit form. The power comes from a small air, water or ground. Ground heat source heat pumps are very efficient – in fact you will get 3-4 units of heat for every unit of electricity supplied to the heat pump. Basic component parts of a GSHP:

1. A heat pump packaged unit: Water/Water type. (approx. the size of a small fridge) containing two cold water connections and two heated water connections.
2. The heat source which is usually a closed loop of plastic pipe containing water with glycol or common salt to prevent the water from freezing. This pipe is buried in the ground in vertical bore holes or horizontal trenches. The trenches take either straight pipe or coiled (Slinky) pipe, buried about 1.5 to 2m below the surface. A large area is needed for this.
3. The heat distribution system. This is either underground heating pipes or conventional radiators of large area connected via normal water pipes.

4. Electrical input and controls. The system will require an electrical input energy, single phase is perfectly adequate for smaller systems. A specialised controller will be incorporated to provide temperature and timing functions of the system.

This type of installation offers many advantages.

a) The water-water heat pump unit is a sealed and reliable self contained unit.
b) There are no corrosion or degradation issues with buried plastic pipes.
c) The system will continue to provide the same output even during extremely cold spells.
d) The installation is fairly invisible, no tanks or outside unit to see.
e) No regular maintenance required.
Ho! Christmas 2006 is on its way
BUT DON'T PANIC!!
We have some fantastic gift ideas for young (and older) enquiring minds

Electronic Project Labs
An electronics course in a box! All assume no previous knowledge and require NO solder. See website for full details

Robot Sensor - £19.95
Order Code EPLR20KT

Digital Recording Laboratory - £29.95
Order Code EPLDLKT

AM-FM Radio Kit - £6.95
Order Code ERKAFKT

Short Wave Kit - £6.95
Order Code ERKSWKT

Crystal Radio Kit - £6.95
Order Code ERKC KT

Metal Detector - £9.95
Order Code ELMDTK

Generator - £8.95
Order Code EAGTKT

Room Alarm - £4.95
Order Code EARKKT

Hand Held Metal Detector - £9.95
Order Code ELMDXKT

Electronic Bell - £8.95
Order Code EAEKBKT

Electronic Motor - £8.95
Order Code EAKEMKT

Automech - £12.95
Order Code C21-605KT

Coptermekh - £12.95
Order Code C21-604KT

Trainmech - £12.95
Order Code C21-606KT

Stegomech - £12.95
Order Code C21-602KT

Tyranommech - £12.95
Order Code C21-601KT

Hexapod Monster Robomech - £17.95
Order Code C21-883KT (soldering required)

Electronic Motorised Wooden Kits
Future engineers can learn about the operation of transmissions steered through gears or pulleys. Easy to build, no glue or soldering required.

Stegomech - £12.95
Order Code C21-602KT

Musical LED Jingle Bells - £17.95
Order Code 1176KT

Flashing LED Christmas Tree - £6.95
Order Code 4080KT

30 in ONE - £15.95
Order Code EPL030KT

130 in ONE - £37.95
Order Code EPL130KT

300 in ONE - £59.95
Order Code EPL300KT

500 in ONE - £149.95
Order Code EPL500KT

Solderless Electronic Project Kits

See our website for even more great gift ideas!
Robot Kits
These educational electronic robot kits make a great introduction to the exciting world of robotics and require NO soldering. See website for details.

Moon Walker - £34.95
Order Code 4015KT

Hyper Peppy - £29.95
Order Code 4016KT

Robotic Arm - £59.95
Order Code 4017KT

Sumo Man - £59.95
Order Code 4018KT

Pimot Advanced Robot - our most advanced robot to date (please see our website for full details) - £99.95
Order Code 4026KT

Tools & Equipment

Soldering Set - £9.95
Order Code SOL939

Hobby Tool Set - £17.95
Order Code HTK300

20 Piece Electronics Tool Set - Now £24.95
Order Code HTK368

5" Illuminated Magnifier - £44.95
Order Code HTM015

Clamp Meter - £14.95
Order Code MC616

Metal Detector - £34.95
Order Code MDS920

120mm Rechargeable Spotlight - £18.95
Order Code TOR260

Helping Hands - £6.95
Order Code HTS165

Ultrasonic Distance Measurer - £24.95
Order Code UDM634

Universal Battery Tester - £4.95
Order Code UBT393

4 in 1 PC Link Telescope - Now £99.95
Order Code SCI293

Credit Card Sales
0871 717 7168

Home and Leisure

4-ch Sequencer - £49.95
Order Code ELT298

12V 150W Power Inverter - £29.95
Order Code RPI630

Metal Detector - £34.95
Order Code MDS920

2x200W Car Booster Amplifier - £79.95
Order Code AMP022

20W Guitar Amplifier with Overdrive - £69.95
Order Code MUS033

Audio/Video Transmission System - £54.95
Order Code AVE125

No. 1 KITS
Secure Online Ordering Facilities • Full Product Listing, Descriptions & Photos • Kit Documentation & Software Downloads

www.QuasarElectronics.com
Parallax BASIC Stamps - still the easy way to get your project up and running!

Serial Alphanumeric and Graphic Displays, Mini-Terminals and Bezel kits

www.milinst.com

Robotic models for both the beginner and the advanced hobbyist

Animatronics and Specialist Interface-Control Modules

Development Tools

Milford Instruments Limited Tel 01977 683665, Fax 01977 681465, sales@milinst.com
PIC PIPE DESCALER
- SIMPLE TO BUILD
- SWIFT FREQUENCY OUTPUT
- HIGH POWER
- AUDIO & VISUAL MONITORING
An affordable circuit which sweeps the incoming water supply with varying frequency electromagnetic signals. May reduce scale formation, dissolve existing scale and improve the way salts in the water behave.
Kit includes case PCB coupling coil and all components. High coil current ensures maximum effect. LED and peizo monitor.

KIT 868 £22.95 PSU £3.99

12V EPROM ERASER
A safe low cost eraser for up to 4 EPROMs or other UV erasable windowed devices at a time in 20 minutes. Operates from a 12 Volt supply (400mA). Ideal for mobile work and in educational applications where mains voltages are to be avoided. Safety interlock prevents contact with UV.

KIT 790 £29.90

PIC LCD DISPLAY DRIVER
16 Character x 2 Line display, pcb, programmed PIC16F84, software disk and all components to experiment with standard intelligent alphanumeric displays. Includes full PIC source code which can be changed to match your application.

KIT 860...£19.99

PIC STEPPING MOTOR DRIVER
PCB with components and PIC16F84 programmed with demonstration software to drive any 4 phase unipolar motor up to 24 Volts at 1 Amp. Kit includes 100 Step Hybrid Stepping Motor. Full software source code supplied on disc. Use this project to develop your own applications. PCB allows 'simple PIC programmer' software to be used to reprogram chip.

KIT 863....£18.99

8 CHANNEL DATA LOGGER
From Aug/Sept.'99 EPE. Featuring 8 analogue inputs and serial data transfer to PC. Magenta redesigned PCB - LCD plugs directly onto board. Use as Data Logger or as a base board for developing other PIC16F877 projects. Kit includes board, programmed chip, PCB, Case, all parts and 8 x 256k EEPROMs.

KIT 877....£49.95

SUPER PIC PROGRAMMER

KIT 862...£29.99 Power Supply £3.99

ICEBREAKER
In-Circuit Emulator
With serial lead & software disk, PCB, Breadboard, PIC16F877, LCD, all components and patch leads.

KIT 900...£34.99* PSU £3.99

ICEBREAKER uses PIC16F877 in-circuit debugger functions. Featured in EPE Mar'00 ideal for beginner & experienced users. Windows (95 to XP) Software included.

KIT910...£16.90 KIT911...£24.99

PIC Real Time

MAGNETA BRAINIBOT I & II
- Full kit with all hardware and electronics.
- As featured in EPE Feb 03 (KIT 910)
- Seeks light, beeps, and avoids obstacles
- Spins and reverses when "cornered"
- Uses 8 pin PIC chip
- ALSO KIT 911 - As 910
- PLUS programmable from PC serial port leads and software CD included.

KIT910...£16.90 KIT911...£24.99

MAGNETA BRAINIBOT
A super walking programmable robot with eyes that sense obstacles and daylight. BrainiBorg comes with PC software CD (WIN95+ & XP) with illustrated construction details, and can be programmed to walk and respond to light and obstacles on any smooth surface.

KIT 912 ... £29.99

KIT 913 ... £38.99

KIT 914 ... £11.90 (Includes all parts & heatsink for stereo or mono)

20W Stereo Amp.
EPE May '05 -- Magenta Stereo/Mono Module
Wide band Low distortion 11W / channel Stereo 20W Mono. True (rms) Real Power

Short Circuit & Overheat Protection. Needs 6 to 18V supply.

Latest Technology - Stable, Reliable, high performance IC with local feedback.

KIT 914 £11.90

MOSEI MKII Bench PSU
0-25V 2.5A

KIT 862...£32.90

Inc. 4 electors

EPE MICROPIC P.I. Treasure Hunter

KIT 847 £3.95

MAGNETA EPE PROGRAMMED PICs
1kV/500V Insulation Tester
Super design. Regulated output and efficient circuit. Dual scale meter, compact case. Reads up to 200 Megohms.
Kit includes wound ferrite transformer, drilled and punched case, meter scale, PCB & ALL components. (Needs PP3 bat. 18v - £10.00. All inc. VAT and Postage

KIT 848...£32.95

DUAL OUTPUT TENS UNIT
An excellent kit for this project based on the EPE March'97 Design. Our Full Kit includes all components, hardware and an improved Magenta pcb. All hardware and electronics are included. Designed for simple assembly and testing, providing a high level controlled dual output drive.

KIT 866 ... £32.90

Inc. 4 electodes

EPE EPE PIC Toolkit 3
As in EPE April/May/Jun '03 and on PIC Resources CD
- Magenta Designed Toolkit 3 board with printed component layout, green solder mask, places for 8,16,28 (wide and slim), and 40 pin PICs. and many Magenta extras. Also runs with WinPic800 prog. Software.
- 16 x 2 LCD, PIC chip all parts and sockets included.
- Follow John Becker's excellent 'PIC tutorial 2' series.

KIT 880 ... £34.99

KIT 880 ... £39.99

OR - Built & Tested £49.99 & £55.99

EPE TEACH-IN 2004
COMPLETE 12 PART SERIES FROM NOV03
All parts to follow this Educational Electronics Course, Inc. Lock, and Motorbox (box)

KIT921...£12.99

Reprints £1.00 per part.

BATT DETECTORS
Magenta's Super Heterodyne Bat detectors. Our best selling kit 861 now includes a drilled case and front panel label. The MkIIb and digital MkIII are supplied built & ready to go.

KIT 861...£37.99

MkIIb £49.95 MkIII...£89.95

All Prices Include VAT, Add £3.00 P&P per order, or £7.99 for next day.

MAGENTA ELECNONICS LTD
135 Hunter Street Burton on Trent Staffs DE14 2ST UK email: sales@magenta2000.co.uk

Mail Order Only. Products, & Secure On Line ordering.

Chqs. P.O. & Most major cards accepted. See our Website for many more kits, products, & Secure On Line ordering. Mail Order Only.

www.magenta2000.co.uk Tel: 01283 565435 Fax: 01283 546932
Are We On The Right Track?

A recent discovery made me wonder if we are going in the right direction when it comes to data storage. I personally still keep my ‘address book’ in the form of printed cards, which I find easier and quicker to use than a database – we also store article details for both invoices etc. I doubt it will ever change and I doubt it will prove to be better if it does: knowledge is only consulted on a monthly basis and then stored for a number of years once articles have been published this system works well and has ‘instant’ access for everyone.

Recently I realised that our list of published PCBs – kept in an A5 book – dates back to May 1984, over 22 years ago now. The binding on the book had failed (they don’t make them like they used to!) and I repaired it. It made me wonder if we had stored the data on computer ever far back we would still be able to search it and how many times we would have needed to change the system/software/back-ups over those 22 years. There is a lot to be said for old fashioned pen and paper – although some of the very earliest entries in the book are a little faded they are all readable, so I know what articles requiring PCBs were published in every issue from May 1984 onwards, and it takes me about five seconds to find them. No waiting for a PC to boot up, or a database to open and then a search to be made. For ‘static’ data like this, that needs long-term storage, there is no better medium. (By the way we have yet to fill in half the pages in the book so it should last for more than 50 years, if the repaired binding holds out!)

Computers certainly have their place and many of our present projects could not be achieved without them. They also save us much time and trouble in the production cycle of the magazine. For instance, all the pages are uploaded to our printer’s computer now – nothing goes by post or courier as it once did. Computers also save much time in the printing process where page layouts and printing plate making have all been computerised over the last few years.

The paperless office, much touted when PCs became a reality, certainly has not reached us at EPE. We still have bookcases full to bursting with back issues, data books, contracts, invoices etc. I doubt it will ever change and I doubt it will prove to be better if it does: knowing, as we now do, that computers do crash, do require backing up everyday and sometimes decide not to find the data you know is in there somewhere! But then maybe I’m just an old fashioned rather than practical!
DIGITAL TV’S CONFUSION
What’s the difference between VCRs and PVRs? There are still mysteries to be solved before digital TV can take over, as Barry Fox reports

HOT on the heels of Ofcom and Digital UK’s confusion over the difference between VCRs and PVRs, two more of the disparate bodies involved in switching the UK over from analogue to digital TV have admitted that VCR conversion is a serious obstacle. After a closed meeting with manufacturers and retailers, from which the press were excluded, the Digital Television Group and Freeview (DTV Services Ltd, owned by the BBC, National Grid Wireless, BSkyB, ITV and Channel 4) issued a telling press release.

Announcement
With digital switchover planned to start in 2008, clear consumer understanding of digital TV recording is needed. Recent Freeview research has shown that there is little consumer awareness of digital TV recorders (PVRs or Personal Video Recorders), a finding supported by limited uptake of the devices already available for the DTT platform.

The proposed solution is to create a new logo, Freeview Playback, which tells consumers that a device can record digital TV programmes off-air. After the event closed a DTG spokeswoman admitted: ‘We don’t have any figures for the number of VCRs in use. The public is confused over what they need to buy.’

At the time, the first Freeview Playback brand PVRs were not expected in the market before September 2006. The DTG’s spokeswoman acknowledged that there may ‘seem to be’ a lot of different groups promoting digital TV and switchover, ‘but they are trying to tie together.’

Far From Done
The broadcasters think that once they have got the signal up to the top of the transmitter mast, it’s job done’, said a senior manager in a major Japanese manufacturer of TV and video equipment, who has been critical of the way switchover body Digital UK is run by broadcasters. ‘The need to replace VCRs has been the big overlooked factor in the whole switchover plan. There is not even any agreement on what a PVR is. Is it a hard disc recorder or a DVD recorder or both?’

The DTG and Freeview have not yet addressed this question.

RAPID’S LATEST INFO
Rapid Electronics have sent their latest Secondary Focus A4 booklet – over 130 pages of products and info aimed at the Secondary Education sector. We’ve long known that they are heavily committed to that area and its curriculum requirements.

We won’t try and highlight the contents of the booklet, but just say it has subject sections of Exercise Books; Graphics, Art & Design; Maths; Projects & Robotics; Design & Technology; Tools; Power Supplies & Test Equipment; Science; Audio Visual; Seasonal.

Rapid have also sent their New Products Focus publication, naturally highlighting what new product additions they have. Just in time to tell you that Rapid will be at the Design and Technology with ICT Education Show 2006 at NEC Birmingham, 16-18 November.

For more information on the publications or Rapid’s products, contact Rapid Electronics Ltd., Dept EPE, Severalls Lane, Colchester, Essex CO4 3IS, Tel: 01206 751188. Email: sales@rapidelec.co.uk. Web: www.rapidonline.com.

AC Current Clamp
As though in timely answer to a question on our Chatzone recently, LEM have sent information about their cost-effective high quality compact split-core transducers for AC current measurement. As is common for similar products, this clamp enables currents flowing in cables to be measured without breaking into the cable, just clamping around them.

The LEM AT range allows AC current measurement from 5A to 50A RMS at 50/60Hz and has the current transformer and signal conditioning in a very compact split-core case, producing 0-5V DC, 0-10V DC or 4-20mA standard output. Self-powered or loop-powered versions are available.

For more information contact: LEM UK Ltd., Dept EPE, West Lancashire Investment Centre, Maple View, White Moss Business Park, Skelmersdale, Lancs WN8 9TG. Tel: +44 1 695 712 560, Web: www.lem.com.
Microchip PSU Design

Microchip have announced an online Intelligent Power Supply Design Center (their spelling) at www.microchip.com/power. This comprehensive website provides the technical resources needed to design analogue power supplies, augment existing analogue PSU designs with inexpensive microcontrollers, or design switch-mode power supplies (SMPS) with full digital control of the power conversion feedback loop.

The site offers direct access to all Microchip’s PSU application notes, reference designs and other technical documentation. Links to Microchip simulation tools (including the Mindi battery charger and PSU circuits) are also included.

Microchip has long provided cost-effective PIC microcontrollers and analogue products to the power supply market, and has recently announced a new family of dPIC DSCs for full digital control of SMPSs. For additional information visit Microchip’s Web site at www.microchip.com/power.

PORTABLE ELECTRONICS

Portable electronics needs a suitcase full of chargers to keep it working. British company Moixa Energy has the answer – a standard size rechargeable battery with a miniaturised charger and standard size USB power connector built-in.

Virtually all computer equipment and even modern hi-fi and videos now have a USB socket for connecting a keyboard, mouse or memory store. The sockets push out 5V to power whatever is plugged in.

Moixa’s new AA NiMH (nickel metal hydride) USB cells contain intelligent circuitry that drops the USB supply to around 1.4V to charge the battery. A sensor detects the small heat rise and a voltage drop that signals a full charge, and switches off.

A safety timer shuts the full charge off after five hours anyway, and switches to trickle charge. A fully flat battery (with normal 1.2V reduced to 1V) fully charges in five hours, but 10 minutes is enough to deliver enough charge to keep a mouse running for the rest of the day.

The USB cells went on sale in the UK in mid October, and then will roll out through Europe, with a US launch later. A pair of AA cells will cost £13 but Design Director Chris Wright says he ‘hopes to pull down prices’, advising people of the bargain reductions their spelling at www.microchip.com/power.

Churchill Opportunities

We have received information about the Winston Churchill Travelling Fellowships. These are unique and offer UK citizens from all walks of life and irrespective of background, education or professional qualifications the ‘Chance of a Lifetime’ to undertake study projects overseas related to their trade, craft or profession. Participants return richer for the experience, to their benefit and that of the community.

Churchill Opportunities

We have received information about the Winston Churchill Travelling Fellowships. These are unique and offer UK citizens from all walks of life and irrespective of background, education or professional qualifications the ‘Chance of a Lifetime’ to undertake study projects overseas related to their trade, craft or profession. Participants return richer for the experience, to their benefit and that of the community.

Many people find it difficult to believe that they are eligible and the Trust has asked us to make this opportunity more widely known – we are pleased to do so.

Contact the Winston Churchill Memorial Trust, 15 Queen’s Gate Terrace, London SW7 3PR. Tel: 020 7578 9315. Fax: 020 7581 0410. Email: office@wcmt.org.uk. Web: www.wcmt.org.uk.

MAPLIN’S LATEST

‘Price Crash’ is the heading on Maplin’s latest info received a multipage leaflet advising people of the bargain reductions they have on a number of product ranges, including computing and various accessories we all need from time to time – batteries, torches, shredders, fan heaters, etc. There are valuable money-off vouchers in this latest edition.

Maplin invite you to visit one of their 100 stores nationwide or log on to www.maplin.co.uk.

EOCS

We have received the latest issue of the Electronic Organ Magazine from the EOCS, the Electronic Organ Constructors Society – worth joining if you’re into such interests. A lovely photo in the current issue, No 98, of a harmonium at the Saltire Museum having a notice saying that it has 53 intervals and 84 keys to each octave, to make playing easier! Musicians amongst you will appreciate the humour!

The EOCS can be contacted via Don Bray, 34 Etherton Way, Seaford, Sussex BN25 3QB, also via editor@eocs.org.uk.

New Gadgets Website

All The Best Gadgets have opened a new website in response to an increasing desire for gadetry. With a wide range of appliances, ranging from plasma TVs to light sabers and iPod accessories, to professional poker chip sets, this website features ‘all the best gadgets at all the best prices!’

In a world where the gadget is king, magazine racks are groaning with dedicated widget bibles and inboxes are flooded with online poker deals. The site stands out for a variety of reasons: a wide range of gadgets, gifts and accessories at ‘ultra competitive prices’, free delivery to anywhere in the mainland UK, fast despatch of goods.

So, contact All The Best Gadets Ltd., 9-10 Jew Street, Brighton, Sussex BN1 1UT. Tel: 01273 726489. Fax: 01273 746920. Email: info@allthebestgadgets.co.uk. Web: www.allthebestgadgets.co.uk.
Do you have a new USB-powered peripheral, like a scanner, that needs more power than can be drawn from the socket on your PC or USB hub? Here’s a little gadget that will solve your problem. It allows you to feed extra power into the USB line, controlled automatically by the PC – so your new peripheral will be turned on and off just as if it were being powered directly by the PC.

USB Power Injector

By JIM ROWE

Each USB socket of a PC or self-powered USB (Universal Serial Bus) hub can supply up to 500mA at 5V DC, which can be used to power many USB peripherals directly. That’s one of the advantages of USB and many of the newer peripherals are designed to be powered in this way.

Many low-cost USB hubs are also designed to take their own power from the PC, via their ‘upstream’ USB cable. That’s fine in most cases, as the hub’s internal circuitry only needs a few tens of milliamps to operate.

However, things start to get a little more complicated if you try to connect a number of bus-powered USB peripherals to your PC via such a hub, because the hub’s ‘downstream’ output sockets can each only supply a maximum of 100mA. That’s because all...
of their power must ultimately come from the PC itself, of course.

What happens if you have one of these hubs already powering say, three USB-powered peripherals and then you buy a USB-powered scanner or label printer that needs to draw more than 100mA? Ah, that is a problem. Luckily, it’s easily solved; all you need is the USB Power Injector described here. It’s designed to be connected in series with the USB cable to your new peripheral and also to a 9V AC or DC plugpack.

When it detects 5V DC coming from the PC and/or hub, it switches power from the plugpack through to a built-in 5V regulator to provide your new peripheral with its own 5V power at up to 500mA.

All of the components used in the USB Power Injector are mounted directly on a very small PC board, which fits snugly inside a small plastic box.

How it works

Looking at the circuit diagram of Fig.1, power from the external plugpack comes in via socket CON3 and then passes through diodes D1-D4. These provide rectification for an AC plugpack or automatic polarity correction for a DC plugpack. Either way, a DC voltage of between 8V and 14V (or thereabouts) appears across the 1000µF reservoir capacitor.

CON1 is a USB ‘Type B’ socket, used as the Injector’s ‘upstream’ or input port. It connects back to one of the USB output/downstream ports of your PC or hub, via a standard USB cable. Both of the data lines of CON1 are connected directly to the corresponding pins of CON2, a USB ‘Type A’ socket which is the Injector’s output/downstream port. This connects to your new USB peripheral via another standard USB connecting cable, so the Injector is fully transparent in terms of USB data communication. USB data can pass straight through the Injector in either direction, between PC and peripheral and vice-versa.

When the PC is powered down though, power from the plugpack is not able to flow through to the peripheral because P-channel power MOSFET Q2 is connected in series and it is normally turned off. So, when the PC is turned on, +5V appears at pin 1 of CON1 and this switches on transistor Q1 via a 22kΩ base resistor. Q1 then switches on Q2, which becomes a very low resistance, about 0.1Ω.

This feeds the unregulated DC voltage across the 1000µF capacitor through to REG1, a 7805 +5V regulator which now provides +5V to pin 1 of CON2 and your peripheral device.

LED1 is used to provide ‘power on’ indication. LED1 is fed via the 820Ω series resistor from the switched DC at the input to REG1, so it’s only illuminated when the Injector’s power is switched on by Q2.

The 10µF and 100nF capacitors are included to ensure stable operation of REG1, while diode D5 is to protect it from reverse-voltage damage when the power is turned off.

Although REG1 has very little heatsinking, it should be able to power virtually any USB-powered peripheral which draws no more than the maximum drain of 500mA.

Construction

All the components used in the USB Power Injector (apart from the plugpack) are mounted directly on a very small PC board, which measures 76 x 46mm and is available from the EPE PCB Service, code 597.

The artwork (Fig.3) for the PC board has rounded cutouts in each corner, allowing it to fit snugly in the small
plastic box (83 × 54 × 31mm). It’s supported inside the box by four 9mm long M3 tapped spacers, using four countersink 6mm × M3 screws through the bottom of the box and another four round-head 6mm × M3 screws through the PC board itself.

Rectangular holes are cut in the narrow ends of the box to provide access to the two USB connectors (CON1 and CON2), while a 3mm round hole is drilled in the end next to CON2, to allow LED1 to protrude through. Similarly, a 9mm hole is drilled in one of the longer sides of the box, to allow access to power input connector CON3. The locations of all box holes are shown in Fig.4.

The component overlay diagram for the PC is shown in Fig.2 and you can cross-check this with the internal photo below.

Fit the low-profile resistors and diodes first, taking care with the diode polarity as usual. Then fit the capacitors, taking care with the polarity of the 10µF and 1000µF capacitors. Note that the larger capacitor mounts over on its side, to make sure there is clearance between it and the box lid – see photograph below.

Next, fit the three connectors. The two USB connectors are different in terms of their pin layout, so make sure you fit them in their correct positions. You may need to elongate the holes for their attachment lugs slightly with a jeweller’s file, before the connectors will fit down against the board.

The last components to fit are the TO-92 transistor Q1, LED1 and the two TO-220 devices Q2 and REG1. Make sure you don’t swap the latter polarity as usual.

Parts List

1 PC board, code 597, available from the EPE PCB Service, 76 x 46mm
1 plastic utility box, UB-5 size (83 x 54 x 31mm)
1 USB socket type B, PC-mount (CON1)
1 USB socket type A, PC-mount (CON2)
1 2.5mm concentric LV power socket (CON3)
4 M3 tapped spacers, 9mm long
6 M3 x 6mm machine screws, round head
4 M3 x 6mm machine screws, countersink head

Semiconductors
1 7805 5V regulator (REG1)
1 PN100 NPN transistor (Q1)
1 IRF9540 P-channel MOSFET (Q2)
1 3mm green LED (LED1)
5 1N4004 diodes (D1-D5)

Capacitors
1 1000µF 16V PC electrolytic
1 10µF 25V tantalum
1 100nF (0.1µF) multilayer monolithic (code 104 or 100n)

Resistors (0.25W 1%)
1 22kΩ
2 10kΩ
1 820Ω

The PC board is mounted inside the case on four M3 x 9mm tapped spacers and secured using machine screws. Note how the 1000µF electrolytic capacitor is mounted.
The power indicator LED protrudes through a hole in the end of the case, adjacent to the USB output socket (CON2).

devices, as this may cause one or both of them to be damaged. Both devices mount flat down against the top of the board, with a 6mm × M3 machine screw and nut used to hold them down and also provide a small amount of heatsinking.

Make sure also that you fit LED1 with its “flat” side towards connector CON2 and its longer anode lead further away. The LED leads are soldered in place with the body about 11mm above the board and they are then bent down at right angles about 4mm above the board, so the body can protrude through the matching hole in the end of the box.

Once you have made the necessary holes in the UB-5 box (including the countersunk holes in the bottom, for the PC board mounting screws), the completed board assembly can be mounted in the box using the 9mm M3 tapped spacers.

Checkout time

There are no adjustments or setup needed on the completed USB Power Injector and very little in the way of testing. All you need do is connect the output of a 9V DC or AC plugpack to CON3 and confirm that indicator LED1 doesn’t light until you also connect CON1 to a downstream USB port on your PC or USB hub.

If the LED then turns on and off when the PC is itself turned on and off, this confirms that it’s working correctly. All that remains is to screw on the lid of the box and fit the cover plugs – although you might also want to stick on a dress label as well, to finish the job. The artwork for a suitable label is shown in Fig.5.

EPE
Banned Substances

Mark Nelson investigates why some commonplace products may soon acquire 'endangered species' status.

Increasing legislation for consumer protection has got to be a good thing—at least in general. But it can be a real pain when it threatens user choice, particularly for hobbyists who know what they are doing.

In several hobby magazines a previously respected supplier of solder and soldering accessories ran advertisements urging readers to ‘Stock up now on (soon to be) Banned Substances’. The words ‘soon to be’ were in much smaller print and the clear impression was that within a few months tin-lead solder could no longer be sold.

This of course is rubbish, a fact that a rival supplier soon spotted, running advertisements to the effect of ‘Don’t worry, it’s still available from us’ and adding that its use was restricted in certain applications. Which is entirely correct. Although since July of this year solder containing lead cannot be used for manufacturing new consumer products, its use is still permissible for repairing equipment already on the market, for making non-commercial (hobby) equipment, early home computers and certain other categories. Finally, the defining date for what was ‘old’ and therefore had to be tested was moved back from 2001 to 1989, enabling most second-hand products to escape testing. It was a near thing, though, with little wonder that Japanese citizens dubbed it their country’s ‘worst law ever’.

Grumpy?

Who’s grumpy? Well, me for a start. People tell me I was already a Grumpy Old Man decades ago in my twenties, but at last that experience proves that we British are an adaptable race. We grumble for a while and then adjust to new rules and regulations.

Look at workshop solvents for instance. When I was a kid my father had a tin of petrol in the garage, with an old paintbrush in it for degreasing materials. This was considered unsafe, so we changed over to Carbon Tetrachloride (CTC), also sold in every high street as Thawpit dry cleaning fluid (remember the wide-rimmed bottle with a cork applicator that took ages to saturate?)? Then CTC was declared taboo and we had to use ‘trike’ (Trichloroethylene) instead. Concerns about its toxicity meant it was banned in much of the world during the 1970s. No doubt there’s an entirely safe substitute now and a quick Google search indicates Leksol (n-Propyl Bromide) is a direct substitute with no hazards at all (unless you know better). I’m afraid I stopped trying to keep up ages ago and just use Isopropyl Alcohol or Swan Vestas lighter fuel. I do have a Winchester of xylene under the sink as well, but there’s so little left of this I’m saving it for later!

Fitful Phone Calls

While on the subject of cleanliness, I was shocked by another scare story recently, about a new hazard involving mobile phones – nasty bacteria! Under the headline ‘Minging Mobiles’ a newspaper informed me that keeping handhelds warm and cozy inside pockets makes an ideal breeding ground for nasty bacteria. ‘Tens of thousands of microbes live on each square inch of mobile phones and hold more bacteria than a toilet seat,’ thundered the article. ‘Every time you use your phone to text or put it to your ear, thousands of bacteria [sic] are rubbing off on you to continue breeding’, it continued.

Really? Surely these bugs are transferred onto the phone from your body, where they evidently do me no harm, so their advice to use anti-bacterial wipes sounds like a cynical excuse to sell more wipes!
Everyday Practical Electronics, December 2006
In last month’s Pic n’ Mix we detailed the low level hardware and software interfacing to MultiMedia Cards (MMC), showing how simple they are to use. Reading and writing to them is surprisingly straightforward once you get over the hurdle of the various specification documents.

Accessing Data
Accessing the data outside of your project, however, is rather more difficult, especially if you intend to store the data in your own, non-standard way. If you are going to write or read large amounts of data – after all, that would be the reason for designing the media into your project in the first place – then you are likely to want to be able to access the data on a PC.

MMC readers for the PC are readily available and very cheap, as low as £5. These readers expect the media cards to have data organised on them in a structured way, typically either FAT12, FAT16 or FAT32 format.

Most Media cards are supplied pre-formatted to the FAT16 standard. What this means is that some of the memory locations on your card contain data that defines a FAT file system, just like a hard disk. This can involve quite a lot of your precious memory; for example, on our MMC over 256KB of the total memory available is reserved for the FAT data. As this represents only 0.1% of total space, the loss is a small price to pay for the convenience.

FAT Tables
FAT16 stands for ‘File Allocation Table, 16-bit’. It is an old disk file system designed by Microsoft that is capable of handling storage devices with capacities up to 2GB. It has been in common use on DOS and Windows based PCs for many years, but has now found its way onto removable media such as MMCs. The use of the FAT16 file system on removable media is a significant reason why transferring data from digital cameras, MP3 players etc to a PC is so simple.

A FAT is a collection of data structures that are placed onto the device that define how the storage device is, how the memory is organised, and where the files are. Hard disks are quite complex devices with multiple platters, heads etc, but Media cards are, of course, just an array of bytes and so there is more information inside these data structures than we need. When we get on to describe the data structures we will skip over the unused parts, and concentrate on the fields of interest to us.

The specification of FAT16 is not trivial, but once we have gone through it you will find the software easy to use. Storing data in FAT format on a media card offers a world of opportunities not possible before – easily sharing data between your PIC-based project and a PC. Not only can you save text, images, sound files, binary files etc but you could (with a little thought and some further code) create PIC programs that you could ‘run’ by transferring from the Media card to the PIC’s flash. You could create your own ‘DO$’ for the PIC!

WinHex
Before we start working through the FAT specification, you might want to download the program WinHex from the Internet (see the links under Reference at the end of this article). WinHex is one of a number of tools produced by X-Ways Software Technology AG designed for ‘forensic analysis’ of storage media.

In our case, it can be used to view the raw data on the card when attached to the PC via a cardreader. It’s a small 1MB download that can be used free of charge in evaluation mode. Once downloaded, extract the files to a temporary directory, run the setup.exe and install to the default directory. Once installed, you can remove the temporary directory. When you run it for the first time a dialog, Fig.1, is shown.

FAT16 Specification
Now, to the FAT16 specification. First, some terminology. As FAT was originally designed for hard drives which contained several disks and read heads, the means of identifying a particular byte within the unit is complicated. The original scheme was called CHS addressing – Cylinder, Head and Sector. This has been superseded by LBA, Logical Block Addressing, which uses a simple incrementing counter to identify the position of a byte; the drive takes care of where the byte is actually located.

For Media cards, implementing a simple linear array of bytes, CHS has no meaning and we consider data locations in terms of sectors. A sector is the smallest unit of data (i.e., size) managed by the file system, and typically consists of 512 bytes. A cluster is another unit of data, which can vary depending on the size of the card. The number of bytes per sector and number of sectors per cluster are defined within the FAT tables, which we read when we first power up the card.

So, why do we use sectors and clusters rather than bytes? It allows us to reduce the number of bits required when addressing, or indexing, into the card’s data. If files are set to start at the beginning of a cluster, then you only need a 20-bit pointer rather than a 32-bit pointer (on a 2GB disk) to address the file. This saves space on the storage of file pointers. As we will see later, there can be a lot of them in the FAT, so reducing their size is a good idea.

Data Structures
There are several data structures that make up a FAT16 organised card, shown in Fig.2.
can be assigned to a logical disk; thus, you could have up to four logical drives. Each partition will hold a FAT16 boot record, FAT tables, a directory table and a large block of space for the actual file data itself. Fig.3 shows the information held in the MBR.

Note that in all the descriptions that follow, word and long word numbers (2-byte and 4-byte) are stored lowest value first, highest value last. So the number 0x1234 would appear in memory as 34 followed by 12. This is referred to as ‘little endian’ and is the format used by Intel processors when storing multi-byte values.

Partitions

Media cards are typically created with a single partition, so we look through the MBR’s partition table details to find where this partition actually starts, as shown in Fig.4. We look for a value of 4, 6 or 14 in the partition type (which signifies a FAT16 file system) and then look to the offset field to find where the partition proper starts.

As you can see, there are a number of hoops that need to be jumped through, but this only needs to be done once when you power up the card. We are getting close to finding the data!

Another quick note: Most Media cards are supplied pre-formatted with these data structures, but in some cases when the card is reformatted by Windows the MBR is discarded, and location 0 holds the start of the partition. On a Media card the only use for the MBR is to locate the active partition so this does not cause us a problem, we just need to check to find out if the MBR is present or not.

FAT records

The FAT16 boot record, which you can see in Fig.5, appears at the beginning of the partition. Lots of key information in here helps us locate the remaining data on the card. It also tells us how many sectors are used for each cluster; a detail that will be important later on.

The first FAT table follows after the ‘Number of reserved sectors’. The FAT table contains the list of clusters that make up your files. It’s a type of linked list, enabling the file to be stored in chunks, filling up unused holes left by previously deleted files. It is obviously extremely important that the FAT table does not become corrupted, so there are typically two or more copies of the FAT table. When we write to a file, we must update all copies of the FAT.

The FAT table consists of a simple list of words (16 bits), one for each data cluster in the partition. The first two words are reserved and the next word holds the ‘next in chain’ pointer for cluster number two. By convention, cluster number two is the first data cluster, and it follows immediately after the directory table.

As an example of how the FAT table is organised, let’s say you create a big file that needs three clusters to hold it. If this is the first file on the partition, it will occupy clusters 2, 3 and 4. The third entry in the FAT table, which is the marker for cluster number 2, will hold the value 3. The next word entry in the FAT table, for cluster number 3, will hold the value 4. The starting cluster for the file (2 in this case) is found by looking in the directory entry for that file.

Cluster Attributes

There are special values to indicate when the file ends, unused clusters etc. These are:

0x0000 : Cluster is unused
0x0003 : 0xFFFF : Next cluster in the file
0xFFFF : Cluster contains a bad sector (do not use)
0xFFF8 – 0xFFFF : Last cluster in the file

As you can see, media that has a large cluster size will not be efficient at storing large numbers of files. If your cluster size is 4KB and you store a 4.1KB file, the file will occupy 8KB. This is the nature of FAT file systems; it is a trade off between storage efficiency and speed of access to files. The size of the cluster is not under your control, so you have to live with it.

The names, creation date and attributes of each file are not held with the file data but instead in the directory table that follows immediately after the FAT tables. The content of this data structure can be seen in Fig.6. The specification for the bit fields is detailed in the source code that accompanies this article, in the file FAT16.inc.

In order to simplify matters we have left off an explanation of sub-directory and long filename handling; they are not necessary for basic file handling.

In the implementation we have also made a simplification to the way files are written; when we open the file we find the last cluster used on the disk, then we write data to consecutive clusters without trying to ‘fill in’ unused clusters elsewhere in memory. This enables the software to support high speed writing to the media, which is likely to be important for many embedded projects.

Example Software

The example software for this article (available from the Downloads section of the EPE website – www.epemag.co.uk) builds on last month’s low level code. We have also added some new commands to the RS232 debug user interface to display a directory listing, the contents of a file etc. All the high level access functions are listed in FAT16.inc.

The nice thing about implementing a FAT interface is that the underlying software need implement only two functions; readBlock and writeBlock. We did just that last month, so this month’s code focuses on the higher level FAT interfacing and ignores almost completely the underlying complexities of the card interface. This is a typical design practice; implement the software in ‘layers’, with each subsequent layer providing a greater level of abstraction from the preceding layers. No need to worry about SPI commands and bit twiddling this month!

Finally

This has been quite a length and complex discussion, but we hope that you can see the potential benefits are enormous, and quite good fun to experiment with.

Reference

WinHex: http://www.x-ways.net/
OK, YOU’VE JUST arrived home with your new widescreen TV set and tried to hook it up. But there’s a problem – your new set has Y/Cb/Cr component video inputs while your digital set-top box only provides high-quality signals in RGB format. You’ve got three choices – throw a wobbly, use the composite video output (but at the expense of picture quality) or build this low-cost RGB to Component Video Converter.

This unit is easy to build, with all parts installed on a double-sided PC board to eliminate internal wiring. It simply connects between the video source (eg, a set-top box) and your TV set or video projector.
If you live in an area where digital FTA (free-to-air) TV signals are available, it’s well worth investing in the service because of their better picture and sound quality. However, to achieve the best possible picture quality, you have to use the component video signals from the DTV set-top box and feed these into the matching inputs of your TV set or video projector.

The big catch here is that some set-top boxes only provide RGB video signals, with separated red, blue, and green outputs. In most cases, these signals are made available via one of the large 20-pin SCART sockets or Euroconnectors.

This doesn’t suit some of the latest large-screen (and widescreen) TVs and video projectors. These are usually designed to accept Y/Cb/Cr (or Y/B-Y/R-Y) component video, the same format as provided by the latest DVD players.

Unfortunately, you can’t feed RGB signals directly into these sets or projectors. But you can convert the RGB signals into Y/B-Y/R-Y form, using the simple converter unit described here. It simply connects between your set-top box and your TV set or projector.

As shown in the photographs, the complete converter fits in a small instrument box. It runs from a 9V AC plugpack supply, drawing less than 50mA – ie, less than half a watt of power.

How it works

The operation of the converter is quite straightforward, because it simply duplicates the kind of matrixing used to produce the luminance (Y) and colour difference (R-Y and B-Y) signals from the original colour camera signals. To do this, it first creates the Y signal by combining the R, G and B signals in the correct proportions; ie:

\[Y = 0.3R + 0.59G + 0.11B \]

That done, it subtracts this Y signal from the R and B signals, to create the colour difference signals.

Fig.1 shows how this is done. The Y signal is produced by the mixer/ adder stage based on IC1a which (like all of the other op amps used) is one half of a MAX4451ESA dual wideband amplifier. This stage is used to combine the three input signals in the right proportions, as determined by the three input resistor values.

Because IC1a is connected as an inverting amplifier, the signal at its output is an inverted version of the Y signal (ie, –Y). This –Y signal is then added to the R signal in IC1b to derive the R-Y colour difference signal.

In fact, IC1b operates with a gain of two (as set by the R1 resistor values), so its output signal corresponds to 2(R-Y). This is done to compensate for the voltage division that occurs when the converter’s R-Y output is connected to the R-Y input of a TV set or video projector – ie, due to the effect of the converter’s 75Ω ‘back termination’ output resistor and the set’s 75Ω input impedance.

Reproduced by arrangement with SILICON CHIP magazine 2006.
www.siliconchip.com.au
Exactly the same arrangement is used to produce a 2(B-Y) colour difference signal, using adder stage IC2b. In this case, we simply add the -Y signal to the B signal and again amplify their sum by two.

The centre output buffer stage using IC2a operates as an inverting amplifier with a gain of two and converts the -Y (luminance) signal from IC1a into an output signal of 2Y. As before, this stage operates with a gain of two to compensate for the inevitable voltage division due to the 75Ω “back termination” output resistors and the set’s 75Ω input impedance.

Now take a look at Fig.2 which shows the full circuit details. As shown, all the resistors shown as R1 in Fig.1 actually have a value of 510Ω. These resistors are in the feedback networks and at the inputs to IC1b, IC2a & IC2b. By contrast, the various parallel resistor combinations between the three video inputs and IC1a’s inverting input (pin 2) are chosen to give the correct mixing proportions.

For example, the 2.2kΩ and 7.5kΩ resistors from CON1 give a value of 1701Ω, which is very close to the correct figure for the R component (ie, 510/0.3 = 1700Ω). Similarly, the 1kΩ and 6.2kΩ resistors give a value of 861.1Ω, which is very close to the correct figure for the G component (510/0.59 = 864.4Ω). And finally, the 5.1kΩ and 51kΩ resistors give 4636Ω, exactly the right figure for the B component (510/0.11 = 4636Ω).

RGB TO COMPONENT VIDEO CONVERTER

Fig.2: the complete circuit for the RGB To Component Video Converter. Op amps IC1a, IC2a & IC2b all operate with a gain of two, to compensate for the signal losses that occur due to the 75Ω “back termination” output resistors and the set’s 75Ω input impedance.
The 91Ω and 82Ω resistors across the three video inputs ensure that each has the correct 75Ω input resistance. Note that these resistors are all somewhat higher than 75Ω, to compensate for the effects of the various mixing resistors connected to them. This impedance matching is necessary to ensure that the input cables from your set-top box or other RGB video source are correctly terminated, to prevent ringing.

Power supply

The converter’s power supply is simple, as the MAX4451 devices operate from ±5V supply rails and draw quite low current.

Power is derived from a 9VAC plugpack and this feeds half wave rectifiers D1 and D2. These produce +13V and −13V rails which are filtered using two 2200μF electrolytic capacitors and fed to 3-terminal voltage regulators, REG1 and REG2. The +5V and −5V regulator outputs are then filtered using 100μF capacitors and fed to the op amps supply pins (4 & 8).

LED1 provides power-on indication. It is simply connected across the +5V rail in series with a 470Ω current-limiting resistor.

Construction

All of the converter circuitry is built on a double-sided PC board, coded 596, measuring 117 × 102mm. This in turn is housed in a standard instrument case measuring 140 × 110 × 35mm, to produce a very compact and neat unit.

There’s no off-board wiring at all – all the RCA input and output connectors are mounted directly on the PC board along the front and rear edges. These are all accessed through holes in the front and rear panels when the case is assembled.

It is necessary to solder some component leads on both sides of the board. You’ll also need to solder a short length of tinned copper wire (such as a resistor lead cut) through one ‘via’ hole, to make the connection between top and bottom tracks. To make it easy, these points are all indicated on the PC board overlay diagram (Fig.3) with red dots. The full-size top and bottom copper-foil masters are given in Fig.6.

Most of the components fit on the top of the board in the usual way. The exceptions are the two MAX4451ESA dual op amp packages which are mounted on the underside, see Fig.5.

Table 1: Resistor Colour Codes

<table>
<thead>
<tr>
<th>No.</th>
<th>Value</th>
<th>4-Band Code (1%)</th>
<th>5-Band Code (1%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>51kΩ</td>
<td>green brown orange brown</td>
<td>green brown black red brown</td>
</tr>
<tr>
<td>1</td>
<td>7.5kΩ</td>
<td>violet green red brown</td>
<td>violet green black brown</td>
</tr>
<tr>
<td>1</td>
<td>6.2kΩ</td>
<td>blue red brown</td>
<td>blue red black brown</td>
</tr>
<tr>
<td>1</td>
<td>5.1kΩ</td>
<td>green brown red brown</td>
<td>green brown black brown</td>
</tr>
<tr>
<td>1</td>
<td>2.2kΩ</td>
<td>red red brown</td>
<td>red red black brown</td>
</tr>
<tr>
<td>1</td>
<td>1.5kΩ</td>
<td>brown green red brown</td>
<td>brown green black brown</td>
</tr>
<tr>
<td>2</td>
<td>1kΩ</td>
<td>brown black red brown</td>
<td>brown black black brown</td>
</tr>
<tr>
<td>10</td>
<td>510Ω</td>
<td>green brown brown brown</td>
<td>green brown black black</td>
</tr>
<tr>
<td>1</td>
<td>470Ω</td>
<td>yellow violet brown brown</td>
<td>yellow violet black black</td>
</tr>
<tr>
<td>2</td>
<td>91Ω</td>
<td>white brown black brown</td>
<td>white brown black gold brown</td>
</tr>
<tr>
<td>1</td>
<td>82Ω</td>
<td>grey red black brown</td>
<td>grey red black gold brown</td>
</tr>
<tr>
<td>3</td>
<td>75Ω</td>
<td>violet green black brown</td>
<td>violet green black gold brown</td>
</tr>
</tbody>
</table>
surface-mount SOIC packages, which are mounted on the bottom of the PC board (more on this later).

Begin the board assembly by fitting the short wire link which forms a 'via' between the top and bottom copper tracks of the −5V supply rail. It's located near the front of the board, about 17mm to the right of the 470Ω resistor just behind LED1. Fitting this link first will make sure you don't forget it.

Next fit the resistors, making sure you solder their 'earthy' leads to both sides of the board where indicated. Table 1 shows the resistor colour codes but we advise checking each value on a multimeter before it is fitted, just to make sure. That done, install the RCA sockets and the 9V AC power socket, using a small drill to enlarge their mounting holes if necessary.

The three small 100nF monolithic capacitors can be fitted next, again taking care to solder their leads to both sides of the board where indicated. That done, fit the two 10µF tantalum capacitors and the larger electrolytics, making sure each of these polarised components is orientated correctly. The earthy lead of both tantalum capacitors is soldered to the top copper as well, as shown in Fig.3.

Next fit the two diodes (D1 & D2) in the power supply,
again watching their polarity. Follow with the two regulators, making sure that you fit each one in the correct position. REG2 (the 7905) goes on the lefthand side, while REG1 (the 7805) mounts to the right of REG2. Don’t get them mixed up!

Each regulator is mounted horizontally, with its three leads bent downwards 5mm from the device body so that they pass through the holes in the PC board. They are both secured using 6mm × M3 machine screws and nuts and this should be done before soldering their leads. Note that REG1’s centre lead is soldered on both sides of the board, as are two leads for REG2.

Surface mount ICs

Once the regulators are in, you are ready to fit the two surface-mount ICs (IC1 & IC2). These are 8-lead SOIC packages and mount on the underside of the board — see Fig.5. They have a 1.25mm lead spacing, so they’re not too small for manual handling and soldering, providing you’re careful and use a soldering iron with a fine-tipped bit.

To fit these ICs, invert the board and locate their mounting positions — you’ll find the two sets of four small rectangular pads in each position. That done, remove the devices from their packaging and examine each one with a magnifying glass to identify the small chamfer along one side (ie, adjacent to pins 1-4 of the device).

Both devices are mounted on the board with this chamfered side towards the front — ie, downwards in Fig.5. Be sure to use a fine-tipped soldering iron for this job and be careful not to overheat them or leave solder bridges between their pins.

The best way to install them is to hold each device in place with a toothpick while you press down gently on one of its leads with the tip of the soldering iron. This will usually make a weak solder joint between the lead and the tinning on the board copper — enough to hold the device in place while you solder the remaining leads to their pads. That done, you can then go back and solder the first lead properly, to complete the job.

The final component to fit is LED1 (the power LED). This in installed on the top of the board, with its longer anode lead towards the right (ie, towards CON1). It should be mounted with its body about 17mm above the top of the board (a strip of cardboard between the leads makes a handy spacer).

After mounting, bend its leads down together at right angles at a point 9mm above the board. This ensures that it will later protrude through its matching hole in the front panel when the board is installed in its case.

Drilling the panels

The next step in the construction is to prepare the front and rear panels...
of the case. This involves drilling and reaming a small number of holes for the various connectors and the power indicator LED, using photocopies of the panel artworks as templates see Fig.4.

Once that’s done, additional photocopies of the artworks can attached to the outside of each panel for a professional finish. The way to do this is to first make a copy of each artwork on adhesive-backed A4 label sheet paper. The labels are then trimmed, peeled off the backing and attached to the panels. That done, a length of clear packaging tape (ie, wide adhesive tape) is applied over each panel to protect it from dirt and finger grease.

Finally, any excess tape is trimmed off and the holes cut out using a sharp hobby knife.

Final assembly

Now for the final assembly. This is done by first fitting the panels over the connectors on each side of the board (and also over the LED in the case of the front panel). That done, lower the assembly into the bottom half of the case, sliding each panel into its mating slot. It’s then simply a matter of fitting eight 6mm-long self-tapping screws (four along the front and four along the rear) to hold the PC board in place.

Finally, the top half of the case can be fitted and secured from the bottom using the two long countersink-head self-tappers provided.

Your RGB to Component Video Converter is now complete and ready for use. There are no adjustments to make—all that’s needed is to connect a suitable 9V AC plugpack and it should spring to life.

SYNC FIX

Unfortunately, some set-top boxes do not output a ‘sync-on-green’, which in the converter circuit would propagate through to the Y (luminance) output for use in the TV. However, they do have composite video outputs. This little add-on circuit extracts the sync pulses from the composite signal and adds them to the Y output to correct this deficiency. (If the sync-on-green is not present the set will probably display a blank screen).

A fourth RCA input socket can be added to the front panel of the converter to accept the composite signal from the set-top box (or other appliance). The appliance may have a composite output in the form of a separate RCA phono socket or as part of the SCART connector. Alternatively, the ‘Y’ channel of a Y/C output can be used as the source.

The composite video signal is first terminated with a 75Ω resistor (see diagram) and excessive chroma or noise is attenuated with a simple low-pass RC filter, formed by the 560Ω resistor and the 470pF capacitor. The signal is then AC-coupled to the input of an LM1881 sync separator IC.

The separated sync pulses appear on pin 1 of the LM1881, after which they’re inverted by transistor Q1. The result is injected into the Y signal path by feeding it into the input (pin 2) of op amp IC2a on the converter PC board. An 8.2kΩ series resistor effectively sets the sync level at about 0.3V.

The circuit can be built on a small piece of stripboard (approx. 20 x 40mm) and attached to a vacant area of the PC board with double-sided tape.

Graham Bowman
Troubleshooting

In the unlikely event that it doesn’t work, the first step is to go back over your work and carefully check that all components are correctly positioned and orientated. Check also for missed solder joints, especially where leads have to be soldered on both sides of the PC board.

Next, check the power supply rails with your multimeter. There should be +5V at the output of REG1 and −5V at the output of REG2. If you don’t get these voltages, check the two regulators and diodes D1 and D2, plus the polarity of all electrolytic capacitors.

You should also be able to measure +5V (with respect to board earth) on pin 8 of each of the two surface-mount ICs. Similarly, pin 4 of each device should be at −5V, but be careful not to short out adjacent pins with the meter probe when making these measurements.

Finally, if LED1 fails to light even though the +5V rail is correct, check that the LED has been installed correctly. Check also that its 470Ω resistor is correct.

Fig.6b: Full-size bottom etching pattern for the PC board.
EXPLORING THE GRAPHICS CAPABILITY OF VISUAL BASIC 2005 EXPRESS

Microsoft’s Visual BASIC Express 2005 has been mentioned in previous Interface articles, and it created a significant amount of interest from EPE readers. This is not surprising, as it is a reasonably competent version of Visual BASIC that is available as a free download from the Microsoft web site.

Although the original intention was for this program to be available as normal commercial software after November 7 2006, it will now remain as a free download for its lifetime. Thus, it should still be available as a free download at the time this magazine appears in the newsagents, and for some time thereafter.

There is no way of knowing how long Microsoft will continue to support this program, so it is probably advisable to download it sooner rather than later if it is something that might be of use to you.

The Microsoft web site has a great deal of useful information about Visual BASIC 2005 Express, and the other programs in the Visual Studio 2005 Express range. These are all available as free downloads incidentally. This is the best place to start for information on Visual BASIC 2005 Express, and there is also a link to the download on this page:

http://msdn.microsoft.com/vstudio/express/vb/

Graphics Capability?

Although Visual BASIC 2005 Express is in many ways a very capable piece of software, it would be naive to expect it to be the equal of the full-price versions of Visual BASIC. It is inevitable that some aspects of the program are limited or absent. Some readers have queried the lack of any graphics capability, but it is a case of the graphics tools being limited rather than completely absent.

The most obvious omissions are the Shape and Line components, which enable such things as rectangles, circles, ellipses, and lines of various widths to be drawn on the screen. These are not supplied as part of Visual BASIC 2005 Express, and there are no cut-down versions of them either. However, it is possible to produce some simple graphics using conventional programming and the Graphics.DrawLine instruction.

Unfortunately, the graphics capabilities seem to be a substantially cut down version of those found in Visual BASIC.Net. Consequently, trying to produce simple animated graphics for such things as virtual controls and panel meters is probably not a worthwhile proposition.

Fig.1. The Options window enables the screen and snap grid facilities to be switched on and off. The horizontal and vertical grid sizes are individually adjustable.

This is not to say that the graphics of Visual BASIC 2005 Express are of no use when writing software for electronic projects. It does mean that any graphics will mainly be used to give a smarter and more functional appearance, rather than providing things such as virtual controls.

Fortunately, Visual BASIC 2005 Express does include the usual range of controls such as scrollbars and buttons, and it can produce big digital readouts via Label components and suitably large text sizes. Something like the numeric keypad featured in the previous Interface article should be equally easy to produce using Visual BASIC 2005 Express.

One slight problem when you first start using the program is that the form lacks both visual and snap grids. This makes it very difficult to get buttons, labels, etc., accurately aligned on the form. Both visual and snap grids are available, and will almost certainly be required when producing any software for PC add-ons.

The window that controls the grids is obtained by going to the Tools menu and selecting Options. Then select General in the left-hand panel of the Options window. This has controls that enable the grids to be switched on or off, and the grid size to be set (Fig.1). The grid size is set in pixels, with the horizontal and vertical sizes being independently adjustable.

Drawing

Drawing lines is done in a rather round-about fashion. The first step is to double-click a blank area of the form so that the code window appears. Next, select Paint from drop-down menu in the top right-hand corner of the code window. This produces a basic subroutine in the code window, into which the graphics program is added. For this example I used six lines of code to add some lines to the dummy control panel shown in Fig.2. Apart from decoration, the purpose of the lines is to group five buttons that will effectively operate as a bank of radio buttons.

Private Sub Form1_Paint(ByVal sender As Object, ByVal e As System. Windows.Forms.PaintEventArgs) Handles Me.Paint
 End Sub

Each instruction has five parameters within the brackets, and the first of these is the colour of the line. When typing the instruction, the built-in tint system presents a list of the available colours at this point,
so it is just a matter of selecting the required colour from the list. The other four parameters are pairs of co-ordinates. The Visual BASIC 2005 Express co-ordinate system is like the one used in other versions of Visual BASIC in that it has 0,0 in the top left-hand corner of the window.

It is different in that it operates using pixels rather than the more arbitrary system of other versions. The first line is therefore drawn from a point 40 pixels in from the left and 350 pixels from the top, to one 700 pixels from the left and 350 pixels from the top of the window.

There is a big drawback in using conventional programming rather than the visual approach. The lines never appear on the form, so it is necessary to press F5 and run the program in order to check whether the graphics code is having the desired effect. Working out designs on graph paper should provide initial results that are reasonably accurate. Even so, it will usually be necessary to do a little ‘fine tuning’ in order to get things just right.

Filled In

The lack of a width parameter is a major limitation of the Draw.Line instruction, but there is a way of drawing thick lines. There is a DrawRectangle instruction, which draws the outline of a rectangle using a one-pixel wide line. This can be used to draw ‘hollow’ lines.

Perhaps of more use, there is a FillRectangle command that produces ‘solid’ rectangles. By drawing long and thin rectangles it is possible to produce thick lines. This subroutine uses filled rectangles to produce a ‘thicker’ version of the panel design (Fig.3):

```
Private Sub Form1_Paint(ByVal sender As Object, ByVal e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint
    e.Graphics.FillRectangle(Brushes.Black, 40, 350, 5, 100)
    e.Graphics.FillRectangle(Brushes.Black, 40, 350, 660, 5)
End Sub
```

Note that for filled shapes the colour is set using Brushes parameter rather than the Pens type. The four co-ordinates again work in pairs, but only the first two are true co-ordinates. These set the position of the top left-hand corner of the rectangle. The next two values respectively set the width and height of the rectangle. In the current context, they effectively set the length and the width of horizontal lines, or the width and length of vertical lines.

There are other shapes available, including ellipses. The co-ordinate parameter for ellipses operates in essentially the same way as for rectangles, and they specify the position and size of an imaginary rectangle that is just large enough to contain the ellipse.

By default, objects drawn on the form will go behind visible components such as buttons and labels. This can often be used to good effect, as in the alternative version of the virtual voltmeter front panel design of Fig.4. Only three graphics instructions are needed to produce this design:

```
Private Sub Form1_Paint(ByVal sender As Object, ByVal e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint
    e.Graphics.FillRectangle(Brushes.Red, 5, 105)
    e.Graphics.FillRectangle(Brushes.Black, 510, 350, 120, 100)
End Sub
```

Filled In

The lack of a width parameter is a major limitation of the Draw.Line instruction, but there is a way of drawing thick lines. There is a DrawRectangle instruction, which draws the outline of a rectangle using a one-pixel wide line. This can be used to draw ‘hollow’ lines.

Perhaps of more use, there is a FillRectangle command that produces ‘solid’ rectangles. By drawing long and thin rectangles it is possible to produce thick lines. This subroutine uses filled rectangles to produce a ‘thicker’ version of the panel design (Fig.3):

```
Private Sub Form1_Paint(ByVal sender As Object, ByVal e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint
    e.Graphics.FillRectangle(Brushes.Black, 40, 350, 5, 100)
    e.Graphics.FillRectangle(Brushes.Black, 40, 350, 660, 5)
End Sub
```

Finally

When using Visual BASIC 2005 Express or Visual BASIC.Net it is important to bear in mind that the underlying programming language is not the same as the one used in earlier versions of Visual BASIC. There are also differences when using the visual approach to programming. It is no good trying to do things in exactly the same way as you would when using Visual BASIC 5.0 or 6.0.

Those familiar with earlier versions of Visual BASIC will have to learn new ways of doing things in order to use the modern versions to full effect.

```
Fig.2. Lines are easily programmed, but with this method there is no way of adjusting the line width
```

```
Fig.3. Thick lines can be produced by programming filled rectangles. Using this method it is possible to have line widths of any desired number of pixels
```

```
Fig.4. Filled rectangles and ellipses are easily programmed. They can be positioned behind buttons, labels, and other visible components
```

```
Fig.5. In this example the background is provided by a photograph of an aluminium panel. Any bitmap in JPG, GIF or BMP format can be added to the form of the genuine article. It is possible to add a background image using any modern version of Visual BASIC, including Visual BASIC 2005 Express.
```

One way of doing it is to add a PictureBox component to the form. This can then be dragged to the required size, and if necessary it can cover the entire form. To add an image to the PictureBox go to its properties window and operate the button in the Image section. This produces a pop-up window where the image can be selected if it has already been added to the project as a resource.

Preloading the image is not really necessary though, and an image file on the computer’s hard drive can be loaded by operating the Import button. A file browser then appears, and this is used to locate and load the image file in the normal way.

Note that the image must be in JPG, GIF, or BMP format. In the example of Fig.5 I first photographed a small area of sheet aluminium and the used the JPG image in a PictureBox.

In order to ensure that the image is in the background with everything else visible on top of it, make sure that the background image is added before any visible components are added to the form. Alternatively, select the PictureBox, go to the Format menu, and then select Order and Send to Back.
A four part beginners guide to using the C programming language for PIC microcontrollers

Part 2 – Creating Programs

By Mike Hibbett

FOLLOWING on from last month’s whistle-stop tour of the Microchip C compiler, we now take a closer look at how programs are created, and what files are involved in the build. We will start by looking at the contents of a typical C program.

Program Groups

Once compiled, a C program typically consists of four groups of code: C-Startup, Standard Library Code, Application Code and Library Code. We will go through these in reverse order.

Library Code consists of source files that you have compiled previously, or perhaps obtained from a third party, that you are making use of in your application. Library code is pre-compiled to a binary code file and does not require its original source code to be present (although source code will help when debugging). The code is often supplied packaged together in a ‘library’ file (with a .lib extension), or as a single object file (with a .o or .obj extension).

You add these files to your project by creating links to them in the .mcw window within the IDE. You simply right-click over ‘Library Files’, then select ‘Add Files...’. Library files generally hold useful functions that you can call from your application. To get access to the functions within a library you must also include its associated header file, which normally has the same name but an extension of .h. You add the header files to your project in a similar way to adding the library files – right-click over the ‘Header Files’ option in the .mcw window on your IDE. We will come back to header files in a minute.

Application Code is, well, your stuff; the result of compiling all your source code. Where exactly that gets placed in the code address space is normally unknown to you, and most of the time of little interest. An exception would be the code that goes into the interrupt vector locations, which we will cover in more detail next month.

Standard Library Code is a set of useful functions that are supplied as standard by all C compilers; printf, for example, is a standard library function. Because these are standard libraries you do not have to add them to your project – they are automatically referenced by the linker program. You must include the appropriate header file in your source code, of course.

Library code – be it standard or user supplied – is only added once, since it is a set of functions. The linker program will find out which library functions are used by your application code and copies them in from the appropriate library file into your program. It only includes the functions that you call (directly, or in-directly), which helps to minimise the amount of code memory used. The compilation process is quite smart and does its best to be as efficient as possible with your limited code and data resources.

So, if we do not know where our code ends up in memory, how do we tell the compiler where to place our startup routine, our main() function? Well, this is the role of the final group of code, C-Startup. This is a small piece of software that handles the operation of the microcontroller as it leaves the reset state, initialises various variables and jumps to the user's application code.

That was an over-simplification of what C-Startup does, so lets go into a little more detail.

C-Startup Detail

When the processor comes out of reset, it starts executing software at code location 0. In assembly language programs, we use an ORG 0 statement and follow that with our initialisation code. C-Startup contains the code that runs from location 0. It sets up the software stack – a reserved area of RAM used by the C language to pass parameters to functions – then initialises all of our global variables.

Remember, global variables (outside of any function), or statically declared variables inside of functions, will be initialised after reset to either zero or whatever value you specify when you declared the variable. Having done that, C-Startup finishes by passing control (i.e., jumping to) our main() function. Your application code takes over from there.

General purpose embedded C compilers would normally supply a skeleton C-Startup file which you have to modify to suit your hardware. You would be expected to define the code and data memory layout, what address the processor jumps to after reset, etc. As the PIC has all its code and data storage internally, all these ‘options’ are effectively fixed by Microchip and a single C-Startup routine will suit all processors and projects. Thus, you should never need to edit the file.

C-Startup Versions

There are, however, three versions of the C-Startup code for you to choose from: c018i.o, c018iz.o and c018a.o. Version c018i.o is the default startup routine. The other two provide extra or fewer features, which affect the size of your program file.
The reason for the choice is related to what C does with variable initialisation. If you declare a global or static variable and initialise it to a value at the same time, for example:

```c
int baudRate = 9600;
```

C-Startup is responsible for performing the initialisation of the variable’s value before your `main()` function is called. The default startup file, `c018i.o`, does this for you. The C language standard also dictates that global or static variables that are not initialised to a value must be set to 0. To save code space, `c018i.o` does not do this; if you want fully standard compliant variable initialisation, use the file `c018iz.o`. The third file, `c018.o`, performs no variable initialisation at all, which means you must perform your initialisation manually. i.e.:

```c
int baudRate;
...
baudRate = 9600;
```

In some cases this restriction is acceptable, and will save you a few hundred bytes of code space.

Linker File

You specify the C-Startup file to use in the linker file that you include in your project. If you edit the linker file that we used in last week’s example, `18f2420.lkr`, you will see lines like the following:

```
FILES c018i.o
FILES clib.lib
FILES p18f2420.lib
```

If you want to change the choice of startup file just change the reference in the linker file, save it, and re-build your program. You can experiment with this, and then look at the map file to see how the code size changes. Building the code with `c018.o`, `c018i.o` and then `c018iz.o` resulted in code sizes of 145, 307 and 327 bytes. As you can see, for small projects the startup code has quite an effect on the code size. As project size increases, however, the overhead of the startup code reduces. Our recommendation is to stick with the default startup file and consider changing only if you are running out of code space.

Table Block

To assist C-Startup perform the initialisation of global variables there is another block of information, a table, that gets stored in your code and placed in flash memory. As you might imagine, when the C-Startup code is filling in all your global variable initialisations, it needs an efficient way to store a list of those variables, their type and the value to write into them. This information is held in a table.

Global variable initialisation has an interesting implication on the size of your code. If you want to define a variable that will never change – for example, the number of seconds in a minute – you might be inclined to write the following:

```c
int secondsPerMinute = 60;
```

This is not very efficient. The reason for this is that the C compiler will allocate some RAM space for your variable, and it will store the value ‘60’ into the code table, and then at startup copy the value 60 into the variable. What would be better would be to do this:

```c
const rom int secondsPerMinute = 60;
```

The ‘const rom’ qualifier (called a storage qualifier, as it affects the way a variable is stored) tells the compiler that this variable will never change, and that it should place it directly in flash memory. No precious RAM space is used. Doing this has the added benefit that the compiler will be able to detect coding errors like this:

```c
if (secondsPerMinute = count)
```

The compiler ‘knows’ that `secondsPerMinute` is a constant and will raise an error on the accidental attempt to assign a new value to it (a very common mistake!).

It’s a good idea to experiment with these kinds of issue, making small changes, building the program and comparing the results in the .map file with previous builds. You will quickly discover how different features affect the code size.

Other Linker Information

We mentioned earlier that the linker file holds the definition of which type of C-Startup code will be called. The linker file holds other vital information too; it is the key to how the various variables and functions get arranged into the final binary code.

To a certain extent, the choice of where objects get placed in memory is removed from you, and this is a blessing – you want to concentrate on writing software, not deciding where things are placed. Sometimes, however, you will want to specify where objects are placed. Interrupt routines are a typical example, where you must explicitly tell the compiler things like ‘This function must start at code location 0x18’.

The compiler also wants to be able to specify where objects should go; variables into RAM, functions into code space. The linker file is the link (sic) between the memory layout of your particular device and the C compiler. The compiler is a general purpose program and is not expected to know individual processor configurations, and so it will examine the project’s linker file to find out. That is why you will find a linker file for each processor in the microchip PIC18 range, and they all follow a similar layout.

Some Linker Detail

Let’s take a look at the linker file we used last month, `18f2420.lkr`. After specifying the standard library files and the startup code, it lists a number of memory sections. For example:

```c
CODEPAGE NAME=vectors
START=0x0 END=0x29 PROTECTED
```

This is an area of memory reserved for interrupt vectors. The compiler will avoid placing user code in this section. Next up:

```c
CODEPAGE NAME=page
START=0x2A END=0x3FFF
```

This identifies the remaining space available in code for user functions. If the code you write exceeds 0x3FFF bytes, the compiler will indicate an error that you have used too much memory.

You will not normally need to change this file unless you are writing some complex code, or you want to reserve some memory that should not be used by the compiler – perhaps because you have a bootloader on the chip.
.MCP and .MCW Files

There are a couple of files that are created when you make a new project; a .mcp and a .mcw file. The .mcw file is a binary file that contains information about your current IDE setup; what windows are open, for example, which .mcp file you are using. It is the file that you double-click on if you want to open up your project in the IDE.

The .mcp file contains a list of your project files and the build options you have chosen. Several other files are created, and it is best not to delete them. The main output files from your source code will be the .hex file (the actual program code), a .lst listing file and a .map file which lists the actual locations of all the variables and functions, plus a summary of how much code space has been used up.

Build Process

Let’s move back to the build process. If you think back to last month, we built the project by selecting ‘Project’ then ‘Build All’ from the main menu. You may not realise it yet, but there is a large number of options available to us to change the way the compiler works when it is translating our source files into the program code.

There are two types of build options available: project build options and file build options. Project build options allow us to define the default compiler options for the whole project, such as where to find system files and default build options for source files. File build options enable you to ‘over-ride’ the project build settings on individual files. Most of these options can (and should) be left at defaults until you have become experienced with the compiler.

There is one important option that should be changed, however, which we should cover. If you right click over the .mcp reference at the top of the .mcw window within the IDE and then select ‘Build Options...’, an options dialog window will appear. Click on the MPLAB C18 tab, to display the compiler options page. There are too many options to fit on one page, so they are grouped into categories. Select ‘Memory Model’ from the Categories drop down list, and you should see the options as shown in Fig.1.

These options are very important because they affect the assumptions the compiler makes about how it should be addressing memory. The ‘Code Model’ option allows you to specify whether the compiler should expect code to potentially grow to a size greater than 64K byte, therefore requiring it to use large (24-bit) pointers for jump instructions. The ‘Data Model’ allows the compiler to ignore the Bank Select bits when accessing RAM variables, and assume that all variables are within the Access RAM area.

Choosing small code and data models will result in the smallest code utilisation, but is only suitable if your application will fit in 64KB and never use more than 128 bytes of RAM. When the C compiler is deciding on RAM utilisation it’s rather difficult to know these things in advance. That’s not a problem though, because you can change any of these options at any time and simply rebuild the code; you do not need to change your source code or start a fresh project. It’s quite normal to tinker with these parameters and then look at the .map file to see how the changes affect the code size and data utilisation.

There is one big caveat to the memory model options: The standard C libraries (those supplied by Microchip that implement all the standard functions such as printf, etc) have been built with the large
code memory model. Functions in these libraries therefore expect to be passed large pointers rather than small ones. You must therefore select the Large Code model as shown in Fig.1 for all your application source files when you use library functions. You only need to do this once; changes you make to your project settings are stored in the .mcp and .mcw project files.

Adding Files
Adding a file to the project can be a little confusing because there are several options, and it is not particularly intuitive as to how you should do it. If you have an existing file that you want to add (a source file or header file, for example) then first copy that file into your project directory. Simply copying a file into the directory does not add it to your project – the C compiler will ignore it unless you add a reference to it in the .mcw window. To do that right click over the appropriate heading (‘Source Files’ or ‘Header Files’) and click on ‘Add Files...’. A dialog like that in Fig. 2 will appear.

Navigate to the file you want to add to the project and click once on it. You should now specify the way in which the file is added: Auto, User or System. Any files that are in your project directory are ‘User’, while files outside your project directory – such as a linker file, for example – are ‘System’. All that happens when you do this is that references to user files are stored with a path name relative to your directory (e.g. utils\file.c) whereas system files would be stored with the full path name (e.g. C:\myproject\utils\file.c).

This will seem a strange requirement until you start moving your project directory around your hard disk. System files will always be in the directory in which they were installed, but you want to be free to move your project directory to another directory without having to re-specify all your file paths. It’s not uncommon to have many tens of source files in a project, so this is a useful feature.

The reason why there is a section for source files and another for header files is to do with the way in which the C compiler builds your program. First, the C compiler only compiles files in the source files list. If, however, a source file has not changed since the last time the project was built, that file will not need to be re-built. When you have many source files in a project, this can save a lot of time.

Header files are not compiled by the C compiler, but it will look though the list of files in the Header Files section to see if any of them have changed. If they have, the compiler will re-compute any source file that uses those header files.

If a header file is not included in the Header Files section, it is not uncommon for very nasty, difficult to locate bugs to appear in your project as a result of a change to a header file not being detected. Consider two source files that share the same header file – one file implementing a function, the other file using it – the header file defines the parameters that are passed to and returned from the function. If the two source files have a different view of how the function works, the resulting code will crash or behave unpredictably. Always include your header files in the project! There is no need to include the standard header files, such as stdio.h in your project – these files are system files that do not change.

Structuring Programs
The final point we will cover this time is how you should structure your programs. Structuring programs in any language is always a difficult task. It’s never easy when faced with a blank piece of paper or an empty editing window, and the temptation is to just start writing, keeping going until the code is finished. Subroutines may appear on occasions, or there may be long sequences of repeated code.

There is nothing wrong with this for small applications. Indeed the author has seen more than one commercial program written like this. There are, however, problems with this ‘monolithic’ style of programming. Your code will very quickly become difficult to maintain. A pain in fact. It will be almost impossible to re-use code that you have previously designed, because it will have become tightly coupled with the rest of your code.

Do we really want this pain, or do we want to enjoy the craft of creating new software? Nobody enjoys re-inventing the wheel. Here are some useful tips:

Think about what your program is going to do, and try to break it down into some high level functions like ‘Read from EEPROM’ or ‘Get ADC value’. Write functions to do these before writing your main application. When you come to start writing your main application you will be able to write code and think at a higher level of abstraction, which means thinking of questions like ‘Is the signal above two volts’ rather than ‘Should I skip on Carry or Not Carry’?

Function Source Files
The functions you have created can go in their own source files, with a header file that describes the interface to them. So, for example, an EEPROM module will have a source file called eeprom.c and a header file eeprom.h that contains a list of the functions such as init_eeprom, read_eeprom, write-eeprom etc. that are the ‘interface’ into this module. Those functions can then be re-used in later projects by simply including the header file and the compiled .o file of the module.

We don’t have space in this series of articles to go into code structuring in any detail, but fortunately there is an excellent book on the subject, Code Complete by Steve McConnell offers some excellent tips on how to write good software, tips that are not just for professional writers. It’s also a fun read, and your local library can probably get hold of a copy.

For those of you who are learning the C language from scratch, there are plenty of tutorials and even books published free of charge on the Internet. Two good examples are listed at the end of this article.

Next Month
We have covered important ground in this part and hopefully de-mystified some of the issues. Next month we will look at some practical issues with embedded C programming and hopefully guide you through some of the pitfalls that have welcomed many a programmer in the past.

References
C guidelines: http://syque.com/cstyle/
Battery Zapper MKII
KC-5427 £29.00 + post & packing
This kit attacks a common cause of failure in wet lead acid battery cells: sulphation. The circuit produces short bursts of high level energy to reverse the damaging sulphation effect. This new improved unit features a battery health checker with LED indicator, new circuit protection against badly sulphated batteries, test points for a DMM and connection for a battery charger. Kit includes case with screen printed lid, PCB with overlay, all electronic components and clear English instructions.

Improved Model!

Magnetic Cartridge Pre-amp
KC-5433 £11.75 + post & packing
This kit is used to amplify the 3-kV signals from a phono cartridge to line level, so you can use your turntable with the CD or tuner inputs on your Hi-Fi amplifier. The design is suitable for 12” LPs, and also allows for RIAA equalisation of all the really old 78s. Please note that the input sensitivity of this design means it’s only suitable for moving-magnet, not moving-coil cartridges. Kit includes PCB with overlay and all electronic components.
• Requires 12VAC power

Theremin Synthesiser MKII
KC-5426 £43.60 + post & packing
By moving your hand between the metal antennae, create unusual sound effects! The Theremin MkII improves on its predecessor by allowing adjustments to the tonal quality by providing a better wave form. With a multitude of controls, this instrument’s musical potential is only limited by the skill and imagination of its player. Kit includes stand, PCB with overlay, machined case with silkscreen printed lid, loudspeaker, pitch controls, this instrument’s musical potential is only limited by the skill and imagination of its player. Kit includes stand, PCB with overlay, machined case with silkscreen printed lid, loudspeaker, pitch

High Performance Electronic Projects for Cars Book
BS-5080 £30.00 + post & packing
Australia’s leading electronics magazine Silicon Chip, has developed a range of projects for performance cars. There are 16 projects in total, ranging from devices for remapping fuel curves, to nitrous controllers. The book includes instructions, components lists, colour pictures, and circuit layouts. There are also chapters on engine management, advanced systems and DIY modifications. Over 150 pages! All the projects are available in kit form, exclusively to Jaycar. Check out our website for all the details.

Hand Controller for Digital Adjusters
KC-5386 £25.95 + post & packing
This hand controller is used for tuning/programming the independent electronic boost controller Kit (shown below). It features a two line LCD, and easy to use push buttons. It can be used to program the adjusters into removed, or left permanently connected to display the adjuster’s operation. It is designed as an interface and display, and is not required for general adjuster functions after they have been programmed. Kit supplied with silkscreened and machined case, PCB, LCD, and all electronic components.

Smart Fuel Mixture Display Kit
KC-5374 £8.95 + post & packing
This kit features auto dimming for night driving, emergency lean-out alarm, better circuit protection, and a ‘dancing’ display which functions when the ECU is operating in closed loop. Kit supplied with PCB and all electronic components. Car must be fitted with air flow and EG0 sensors (tandem on all EFI systems) for full functionality.

IR Remote Control Extender MKII
KC-5425 £22.50 + post & packing
Operate your DVD player or digital decoder using its remote control from another room. It picks up the signal from the remote control and sends it via a 2-wire cable to an infrared LED located close to the device. This improved model features fast data transfer, capable of transmitting Foxtel digital remote control signals using the Pace 400 series decoder. Kit supplied with case, screen printed front panel, PCB with overlay and all electronic components.

Galactic Voice Kit
KC-5431 £13.25 + post & packing
Theremin MkII improves on its predecessor by allowing adjustments to the tonal quality by providing a better wave form. With a multitude of controls, this instrument’s musical potential is only limited by the skill and imagination of its player. Kit includes stand, PCB with overlay, machined case with silkscreen printed lid, loudspeaker, pitch antennae, create unusual sound effects! The Theremin MkII improves on its predecessor by allowing adjustments to the tonal quality by providing a better wave form. With a multitude of controls, this instrument’s musical potential is only limited by the skill and imagination of its player. Kit includes stand, PCB with overlay, machined case with silkscreen printed lid, loudspeaker, pitch

Independent Electronic Boost Controller
KC-5387 £25.95 + post & packing
It can be used in cars fitted with factory electronic boost control using the factory control solenoid, or cars without electronic boost control using a solenoid from a wrecker etc. It has two different programmed boost curves. Boost curve selection is via a dashboard switch, and is all programmed using the handheld digital controller KC-5386 (shown above). Kit supplied with PCB, machined case, and all electronic components.
• Suitable for EFI and engine management systems only
EPE had been publishing a series of popular kits by the acclaimed Silicon Chip Magazine Australia. These projects are brilliantly designed, ‘bullet proof’ and already tested down under. All Jaycar kits are supplied with specified board components, quality fibreglass tinned PCBs and have clear English instructions.

Delta Throttle Timer
KC-5373 £7.95 + post & packing
It will trigger a relay when the throttle is depressed or lifted quickly. There is a long list of uses for this kit, such as automatic transmission switching of economy to power modes, triggering electronic blow-off valves on quick throttle lifts and much more. It is completely adjustable, and uses the output of a standard throttle position sensor. Kit supplied with PCB and all electronic components.
• As published in Everyday Practical Electronics November 2006

Smart Card Reader and Programmer Kit
KC-5361 £15.95 + post & packing
Program both the microcontroller and EEPROM in the popular gold, silver and emerald wafer cards. Card used needs to conform to ISO-7816 standards, which includes ones sold by Jaycar. Powered by 9-12V DC wall adaptor or a 9V battery. Instructions outline software requirements that are freely available on the internet. Kit supplied with PCB, wafer card socket and all electronic components. PCB measures: 141 x 101mm.
• As published in Everyday Practical Electronics May 2006

AC/DC Current Clamp
KC-5368 £8.75 + post & packing
A great low cost alternative. It uses a simple hall effect sensor, an iron ring core and connects to your digital multimeter. It will measure AC and DC current and has a calibration dial to allow for any magnetising of the core. Kit supplied with PCB, clamp, case with silkscreened panel and all electronic components.
• As published in Everyday Practical Electronics January 2006

Programmable Continuity Tester Kit
KC-5362 £8.70 + post & packing
This unit will test for continuity from 1-1000ohms, making it ideal for measuring low resistance devices. It is accurate, reliable, and works extremely well. Kit supplied with PCB, case with silkscreened panel and all electronic components.
• As published in Everyday Practical Electronics April 2006

2 Amp DC-DC Converter Kit
KC-5358 £13.75 + post & packing
This kit will step-up 12V to between 13.8 and 24VDC. Use it to charge 12V sealed lead acid batteries (6.5Ah or larger), run your laptop and many other devices from a 12V supply. It uses an efficient switchmode design, features fuse and reverse polarity protection, and an LED power indicator. Kit includes PCB, all electronic components, and silkscreened front panel.
• As published in Everyday Practical Electronics March 2006

50MHz Frequency Meter Kit
KC-5369 £22.50 + post & packing
This meter is autoranging and displays the frequency in either hertz, kilohertz or megahertz. Features compact size (130 x 67 x 44mm), 8 digit LCD, high and low resolution modes, 0.1Hz resolution up to 150Hz, 1Hz resolution maximum up to 150Hz and 10Hz resolution above 16Hz. Kit includes PCB, case with machined and silkscreened lid, pre-programmed PIC and all electronic components with clear English instructions.
• As published in Everyday Practical Electronics September 2006

Audio Video Booster Kit
KC-5350 £31.95 + post & packing
This kit will boost your video and audio signals preserving them for the highest quality transmission to your projector or large screen TV. It boosts composite, S-Video, and stereo audio signals. Kit includes case with silkscreened and punched panels, PCB and all electronic components.
• As published in Everyday Practical Electronics March 2006

Delta Throttle Timer
KC-5372 £55.95 + post & packing
It delivers a whopping 350WRMS into 4 ohms, or 200WRMS into 8 ohms. Using eight 250V 200W plastic power transistors, it is super quiet, with a signal to noise ratio of -125dB(A) at full 8 ohm power. Harmonic distortion is just 0.002%, and frequency response is almost flat less than -1dB) between 15Hz and 60kHz. Kit supplied in short form with PCB and electronic components. Kit requires heatsink and +/- 70V power supply (a suitable supply is described in the instructions).
• As published in Everyday Practical Electronics October & November 2006

Studio 350 High Power Amplifier Kit
KC-5372 £55.95 + post & packing

AC/DC Current Clamp
KC-5368 £8.75 + post & packing

Delta Throttle Timer
KC-5373 £7.95 + post & packing

Smart Card Reader and Programmer Kit
KC-5361 £15.95 + post & packing

Programmable Continuity Tester Kit
KC-5362 £8.70 + post & packing

Audio Video Booster Kit
KC-5350 £31.95 + post & packing

2 Amp DC-DC Converter Kit
KC-5358 £13.75 + post & packing

50MHz Frequency Meter Kit
KC-5369 £22.50 + post & packing

Studio 350 High Power Amplifier Kit
KC-5372 £55.95 + post & packing

Delta Throttle Timer
KC-5373 £7.95 + post & packing

Smart Card Reader and Programmer Kit
KC-5361 £15.95 + post & packing

2 Amp DC-DC Converter Kit
KC-5358 £13.75 + post & packing

50MHz Frequency Meter Kit
KC-5369 £22.50 + post & packing

Audio Video Booster Kit
KC-5350 £31.95 + post & packing
ELECTRONICS PROJECTS

Electronic Projects is split into two main sections: Building Electronic Projects contains comprehensive information about the components, tools and techniques used in developing projects from initial concept through to final circuit board production. Extensive use is made of video presentations showing soldering and construction techniques. The second section contains a set of ten projects for students to build, ranging from simple sensor circuits through to power amplifiers. A shareware version of Matrix's CADPACK: schematic capture, circuit simulation and p.c.b. design software is included.

The projects on the CD-ROM are: Logic Probe; Light, Heat and Moisture Sensor; NES555 Timer; Egg Timer; Dice Machine; Bike Alarm; Stereo Mixer; Power Amplifier; Sound Activated Switch; Reaction Tester. Full parts lists, schematics and p.c.b. layouts are included on the CD-ROM.

ELECTRONIC CIRCUITS & COMPONENTS V2.0

Provides an introduction to the principles and application of the most common types of electronic components and shows how they are used to form complete circuits. The virtual laboratories, worked examples and pre-designed circuits allow students to learn, experiment and check their understanding. Version 2 has been considerably expanded in almost every area following a review of major syllabuses (GCSE, GNVQ, A level and HNC). It also contains both European and American circuit symbols.

ANALOGUE ELECTRONICS

Analogue Electronics is a complete learning resource for this most difficult branch of electronics. The CD-ROM includes a host of virtual laboratories, animations, diagrams, photographs and text as well as a SPICE electronic circuit simulator with over 50 pre-designed circuits.

Sections on the CD-ROM include: Fundamentals – Analogue Signals (5 sections), Transistors (4 sections), Waveshaping Circuits (6 sections), Op.Amps – 17 sections covering everything from Symbols and Signal Connections to Differentiators. Amplifiers – Single Stage Amplifiers (8 sections), Multi-stage Amplifiers (3 sections), Filters – Passive Filters (10 sections), Phase Shifting Networks (4 sections), Active Filters (6 sections). Oscillators – 6 sections from Positive Feedback to Crystal Oscillators. Systems – 12 sections from Audio Pre-Amplifiers to 8-Bit ADC plus a gallery showing representative p.c.b. photos.

DIGITAL ELECTRONICS V2.0

Digital Electronics builds on the knowledge of logic gates covered in Electronic Circuits & Components (opposite), and takes users through the subject of digital electronics up to the operation and architecture of microprocessors. The virtual laboratories allow users to operate many circuits on screen.

Sections on the CD-ROM include: Fundamentals – Fundamental Logic (3 sections), Digital Circuits (9 sections), Digital Networks (4 sections), Data Converters (1 section), Proportional Logic – Digital Circuits (1 section), Interfacing – Communication (4 sections), Interfacing – HDI (4 sections), Active Filters (6 sections). A/D and D/A converters, traffic light controllers, memories and microprocessors – architecture, bus systems and their arithmetic logic units. Sections on Boolean Logic and Venn diagrams, displays and chip types have been expanded in Version 2 and new sections include shift registers, digital fault finding, programmable logic controllers and microcontrollers.

The Institutional versions now also include several types of assessment for supervisors, including worksheets, multiple choice tests, fault finding exercises and examination questions.

ANALOGUE FILTERS

Analogue Filters is a complete course in designing active and passive filters that makes use of highly interactive virtual laboratories and simulations to explain how filters are designed. It is split into five chapters: Revision which provides underpinning knowledge required for those who need to design filters. Filter Basics which is a course in terminology and filter characterization, important classes of filter building block, filter impedance and impedance matching, and effects of different filter types. Advanced Theory which covers the use of filter tables, mathematics behind filter design, and an explanation of the design of active filters. Passive Filter Design which includes an expert system and filter synthesis tool for the design of low-pass, high-pass, band-pass, and band-stop filters. Butterworth and Chebyshev.

FINANCE

Prices

Prices for each of the CD-ROMs above are:

Hobbyist/Student ...£44 inc VAT

Institutional (Schools/HE/Councils)£99 plus VAT

Institutional 10 user (Network Licence)£249 plus VAT

(Site Licence)...£499 plus VAT

(UK and EU customers add VAT at 17.5% to “plus VAT” prices)

Everyday Practical Electronics, December 2006
VERSION 3 PICmicro MCU DEVELOPMENT BOARD

Suitable for use with the three software packages listed below.

This flexible development board allows students to learn both how to program PICmicro microcontrollers as well as program a range of 8, 18, 28 and 40-pin devices from the 12, 16 and 18 series PICmicro ranges. For experienced programmers all programming software is included in the PPP utility that comes with the development board. For those who want to learn, choose one or all of the packages below to use with the Development Board.

- Makes it easier to develop PICmicro projects
- Supports low cost Flash-programmable PICmicro devices
- Fully featured integrated displays – 16 individual I.E.D.s, quad 7-segment display and alphanumeric I.C.D. display
- Supports PICmicro microcontrollers with A/D converters
- Fully protected expansion bus for project work
- USB programmable
- Can be powered by USB (no power supply required)

FLOWCODE FOR PICmicro V2

Flowcode is a very high level language programming system for PICmicro microcontrollers based on flowcharts. Flowcode allows you to design and simulate complex robotics and control systems in a matter of minutes. Flowcode is a powerful language that uses macros to facilitate the control of complex devices like 7-segment displays, motor controllers and I.C.D. displays. The use of macros allows you to control these electronic devices without getting bogged down in understanding the programming involved.

Flowcode produces MPASM code which is compatible with virtually all PICmicro microcontrollers. When used in conjunction with the Version 2 development board this provides a seamless solution that allows you to program chips in minutes.

- Requires no programming experience
- Allows complex PICmicro applications to be designed quickly
- Uses international standard flow chart symbols
- Flow on-screen simulation allows debugging and speeds up the development process
- Facilitates learning via a full suite of demonstration tutorials

Minimum system requirements for these items: Pentium PC running Windows 98, NT, 2000, ME, XP; CD-ROM drive; 64MB RAM; 10MB hard disk space.

Prices for each of the CD-ROMs above are:

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hobbyist/Student</td>
<td>£45 Inc VAT</td>
</tr>
<tr>
<td>Flowcode V2 Hobbyist/Student</td>
<td>£37 Inc VAT</td>
</tr>
<tr>
<td>Flowcode V2 Institutional (Schools/HE/FE/Industry)</td>
<td>£69 plus VAT</td>
</tr>
<tr>
<td>Flowcode Professional</td>
<td>£39 plus VAT</td>
</tr>
<tr>
<td>Flowcode Professional 10 user (Network Licence)</td>
<td>£300 plus VAT</td>
</tr>
<tr>
<td>Site Licence</td>
<td>£599 plus VAT</td>
</tr>
</tbody>
</table>

(All UK and EU customers add VAT at 17.5% to “plus VAT” prices)

Everyday Practical Electronics, December 2006 35
TEACH-IN 2000 – LEARN ELECTRONICS WITH EPE

EPE’s own Teach-In CD-ROM, contains the full 12-part Teach-In 2000 series by John Becker in PDF form plus the Teach-In interactive software (Win 95, 98, ME and above) covering all aspects of the series. We have also added Alan Winstanley’s highly acclaimed Basic Soldering Guide which is fully illustrated and which also includes Desoldering. The Teach-In series covers: Colour Codes and Resistors, Capacitors, Potentiometers, Sensor Resistors, Ohm’s Law, Diodes and I.E.D.s, Waveforms, Frequency and Time, Logic Gates, Binary and Hex Logic, Opamps, Comparators, Mixers, Audio and Sensor Amplifiers, Transistors, Transformers and Rectifiers, Voltage Regulation, Oscillation, Differentiation, 7-segment Displays, L.C.D.s, Digital-to-Analogue.

Each part has an associated practical section and the series includes a simple PC interface (Win 95, 98, ME ONLY) so you can use your PC as a basic oscilloscope with the various circuits.

FREE WITH EACH TEACH-IN CD-ROM – Understanding Active Components booklet, Identifying Electronic Components booklet and The Best Of Circuit Surgery CDROM.

PROJECT DESIGN WITH CROCODILE TECHNOLOGY

An Interactive Guide to Circuit Design

An interactive CD-ROM to guide you through the process of circuit design. Choose from an extensive range of input, process and output modules, including CMOS Logic, Op-Amps, PIC/PICAXE, Remote Control Modules (IR and Radio), Transistors, Thyristors, Relays and much more. Click Data for a complete guide to the pin layouts of i.c.s, transistors etc. Click More Information for detailed background information with many animated diagrams.

Nearly all the circuits can be instantly simulated in Crocodile Technology* (not included on the CD-ROM) and you can customise the designs as required.

WHAT’S INCLUDED

- Light Modules, Temperature Modules, Sound Modules, Moisture Modules, Switch Modules, Assemblies including 555, Remote Control (IR & Radio), Transistor Amplifiers, Thyristor, Relay, Op-Amp Modules, Logic Modules, 555 Timer, PIC/PICAXE, Output Devices, Transistor Drivers, Relay Motor Direction & Speed Control, 7-Segment Displays, Data sections with pinouts etc., Example Projects, Full Search Facility, Further Background Information and Animated Diagrams.

Runs in Microsoft Internet Explorer

*All circuits can be viewed, but can only be simulated if your computer has Crocodile Technology version 410 or later. A free trial version of Crocodile Technology can be downloaded from www.crocodile-clips.com. Animated diagrams run without Crocodile Technology.

Single User £39.00 incl. VAT.

Multiple Educational Users (under 500 students) £59.00 plus VAT. Over 500 students £79.00 plus VAT. (UK and EU customers add VAT at 17.5% to “plus VAT” prices)

DIGITAL WORKS 3.0

Digital Works Version 3.0 is a graphical design tool that enables you to construct digital logic circuits on screen and simulate their behaviour. It is so simple to use that it will take you less than 10 minutes to make your first digital design. It is so powerful that you will never outgrow its capability. Software for simulating digital logic circuits creates your own macros – highly scalable - Create your own circuits, components, and i.c.s

- Easy-to-use digital interface
- Animation brings circuits to life
- Vast library of logic macros and 74 series i.c.s with data sheets
- Powerful tool for designing and learning
- Hobbyist/Student £45 inc. VAT.
- Institutional £99 plus VAT.
- Institutional 10 user £249 plus VAT.
- Site Licence £599 plus VAT.

ELECTRONIC COMPONENTS PHOTOS

A high quality selection of over 200 JPG images of electronic components. This selection of high resolution photos can be used to enhance projects and presentations or to help with training and educational material. They are royalty free for use in commercial or personal printed projects, and can also be used royalty free in books, catalogues, magazine articles as well as worldwide web pages (subject to restrictions – see licence for full details). Also contains a **FREE 30-day evaluation of Digital Works Pro 6 – Paint Shop Pro image editing tips and on-line help included!**

Price **£19.95 inc. VAT**

Minimum system requirements for these CD-ROMs: Pentium PC, CD-ROM drive, 32MB RAM, 10MB hard disk space, Windows 95/98/NT/2000/ME/XP, mouse, sound card, web browser.

Please send me:

<table>
<thead>
<tr>
<th>CD-ROM ORDER FORM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic Projects</td>
</tr>
<tr>
<td>Electronic Circuits & Components V2.0</td>
</tr>
<tr>
<td>Digital Electronics V2.0</td>
</tr>
<tr>
<td>Analogue Filters</td>
</tr>
<tr>
<td>Electronics CAD Pack</td>
</tr>
<tr>
<td>Robotics & Mechatronics</td>
</tr>
<tr>
<td>Assembly for PICmicro V3</td>
</tr>
<tr>
<td>C for PICmicro V2</td>
</tr>
<tr>
<td>Flowcode V2 for PICmicro</td>
</tr>
<tr>
<td>Digital Works 3.0</td>
</tr>
<tr>
<td>PICmicro Development Board V3 (hardware)</td>
</tr>
</tbody>
</table>

Note: The software on each version is the same, only the licence for use varies.

ORDERING

All prices include UK postage

Student/Single User/Standard Version price includes postage to most countries in the world. EU residents outside the UK add £5 for airmail postage per order.

Institutional, Multiple User and Deluxe Versions – overseas readers add £5 to the basic price of each order for airmail postage (do not add VAT unless you live in an EU (European Union) country then add 17½% VAT or provide your official VAT registration number).

Send your order to:

Direct Book Service
Wimborne Publishing Ltd
408 Wimborne Road East
Ferndown, Dorset BH22 9ND
To order by phone ring 01202 873872. Fax: 01202 874562
Goods are normally sent within seven days

E-mail: orders@wimborne.co.uk

Online shop:

www.epemag.wimborne.co.uk/shopdoor.htm
Readers’ Circuits

Our regular round-up of readers’ own circuits. We pay between £10 and £50 for all material published, depending on length and technical merit. We’re looking for novel applications and circuit designs, not simply mechanical, electrical or software ideas. Ideas must be the reader’s own work and must not have been published or submitted for publication elsewhere. The circuits shown have NOT been proven by us. Ingenuity Unlimited is open to ALL abilities, but items for consideration in this column should be typed or word-processed, with a brief circuit description (between 100 and 500 words maximum) and include a full circuit diagram showing all component values. Please draw all circuit schematics as clearly as possible. Send your circuit ideas to: Ingenuity Unlimited, Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. (We do not accept submissions for IU via email.) Your ideas could earn you some cash and a prize!

Ingenuity Unlimited

WIN A PICO PC-BASED OSCILOSCOPE WORTH £586

Win a Pico Technology PC-based oscilloscope could be yours. Every 12 months, Pico Technology will be awarding a PicoScope 3205 digital storage oscilloscope for the best IU submission. In addition a DrDAQ Data Logger/Scope worth £50 will be presented to the runner up.

1000-Year Flasher – Heralding the Next Millennium

The author is not certain how one would define a micropower circuit. He would put it at less than about 20µA. Very few integrated circuits work with such low power – but those that do include the quad NAND Schmitt trigger IC1 shown in the simple flasher circuit of Fig.1. In fact IC1 ordinarily draws more than 500µA at 9V.

Flash Time

However, IC1 can be persuaded to use much less power than this, simply by restricting the current flow through resistor R2. With the component values shown in Fig.1, this circuit will brightly flash an ultrabright LED at 0.5Hz for more than twenty years – drawing 12µA off six high capacity AA batteries. If the component values in Table 1 are used, it will flash, although more dimly, for close to one thousand years – drawing just 0.3µA.

The circuit is unorthodox, in that IC1 requires a minimum of 3V, yet when LED D1 flashes, the voltage across IC1a drops to 2V. At this point, the circuit is theoretically non-functional – yet it does permit capacitor C1 to recharge through R1 and R2. As the voltage across IC1a again approaches 3V, IC1a kicks into life, and the discharge of C1 is again permitted, through LED D1. Unused gates are tied high to conserve power as well as prevent them from ‘floating’.

Components

The author used the Motorola version of IC1 (the MC14093BCP). While other CMOS 4093 ICs should work in this position, this has not been tested. D1 should be an ultrabright red LED. Capacitor C1 should be a new good quality, low-leakage component. He would be obliged if readers who build this circuit confirm in due course that it has conformed to its descriptive title!

Thomas Scarborough,
Cape Town, South Africa

Fig.1. Circuit diagram for the 1000-Year Flasher
While standard hand-held microphones are generally used for most public address (PA) applications, there are times when a lapel microphone is much more convenient. A lapel microphone not only frees up a user’s hands but also allows the wearer to roam about easily. They are ideal when giving talks and lectures, and for certain types of theatre work.

Another advantage of lapel microphones is that they provide a reasonably consistent output, even when the person speaking turns their head. That’s because a lapel microphone is usually clipped to the user’s clothing around the chest area and so remains at a similar distance from the mouth regardless of head movement. By contrast, hand-held microphones must always be held close to the mouth, otherwise the signal level will vary drastically.

Lapel microphones are generally available in two forms. By far the most common form for PA use at the present time is the radio microphone. This consists of the lapel microphone itself plus a small radio transmitter which is worn by the user – eg, inside a shirt pocket or by attaching it to a belt. The signals from the transmitter are picked up by a corresponding receiver which then feeds the signal to the PA system.

The big advantage of the radio microphone is that it allows the user...
to roam freely over several tens of metres without being tethered to a lead. However, this freedom comes at a high cost.

Despite its advantages, this high cost cannot always be justified, especially when full use of the radio transmitting feature is not exploited. This particularly applies to applications where the user doesn’t need to roam too far. In those situations, a much cheaper solution is to dispense with the radio system and instead use a tethered lapel microphone – ie, one that’s tethered to the PA amplifier via a lead.

However, obtaining such a wired lapel system is quite another matter. Music shops are keen to sell the wireless microphones but are usually at a loss when asked to supply a wired type. The older-style dynamic lapel microphones simply no longer appear to be available, while the smaller electret microphones require a power source.

So why can’t you simply use an electret microphone and power it from the phantom supply that’s sometimes available in PA mixers? Unfortunately, it’s not as simple as that, for a couple of reasons.

First, many mixers do not have phantom power and if they do, the current available is well in excess of that required for an electret microphone. Electrets require only 0.5mA or less for correct operation, whereas the phantom power from a PA mixer is usually between 14mA and 60mA.

Fig.1: the circuit uses op amps IC1a & IC1b to provide a balanced output signal, while relays RLY1 & RLY2 shunt the signal to ground when activated, to provide muting.
Constructional Project

- enough to destroy an electret unless precautions are taken.

Second, an electret microphone provides only a single ‘unbalanced’ output. This means that there are just two output connections – ie, the shield or screening and the signal wire. However, any leads that are several metres long or more in a PA system can readily pick up 50Hz mains frequency hum which is then amplified and fed through to the loudspeakers as an annoying buzz.

Balanced output

The way around this problem is to use what’s known as a ‘balanced’ output. This type of output has two signal outputs plus a shield lead, with one output inverted with respect to the other.

In this case, both signal leads still pick up mains frequency hum but because the lines are balanced, the hum signal can be rejected to just leave the wanted microphone signal. This is done in the PA mixer – it receives the balanced signal and subtracts the non-inverted microphone signal from the inverted microphone signal. This removes the mains hum signal, since the same signal will be present in both leads. By contrast, the microphone signal is doubled, since subtracting an inverted signal from the non-inverted signal gives twice the signal level.

Lapel Microphone Adaptor

That’s where the Lapel Microphone Adaptor comes in – it not only provides power to a standard electret microphone but also includes all the necessary circuitry to provide balanced output signals. In addition, it also includes a muting facility which short the signal output to ground, so that sound is no longer heard through the PA system. This muting function is completely silent in operation – ie, there are no clicks and pops in the sound when the muting is switched in or out.

As shown in the photos, the unit is housed in a small case which contains a separate battery compartment. The lapel microphone plugs into a socket at the top of the case, while the output lead plugs into a 3.5mm stereo socket on one side.

A single 3-position slide switch is used to switch the power on/off and to select the muting. An adjacent green indicator LED flashes when the power is switched on and this can also be used to indicate the battery condition. A bright flash indicates a good battery, with the LED becoming increasingly dim as the battery goes flat.

In addition, the LED serves as an indicator by glowing faintly when the switch is in the Mute position. It also flashes brightly and decays when the unit is switched off, to acknowledge the switch selection.

Circuit details

Fig.1 shows the full circuit details of the Lapel Microphone Adaptor. It includes a dual op amp package (IC1) to do the audio signal processing, plus two relays to shunt the signal on each balanced line to ground during muting. Power for the circuit is derived from a 9V battery and is applied via reverse polarity protection diode D1 and power switch S1.

The electret microphone is plugged into a mini XLR male socket or a 3.5mm jack socket, depending on the type of electret used. It is powered from the 9V battery via 1kΩ resistors and a 100µF filter capacitor. This decoupling is necessary to keep supply noise and ripple from degrading the microphone signal.

The output signal from the microphone is fed to the pin 5 (non-inverting) input of op amp IC1a via a 100nF capacitor. This capacitor and its associated 100kΩ resistor roll off the low-frequency response below 16Hz.

Note that IC1a’s pin 5 input is biased at half-supply (ie, Vcc/2) via the 100kΩ resistor which is connected to a voltage divider consisting of two 10kΩ resistors across the 9V rail. This allows the op amp’s output to swing symmetrically above and below Vcc/2.

IC1a is wired as a non-inverting buffer stage and provides an output

Parts List – Lapel Microphone Adaptor

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 PC board, code 593 available from the EPE PCB Service</td>
<td>1</td>
</tr>
<tr>
<td>1 case measuring 135 x 70 x 24mm, with separate battery compartment</td>
<td>1</td>
</tr>
<tr>
<td>2 panel labels, 59 x 16mm and 114 x 50mm</td>
<td>2</td>
</tr>
<tr>
<td>1 belt/pocket clip</td>
<td>1</td>
</tr>
<tr>
<td>1 lapel electret microphone</td>
<td>1</td>
</tr>
<tr>
<td>2 5V reed relays (RLY1, RLY2)</td>
<td>2</td>
</tr>
<tr>
<td>1 double-pole 3-position slide switch (S1), with 2 x M2.6 mounting screws</td>
<td>1</td>
</tr>
<tr>
<td>1 3.5mm PC board jack socket (Jaycar PS 0133) or 3-pin chassis male miniature XLR connector – see text</td>
<td>1</td>
</tr>
<tr>
<td>1 right-angle stereo 6.35mm jack plug to 3-pin XLR line plug lead – see text</td>
<td>1</td>
</tr>
<tr>
<td>5 metres of dual-screened microphone cable</td>
<td>5</td>
</tr>
<tr>
<td>1 stereo 6.35mm metal line socket</td>
<td>1</td>
</tr>
<tr>
<td>1 9V battery clip lead</td>
<td>1</td>
</tr>
<tr>
<td>1 9V battery</td>
<td>1</td>
</tr>
<tr>
<td>3 M3 x 6mm screws</td>
<td>3</td>
</tr>
<tr>
<td>1 M3 x 10mm countersunk screw</td>
<td>1</td>
</tr>
<tr>
<td>1 M3 x 10mm tapped spacer</td>
<td>1</td>
</tr>
<tr>
<td>150mm cable tie</td>
<td>1</td>
</tr>
<tr>
<td>13 PC stakes</td>
<td>13</td>
</tr>
</tbody>
</table>

Semiconductors

- 1 TL072 dual op amp (IC1)
- 1 BC328 PNP transistor (Q1)
- 1 4.7V 1W Zener diode (ZD1)
- 1 1N5819 Schottky diode (D1)
- 1 3N4148 or 1N914 diodes (D2,D3)
- 1 3mm green LED (LED1)

Capacitors

- 1 470µF 16V PC electrolytic
- 4 100µF 16V PC electrolytic
- 1 22µF 16V PC electrolytic
- 2 10µF 16V PC electrolytic
- 1 100nF MKT polyester
- 1 1nF MKT polyester

Resistors

- (1% 0.25W)
 - 1 100kΩ
 - 1 680kΩ
 - 1 22kΩ
 - 2 560kΩ
 - 6 10kΩ
 - 1 220kΩ
 - 2 6.8kΩ
 - 2 100Ω
 - 1 1kΩ
 - 1 22Ω

Current consumption:

- 4mA when on, 11mA on mute, 0.1µA when off

Specifications

- **Frequency response:** 16Hz to 16kHz (actual response depends on the microphone used)
- **Output level:** typically 100mV
- **Current consumption:** 4mA when on, 11mA on mute, 0.1µA when off

Table of Parts

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1000Ω resistor</td>
<td>1</td>
</tr>
<tr>
<td>1 680Ω resistor</td>
<td>1</td>
</tr>
<tr>
<td>1 22kΩ resistor</td>
<td>2</td>
</tr>
<tr>
<td>6 10kΩ resistor</td>
<td>1</td>
</tr>
<tr>
<td>2 6.8kΩ resistor</td>
<td>2</td>
</tr>
<tr>
<td>1 1kΩ resistor</td>
<td>1</td>
</tr>
<tr>
<td>1 22Ω resistor</td>
<td>1</td>
</tr>
<tr>
<td>1 10kΩ resistor</td>
<td>1</td>
</tr>
<tr>
<td>2 56kΩ resistor</td>
<td>1</td>
</tr>
<tr>
<td>2 100Ω resistor</td>
<td>2</td>
</tr>
<tr>
<td>1 1kΩ resistor</td>
<td>1</td>
</tr>
<tr>
<td>1 22Ω resistor</td>
<td>1</td>
</tr>
</tbody>
</table>

Printed Circuit Board

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>593</td>
<td>PC board</td>
</tr>
<tr>
<td>59</td>
<td>Panel labels</td>
</tr>
<tr>
<td>114</td>
<td>Case</td>
</tr>
<tr>
<td>10</td>
<td>M3 x 20mm countersunk screw</td>
</tr>
<tr>
<td>10</td>
<td>M3 x 10mm tapped spacer</td>
</tr>
<tr>
<td>14</td>
<td>M3 x 6mm screws</td>
</tr>
<tr>
<td>150</td>
<td>Cable tie</td>
</tr>
<tr>
<td>13</td>
<td>PC stakes</td>
</tr>
</tbody>
</table>

Specifications

- **Frequency response:** 16Hz to 16kHz (actual response depends on the microphone used)
- **Output level:** typically 100mV
- **Current consumption:** 4mA when on, 11mA on mute, 0.1µA when off
which is in phase with the microphone signal. By contrast, IC1b is connected as an inverting amplifier. It operates with a gain of -1, as set by the two 10kΩ input and feedback resistors.

IC1b is fed from IC1a’s output (pin 7) and provides a complementary out of phase signal at its pin 1 output. The 1nF capacitor across the feedback resistor rolls the signal off above about 16kHz to ensure stability.

As a result, IC1a’s output provides the in-phase signal while IC1b’s output provides the out-of-phase (or inverted) signal. The op amp outputs are then AC-coupled to the output socket via series 10µF capacitors and 560Ω resistors.

The 560Ω resistors provide a nominal 600Ω output impedance and prevent the op amps from oscillating (due to the extra capacitance) when the balanced microphone cable is connected.

The 10µF capacitors are necessary to remove the DC levels that are present at the outputs of IC1a and IC1b.

Muting

As previously mentioned, the outputs can be muted and this is achieved using relays RLY1 and RLY2 which short the outputs to ground when powered.

In addition, the outputs are muted at switch-on. This is necessary because when power is initially applied to op amps IC1a & IC1b (via switch S1b), their outputs quickly rise to half supply (Vcc/2). Without muting, this voltage would be coupled into the PA system and cause large switch-on thumps. To circumvent this, relays RLY1 & RLY2 are switched on at power up to short the signal outputs to ground until the voltages settle.

The relays are switched via switch S1a and its associated circuitry based on transistor Q1. This works as follows.

Switch S1 is a double-pole 3-position switch and when S1 is in position 1, no power is applied to the circuit. In position 2, S1b’s contacts feed power to op amp IC1, while the corresponding contacts in S1a connect transistor Q1’s 10kΩ base resistor to ground via a 100Ω resistor. As a result, Q1 turns on and applies power to the relay coils.

As shown on Fig.1, the relay coils are connected in series, with one side going to ground via a 470µF capacitor and a 680Ω resistor connected in parallel. Initially, the 470µF capacitor is discharged and so the full 9V is applied across the series-connected relay coils – ie, 4.5V for each relay. This is quite sufficient to activate the 5V relay coils and close the contacts, RLY1&2.

As the 470µF capacitor charges, the voltage across the relay coils decreases. However, the relays remain closed because their dropout voltage is much lower than the voltage required to activate them. The 680Ω resistor sets the minimum voltage across the relay coils to around 2.7V per relay. This resistor is included to reduce the current drawn from the battery while the relays are closed.

The resistor and capacitor also cause LED1 to momentarily flash when the power is switched on. Initially, when power is applied and the 470µF capacitor is discharged, LED1 is fed via a 4.7V Zener diode (ZD1) and the series 220Ω resistor. The LED will glow brightly with a fresh battery but as the battery voltage falls to around 7.2V, there will be insufficient current to light it at full brightness.

It works like this: since there is 4.7V across ZD1 and a nominal 2V across the LED, this leaves only 0.5V across the 220Ω resistor when the battery is at 7.2V. As a result, the LED current is only about 2.3mA and so the LED will only glow dimly.

By contrast, if the battery is at 9V, the resistor will have 2.3V across it and so the LED current will be around 10mA. As a result, LED1 will glow brightly. However, the LED does not light for long, as the 470µF capacitor quickly
charges via the relay coils and turns LED1 off again.

When S1 is placed in position 3, IC1 is still powered but Q1’s 10kΩ base resistor is disconnected from ground. As a result, the 22µF capacitor is now left to supply Q1’s base current for a short time as it charges towards the 9V supply rail via the two series 10kΩ resistors. After about 1s, Q1 switches off and the relays also turn off, thereby releasing the shorts across the output lines from IC1a and IC1b.

Diode D3 quenches the back-EMF voltage that’s generated when the relay coils are switched off. This back-EMF voltage is further damped by the 100µF capacitor at D2’s cathode.

Note that the muting can be reactivated at any time by switching S1 back to position 2, so that the relays are switched on again. In addition, when the power is fully switched off (S1 switched to position 1), the relays remain on for one second while the 22µF capacitor charges. This ensures that IC1 is fully powered down before the relays are switched off, to prevent loud switching thumps in the PA system.

As a further precaution, the 100µF capacitor that’s used to decouple IC1’s supply rail is quickly discharged via a 100Ω resistor and position 1 of S1a. Diode D2 is included to ensure that the 470µF capacitor also discharges, so that the relays turn on if power is quickly applied again.

The 22Ω resistor in series with pin 8 of IC1 limits the surge current through the switch when power is applied. Similarly, the 100Ω resistor at position 2 of S1a limits the discharge current from the associated 22µF capacitor when S1a switches this contact to ground.

Construction

The assembly is straightforward since all the parts are mounted on a single PC board. This board is available from the EPE PCB Service, code 593.

Begin by checking the PC board for any possible shorts between tracks or breaks in the copper pattern. Check also that the hole sizes are correct. Note that a cutout will need to be made in the board to provide space for a mini XLR panel-mount socket if you are using a lapel microphone fitted with a mini XLR (female) plug.

The XLR cutout is shown as an outline on the PC board. You also need to file the edge of the PC board slightly where shown, to allow room for the XLR securing nut to encroach into the PC board space.

Alternatively, if you are using a microphone with a 3.5mm jack plug, you can use a PC-mount 3.5mm socket instead. In that case, you won’t need to make the cutout.

Fig.2 shows the assembly details. Start by installing all the PC stakes at the wiring and switch terminal points, then install the resistors, diodes D1 to D3, Zener diode ZD1 and the IC. Make sure you place each component in its correct position and with the correct orientation.

Table 1 shows the resistor colour codes but it’s also a good idea to check the values using a digital multimeter as some of the colours can be difficult to distinguish.

The relays and transistor Q1 can go in next, followed by the capacitors. Be sure to install the electrolytic capacitors with the polarity shown. The 3.5mm socket can also now be installed if it is being fitted.

The 3-position slide switch (S1) is mounted on its side, with its top face aligned with the edge of the PC board. Five of its bottom terminals are soldered directly to the previously
installed PC stakes as shown on Fig.2, while three of the top terminals connect to their PC stakes via short lengths of tinned copper wire.

Drilling the front panel

The front panel can now be drilled to accept the switch, LED and microphone input socket, see Fig.5. Note that you will need to drill out a slot for the slide switch operating toggle. That done, attach the front panel label, then attach the front panel to the PC board assembly by installing the supplied switch screws and by fitting the securing nut to the 3.5mm jack socket.

That done, the LED’s leads can be bent at right angles about 4mm from its body and the LED slipped into position so that it protrudes through the front panel. Adjust its leads as necessary and make sure that it is oriented correctly before finally soldering it into position.

In particular, note that anode lead (A) is the longer of the two. This lead goes towards the bottom edge of the PC board as shown on Fig.2.

Table 1: Resistor Colour Codes

<table>
<thead>
<tr>
<th>No.</th>
<th>Value</th>
<th>4-Band Code (1%)</th>
<th>5-Band Code (1%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100kΩ</td>
<td>brown black yellow brown</td>
<td>brown black black orange brown</td>
</tr>
<tr>
<td>1</td>
<td>22kΩ</td>
<td>red red orange brown</td>
<td>red red black brown</td>
</tr>
<tr>
<td>6</td>
<td>10kΩ</td>
<td>brown black orange brown</td>
<td>brown black black red brown</td>
</tr>
<tr>
<td>2</td>
<td>6.8kΩ</td>
<td>blue grey red brown</td>
<td>blue grey black brown brown</td>
</tr>
<tr>
<td>1</td>
<td>1kΩ</td>
<td>brown black red brown</td>
<td>brown black black brown black</td>
</tr>
<tr>
<td>1</td>
<td>680Ω</td>
<td>blue grey brown brown</td>
<td>blue grey black black brown black</td>
</tr>
<tr>
<td>2</td>
<td>560Ω</td>
<td>green blue brown brown</td>
<td>green blue black black brown black</td>
</tr>
<tr>
<td>1</td>
<td>220Ω</td>
<td>red red brown brown</td>
<td>red red black black brown</td>
</tr>
<tr>
<td>2</td>
<td>100Ω</td>
<td>brown black brown brown</td>
<td>brown black black black brown</td>
</tr>
<tr>
<td>1</td>
<td>22Ω</td>
<td>red red black brown</td>
<td>red red black gold brown</td>
</tr>
</tbody>
</table>

Table 2: Capacitor Codes

<table>
<thead>
<tr>
<th>Value</th>
<th>μF code</th>
<th>IEC Code</th>
<th>EIA Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>100nF</td>
<td>0.1μF</td>
<td>100n</td>
<td>104</td>
</tr>
<tr>
<td>1nF</td>
<td>0.001μF</td>
<td>1n0</td>
<td>102</td>
</tr>
</tbody>
</table>

6.35mm jack socket

A separate battery compartment accommodates the 9V battery that’s used to power the circuit. The screw in the back of the case (just above the 6.35mm jack socket) is used to secure the 10mm tapped spacer to the PC board (see Fig.4).

Table 2: Capacitor Codes

A hole is needed in the side of the box for the 6.35mm jack socket which is used without its outer cover. Mark the hole location with the case clipped together, noting that the socket sits directly on the PC board and against the battery compartment.

Fig.4: this diagram shows how the M3 x 10mm tapped spacer is secured to the PC board. This helps secure the 6.35mm socket when the lid is screwed down.
The mounting hole must be drilled and reamed out to 10mm diameter, which will not be large enough for the threaded section of the socket. That done, place the PC board in the case and secure it in position using three M3 screws (two at the top and one at bottom right).

Next, position the socket in its mounting hole and tighten down the case lid with the four self-tapping screws supplied. Now heat the socket using your soldering iron until the plastic case begins to melt, at the same time pressing the case together so that it forms a tight fit around the socket and closes correctly.

Finally, remove the iron and wait for the heated case to cool.

The case will now have formed a moulding around the threaded section of the 6.35mm jack socket. It should then be prised open again and the socket secured in position using a cable tie which passes through a hole in the PC board and then around the edge of the board.

To further secure the socket, a 10mm M3 spacer is installed on the PC board adjacent to it so that the lid can be firmly screwed down at this point. To do this, the mounting post in the base of the case adjacent to the socket is drilled out to 3mm and this hole goes right through the case. In addition, you have to drill out the post in the case lid directly above this point.

That done, countersink the holes and cut off the post in the lid using a sharp utility knife. The 10mm M3 spacer can then be fitted in position and secured using an M3 x 20mm screw installed from the bottom of the case as shown in Fig.4.

All that remains now is to complete the wiring to the stereo socket and connect the battery clip lead. Note that the leads from the battery clip will have to be fed through from the battery compartment before soldering them to the supply terminals on the PC board.

Testing

To test the unit, apply power and check that the relay contacts close and that the LED flashes. If not, check that transistor Q1 has been installed correctly and check its associated components. If the relays do close but the LED doesn’t flash, check that the LED has been installed with the correct polarity and check the orientation of ZD1.

Finally, check that pins 1 and 7 of IC1 are at about 4.5V (ie, Vcc/2). This voltage should also be present on pins 3 & 5 (ie, the non-inverting inputs). If everything checks out, then it is likely that the unit is working correctly and it can be tested by connecting it to a PA system and plugging in an electret microphone.

Fig.5: this artwork can be used as a drilling template for the front panel.

Fig.6: this is the full-size artwork for the case label.

Reproduced by arrangement with SILICON CHIP magazine 2006. www.siliconchip.com.au
Handheld Test Gear - Cool, Smart.

Atlas DCA Semiconductor Analyser £55
Atlas LCR Passive Component Analyser £79
Atlas ESR Capacitance and ESR Meter £89
Atlas SCR Triac/Thyristor Analyser £109

Prices include UK delivery and VAT
A great way to buy EPE Back Issues – our CD-ROMs contain back issues from our EPE Online website plus bonus articles, all the relevant PIC software and web links. Note: no free gifts are included.

All this for just £14.45 each including postage and packing.

Vol 1: BACK ISSUES – January 1999 to June 1999
Vol 2: BACK ISSUES – July 1999 to December 1999
Vol 6: BACK ISSUES – July 2001 to December 2001
Vol 7: BACK ISSUES – January 2002 to June 2002
Vol 8: BACK ISSUES – July 2002 to December 2002
Vol 12: BACK ISSUES – July 2004 to December 2004
Vol 14: BACK ISSUES – July 2005 to December 2005

Note: These CD-ROMs are suitable for use on any PC with a CD-ROM drive. They require Adobe Acrobat Reader (available free from the Internet – www.adobe.com/acrobat)

What is included
All volumes include the EPE Online editorial content of every listed issue, plus all the available PIC Project Codes for the PIC projects published in those issues.

Note: Some supplements etc. can be downloaded free from the published in those issues.

Extra Articles – on all volumes

BASIC SOLDERING GUIDE – Alan Winstanley’s internationally acclaimed fully illustrated guide
UNDERSTANDING PASSIVE COMPONENTS – Introduction to the basic principles of passive components.
HOW TO USE INTELLIGENT I.C.Ds – by Julian Ilett – An utterly practical guide to interfacing and programming intelligent liquid crystal display modules.
PhyzzyB COMPUTERS BONUS ARTICLE 1 – Signed and Unsigned Binary Numbers – By Clive “Max” Maxfield and Alvin Brown.
PhyzzyB COMPUTERS BONUS ARTICLE 2 – Creating an Event Counter. By Clive “Max” Maxfield and Alvin Brown.
INTERGRAPH COMPUTER SYSTEMS 3D GRAPHICS – A chapter from Intergraph’s book that explains computer graphics technology.
FROM RUSSIA WITH LOVE, by Barry Fox – Russian rockets launching American Satellites.
PC ENGINES, by Ernest Flint – The evolution of Intel’s microprocessors.
THE END TO ALL DISEASE, by Aubrey Soons – The original work of Rife.
COLLECTING AND RESTORING VINTAGE RADIOS, by Paul Stenning.
THE LIFE & WORKS OF KONRAD ZUSE – a brilliant pioneer in the evolution of computers. A bonus article on his life and work written by his eldest son, including many previously unpublished photographs.

Note: Some of the EXTRA ARTICLES require WinZip to unzip them.
VERSION 2 NOW AVAILABLE

EPE PIC RESOURCES CD-ROM V2

Version 2 includes the EPE PIC Tutorial V2 series of Supplements (EPE April, May, June 2003)

The CD-ROM contains the following Tutorial-related software and texts:

- EPE PIC Tutorial V2 complete series of articles plus demonstration software, John Becker, April, May, June '03
- PIC Toolkit Mk3 (TK3 hardware construction details), John Becker, Oct '01
- PIC Toolkit TK3 for Windows (software details), John Becker, Nov '01

Plus these useful texts to help you get the most out of your PIC programming:

- How to Use Intelligent L.C.D.s, Julyan Ilett, Feb/Mar '97
- PIC16F87x Microcontrollers (Review), John Becker, April '99
- PIC16F87x Mini Tutorial, John Becker, Oct '99
- Using PICs and Keypads, John Becker, Jan '01
- How to Use Graphics L.C.D.s with PICs, John Becker, Feb '01
- PIC16F87x Extended Memory (how to use it), John Becker, June '01
- PIC to Printer Interfacing (dot-matrix), John Becker, July '01
- PIC Magick Musick (use of 40kHz transducers), John Becker, Jan '02
- Programming PIC Interrupts, Malcolm Wiles, Mar/Apr '02
- Using the PIC's PCLATH Command, John Waller, July '02
- EPE StyloPIC (precision tuning musical notes), John Becker, July '02
- Using Square Roots with PICs, Peter Hernsley, Aug '02
- Using TK3 with Windows XP and 2000, Mark Jones, Oct '02
- PIC Macros and Computed GOTOs, Malcolm Wiles, Jan '03
- Asynchronous Serial Communications (RS-232), John Waller, unpublished
- Using I²C Facilities in the PIC16F877, John Waller, unpublished
- Using Serial EEPROMs, Gary Moulton, unpublished
- Additional text for EPE PIC Tutorial V2, John Becker, unpublished

NOTE: The PDF files on this CD-ROM are suitable to use on any PC with a CD-ROM drive. They require Adobe Acrobat Reader – included on the CD-ROM

ONLY £14.45 INCLUDING VAT and P&P

Order on-line from www.epemag.wimborne.co.uk/shopdoor.htm or www.epemag.com (USA $ prices) or by Phone, Fax, Email or Post.

EPE PIC RESOURCES V2

CD-ROM ORDER FORM

Please send me (quantity) EPE PIC RESOURCES V2 CD-ROM

Price £14.45 each – includes postage to anywhere in the world.

Name ...
Address ..
..
..
Post Code

☐ I enclose cheque/P.O./bank draft to the value of £

☐ Please charge my Visa/Mastercard/Amex/Diners Club/ Maestro

E ...

Card No. ...

Card Security Code (The last 3 digits on or just under the signature strip)

Valid From Expiry Date

Maestro Issue No.

SEND TO: Everyday Practical Electronics,
Wimborne Publishing Ltd.,
408 Wimborne Road East, Ferndown, Dorset BH22 9ND.
Tel: 01202 873872. Fax: 01202 874562.
Email: orders@epemag.wimborne.co.uk
Payments must be by card or in £ Sterling – cheque or bank draft drawn on a UK bank.
Normally supplied within seven days of receipt of order.
Send a copy of this form, or order by letter if you do not wish to cut your issue.

BECOME A PIC WIZARD WITH THE HELP OF EPE!
BYVAC ELECTRONICS

Control hardware using simple text commands

Making complex tasks simple:
Using a two letter text command, control LCD displays, Analogue to digital converters, motors, keypads, LED matrix displays. All products work by serial connection.

Connect using a PC RS232 or Microcontroller UART

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Product Name</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV4103</td>
<td>LCD Display</td>
<td></td>
<td>£22.90</td>
</tr>
<tr>
<td>BV4108</td>
<td>LCD Controller</td>
<td></td>
<td>£11.00</td>
</tr>
<tr>
<td>BV4102</td>
<td>Dot Matrix</td>
<td></td>
<td>£14.95</td>
</tr>
<tr>
<td>BV4106</td>
<td>A/D Control</td>
<td></td>
<td>£11.00</td>
</tr>
<tr>
<td>BV4107</td>
<td>Keypad Control</td>
<td></td>
<td>£11.00</td>
</tr>
<tr>
<td>BV305</td>
<td>Microcontroller</td>
<td></td>
<td>£14.95 (KIT)</td>
</tr>
</tbody>
</table>

This is just a small selection visit the web site for hints tips and free software.

www.byvac.co.uk

Purchase Options: On-Line at www.byvac.co.uk • Telephone 07905 734 348 • email sales@byvac.com • Cheque or Postal Order to: ByVac, PO BOX 4049, Penistone, SHEFFIELD, S36 6WP

Post and packing UK £2.50 World Wide £3.50

www.byvac.co.uk

Everyday Practical Electronics, December 2006
The idea behind the Mind Trainer is quite simple but it requires a good deal of thought. It is based on an old brain-testing game normally played with coloured pegs. Although it is really a game for only one player, two are required to play – one of them being a ‘dummy’!

In this version, a PIC microcontroller is cast in the role of the dummy (an excellent position for it as it will never get bored if the player takes too long considering a next move, or comment on incorrect choices).

In the original game, the dummy arranges four coloured pegs in a board out of view of the player and the player has to guess the colour and position of the pegs in the smallest number of attempts by placing further coloured pegs in holes on the board. The dummy helps in this by indicating the number of correct colours and/or correct positions in each attempt, but not which ones are correct.

Electronic equivalent

This game is the electronic equivalent of this but instead of coloured pegs a 4-digit LED display is used. The PIC selects four digits randomly and as these are not displayed, they are therefore unknown to the player. This is done at the start of each game by pressing the hash (#) button on the keypad.

The player then tries to guess the 4-digit number by entering it via a keypad and this is shown on the display. Pressing the star (*) button on the keypad enters this guess, changing the display to two digits; the right hand one showing how many correct numbers have been entered in their correct position, while the left hand one displays the number of correct digits that are in the wrong positions.

Hidden numbers

For example, suppose that the hidden number is 1234 and the user has entered 3514. On pressing the * button, 2--1 will be displayed (where ‘-’ indicates a blank digit) because although three correct numbers have been chosen (1, 3 and 4), two are in the wrong position and only one (the 4) is in its correct position. Note that no indication is given as to which the incorrect is or which one is in its correct position. Pressing the * button also automatically increases the score counter.

Pressing the # key will reveal the last entry again and enable a new 4-digit number to be entered. The entered digits scroll across the display from right to left as they would if they had been entered on a calculator. Note that a guess is only accepted by the unit when the * button is pressed, so that keys pressed incorrectly may be overwritten and the entry made only when the player is satisfied with the new 4-digit number chosen.

Eventually, after a number of unsuccessful guesses, the correct number will be entered and this time when the * button is pressed a display in the form --XX will be shown, again the ‘-’ signifying a blank digit and the XX the number of entries made. Since the idea of the game is to make this score as low as possible, a 2-digit score display (i.e. 99 attempts) should be more than enough for even the most illogical thinker!

Circuit description

The circuit, shown in Fig.1, consists of the PIC (IC1) plus the 4-digit LED display (X1) and a 12-way keypad (S2), together with the usual LED current limiting and pull-up resistors, R1 to R8 and R14 to R16 respectively. The PIC’s clock frequency is not critical and so a simple resistor-capacitor option has been chosen (R13/C1).

The limited number of PIC I/O (input/output) lines means that both the display and the keypad have been multiplexed. Multiplexing is a widely used technique and operates (as far as the display is concerned) by outputting the seven-segment code for each digit on Port B while switching on each corresponding digit sequentially via

Mind Trainer

Exercise your mind in an enjoyable way!

By BART TREPAK
four lines of Port A. This is done so fast that the eye perceives it as a continuous display so that all four digits appear to be on simultaneously.

After displaying the digits, four lines of Port B (RB4 to RB7) are switched to function as outputs and driven low in turn while RB0 to RB2 are designated as inputs. If a key is being pressed, one of the inputs will now read low and depending on which input is low, the program determines which key is pressed.

Because the same port is used to output the 7-segment data and both drive and read the keypad, isolating resistors R9 to R12 are used to prevent key presses affecting the display.

Construction

The printed circuit board component and track layouts are shown in Fig.2. This board is available from the **EPE PCB Service**, code 598.

Assembly should begin with the resistors, followed by the capacitors

Parts List – Mind Trainer

1. PC board, code 598, available from the **EPE PCB Service**, size 51mm × 76mm
2. Plastic case (optional), size and type to individual choice
3. 12-key, 3 × 4 matrix, keypad (S2)
4. SPST miniature toggle switch (S1)
5. 4-digit, common cathode, red LED display (CC56-12EWA) (X1)
6. Battery holder for two AA or AAA cells, with battery clips
7. 18-pin DIL socket

Semiconductors

1. PIC16F54 microcontroller, preprogrammed – see text (IC1)
2. 22p ceramic disc (C1)
3. 100n ceramic disc (C2)
4. 47μ radial elect. 10V (C3)

Capacitors

1. 10002 (R1 to R8)
2. 4k7 (R9 to R13)
3. 100k (R14 to R16)

Resistors (0.25W 5% carbon film)

8. 18-pin DIL socket
9. Multistrand connecting wire; ribbon cable, optional – see text; solder, etc.

![Mind Trainer Circuit Diagram](image)

Fig.1. Complete circuit diagram for the Mind Trainer. Power is supplied by two AA or AAA type cells
and higher profile components, with the PIC’s socket mounted last.

The pinouts for the display and keypad are shown in Fig.3 and Fig.4. These items should be mounted on the track side of the PCB, using short lengths of discarded resistor leads or ribbon cable as preferred.

When assembly is finished check all of the connections to ensure that there are no solder splashes between adjacent copper tracks or pins, and that the joints are all sound. If this is so, the preprogrammed PIC should be plugged in, ensuring that it is the correct way around.

The circuit can now be powered up, using a 3V battery or two 1.5V cells in series (AA or AAA are suitable). These are best mounted in a battery holder which should be connected to the PCB, either directly or via a suitable connector. On/off switch S1 is inserted in the +3V battery lead.

![Fig.2. Mind Trainer printed circuit board component layout, full size copper foil master and wiring to the On/Off battery supply switch. Note that keypad pins/pads 1 and 9 are not connected to the board. Use an IC socket for the PIC](image)

There are no adjustments to be made and provided the circuit has been correctly assembled, it should work as described.

The circuit draws about 15mA when operating which, although not too high for battery operation, would soon drain an AA battery if left on for extended periods.

Playing the game

As a further example of how the game is played, the sequence of a real game is reproduced in Table 1. The unknown number happened to be 2489 and the first digits entered were 1234 as shown, which resulted in the display 2−0 indicating that two of these digits were correct but neither was in its correct position.

<table>
<thead>
<tr>
<th>Guess</th>
<th>Result No.</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1256</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1356</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2478</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2489</td>
<td>Final score 05</td>
<td></td>
</tr>
</tbody>
</table>

![Fig.3. LED display pinout details](image)

![Fig.4. Keyboard connection details. End pads 1 and 9 are not connected on the PCB](image)
It was assumed that the digits 1 and 2 were correct and that 3 and 4 were not part of the hidden number, so that the next entry made was 1256 which gave the result 1–0. From this it was guessed that 5 and 6 were probably not part of the hidden number and that only one of the remaining numbers 1 or 2 was correct.

The hidden number thus included 1 or 2 and 3 or 4. To find out which, a further guess was made by assuming that the correct numbers were 1 and 3 so that 1356 was entered which gave the result 0–0. This was lucky as it immediately showed that 2 and 4 were two of the numbers required and 5 and 6 were definitely not part of the hidden number.

At this point it was still not known what the other two numbers were, except that they could be 7, 8, 9, 0 or indeed 2 and 4 again, as each correct digit is only counted once even if it appears again in the hidden number. The next entry made was therefore 2478 and this gave the result 1–2 showing that either 7 or 8 also figured in the final number and, as a bonus, two of the digits were also in their correct positions.

The last entry was the result of two lucky guesses where it was assumed that it was 2 and 4 that were in their correct positions, and that 8 was the correct number but in the wrong position. Changing its position and trying the next number by entering 2489 displayed the final score as --05.

This shows that to achieve a low score, a certain amount of luck is also required, but this does not mean that a logical thinking process is not involved. No doubt the final number could have been found by randomly entering numbers into the unit, but this would almost certainly result in a higher final score than by extracting the maximum amount of information from the results obtained from each entry.

Demo mode

As a further aid to understanding the game, the software is designed so that when the unit is first switched on, a ‘random number’ is entered into its memory. The user can then press the # key and enter any digits preferred to see how the unit processes the guess. This will give the player an insight into what display is to be expected when, for example, the random number contains repeated digits.

In general, any number which is in its correct position is displayed in the ‘correct position’ score and is not counted again even if it also appears in another position in the random number. Thus the right-hand display shows the number of correct digits in the correct position and the left-hand display the number of remaining correct digits in the wrong position.

After this, to start a game, simply enter the correct number and press * (which will display your score) and then press the # key again. This will blank the display and generate a new (this time hidden) random number when the # key is pressed again. The score will be reset to zero and the display will change to 0000, ready to accept the first guess.

If the practice session is not required, press the * button after switching the unit on, followed by the # button which will blank the display, and then the # key again before entering your first guess. The practice feature is available only after the unit has first been switched on, so that after subsequent games the # key should be pressed twice to start each new game.

The unit also features a recall of the previous entry so that the last number entered and the result obtained can be re-examined. This is done by pressing the # button when the number has been entered and the result will be displayed alternately. Pressing the * key is always treated as a new entry so this key should be pressed only when you are ready to make a new guess.

The circuit does not keep a record of previous numbers entered or the results obtained, so that if this function is required, an older technology (pencil and paper) will need to be used! Alternatively, it could be argued that a person who could not remember previous entries was not thinking very logically anyway and should be penalised if the same 4-digit number was entered two or more times!

Finally, the efficacy of this unit in maintaining mental faculties obviously requires further independent research. The author considers himself much too young to have lost any of those he possessed and therefore is not a suitable subject. Modesty prevents him revealing his best score but suffice it to say that a third digit to display this has not been required (yet)!

Resources

Software for the PIC can be downloaded free from the EPE Downloads site, accessible via the home page at www.epemag.co.uk. It is held in the PICs folder. Download all the files within that folder.

Preprogrammed PICs are available from Magenta Electronics Ltd, contact details as in their advert in this issue.
UK readers you can **SAVE 54p on every issue of EPE**

How would you like to pay £2.96 instead of £3.50 for your copy of *EPE*?

Well you can – just take out a one year subscription and save 54p an issue,
or £6.50 over the year

You can even **save 75p an issue** if you subscribe for two years
– a total saving of **£18.00**

Overseas rates also represent exceptional value

You also:
- Avoid any cover price increase for the duration of your subscription
- Get your magazine delivered to your door each month
- Ensure your copy, even if the newsagents sell out

Order by phone or fax with a credit card or by post with a cheque or postal order, or buy on-line from www.epemag.co.uk (click on “Subscribe Now”)

EPE SUBSCRIPTION PRICES

Subscriptions for delivery direct to any address in the UK:
- 6 months £18.75, 12 months £35.50, two years £66; Overseas:
 - 6 months £21.75 standard air service or £30.75 express airmail,
 - 12 months £41.50 standard air service or £59.50 express airmail,
 - 24 months £78 standard air service or £114 express airmail.

Cheques or bank drafts (in £ sterling only) payable to *Everyday Practical Electronics* and sent to EPE Subs. Dept., Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Tel: 01202 873872 Fax: 01202 874562. Email: subs@epemag.wimborne.co.uk. Also via the Web at http://www.epemag.co.uk. Subscriptions start with the next available issue.

We accept MasterCard, Amex, Diners Club, Maestro or Visa. (For past issues see the Back Issues page.)

ONLINE SUBSCRIPTIONS

Online subscriptions, for downloading the magazine via the Internet, $15.99US (approx. £9.00) for one year available from www.epemag.com.

USA/CANADA SUBSCRIPTIONS

To subscribe to *EPE* from the USA or Canada please telephone Express Mag toll free on 1877 363-1310 and have your credit card details ready. Or fax (514) 355 3332 or write to Express Mag, PO Box 2769, Plattsburgh, NY 12901-0239 or Express Mag, 8155 Larrey Street, Anjou, Quebec, H1J 2L5. Email address: expsmag@expressmag.com.

Web site: www.expressmag.com.

USA price $60(US) per annum, Canada price $97(Can) per annum – 12 issues per year.

Everyday Practical Electronics, periodicals pending, ISSN 0262 3617 is published twelve times a year by Wimborne Publishing Ltd., USA agent USACAN at 1320 Route 9, Champlain, NY 12919. Subscription price in US $60(US) per annum. Periodicals postage paid at Champlain NY and at additional mailing offices. POSTMASTER: Send USA and Canada address changes to *Everyday Practical Electronics*, c/o Express Mag., PO Box 2769, Plattsburgh, NY, USA 12901-0239.

SUBSCRIPTION ORDER FORM

- 6 Months: UK £18.75, Overseas £21.75 (standard air service), £30.75 (express airmail)
- 1 Year: UK £35.50, Overseas £41.50 (standard air service)
 - £59.50 (express airmail)
- 2 Years: UK £66.00, Overseas £78.00 (standard air service)
 - £114 (express airmail)

To: *Everyday Practical Electronics*, Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND

Tel: 01202 873872 Fax: 01202 874562

E-mail: subs@epemag.wimborne.co.uk

I enclose payment of £ (cheque/PO in £ sterling only), payable to *Everyday Practical Electronics*

My card number is: ..

Please print clearly, and check that you have the number correct

Signature ...

Card Security Code ... (The last 3 digits on or just under the signature strip)

Card Ex. Date ... Maestro Issue No.

Name ...

Address ..

Post code .. Tel.

Subscriptions can only start with the next available issue.
Learn About Microcontrollers

PIC Training & Development System

The best place to start learning about microcontrollers is the PIC16F84 with its simple easy to understand internal structure. Then continue on using the more sophisticated PIC16F877 family.

At the heart of our system are two real books which lie open on your desk while you use your computer to type in the programme and control the hardware. Start with four simple programmes. Run the simulator to see how they work. Test them with real hardware. Follow on with a little theory....

Our PIC training course consists of our PIC programmer module, a 298 page book teaching the fundamentals of PIC programming in assembly language, a 274 page book introducing the C programming language for PICs, and a suite of programmes to run on a PC. The module is an advanced design using a PIC16F870 to handle the timing, programming and switching requirements. Two ZIF sockets allow most 18, 28 and 40 pin PICs to be programmed. The plugboard is wired with a 5 volt supply. The programming is performed at 5 volts, verified with 2 volts or 3 volts applied and verified again with 5.5 volts applied to ensure the PIC is programmed correctly over its full operating voltage. UK orders include a plugtop power supply.

P901 PIC Training System comprising....
+ Book Experimenting with PIC Microcontrollers
+ Book Experimenting with PIC C
+ PIC assembler and C compiler software suite
+ PIC16F84, PIC16F870, PIC16F88 test PICs. . . £159.00
(Postage & insurance UK £10, Europe £18, Rest of world £25)
Optional book Exp with 18F PICs + PIC16F8252S. £ 30.00
(Additional postage UK £0, Europe £3, Rest of world £5)

Experimenting with PIC Microcontrollers

This book introduces PIC assembly language programming using the PIC16F84, and is the best way to get started for anyone who is new to PIC programming. We begin with four easy experiments. The first is explained over ten and a half pages assuming no starting knowledge of PICs. Then having gained some practical experience we study the basic principles of PIC programming, learn about the 8 bit timer, how to drive the LCD, create a real time clock, experiment with the watchdog timer, sleep mode, beeps and music, including a rendition of Beethoven’s Fur Elise. Finally there are two projects, using the PIC16F84 as a sine wave generator and investigating using the PIC16F88 (from the PIC16F877 family) to monitor the power taken by domestic appliances. In 24 experiments, 2 projects and 56 exercises we go from absolute beginner to experienced engineer level.

Experimenting with PIC C

The second book starts with an easy to understand explanation of how to write PIC programmes in C. The first few programmes are written for a PIC16F84 then we see how to use the PIC16F827 and PIC16F877 families. We study how to create programme loops, we experiment with the IF statement, use the 8 bit and 16 bit timers, write text, integer, and floating point variables to the LCD, use the keypad to enter numbers, create a siren sound, experiment with the PICs USART.......
Last month we started looking at more practical aspects of RC timing. We arrived at the circuit shown in Fig.1.

This circuit uses a comparator to detect when a charging capacitor reaches a particular voltage, determined by the potential divider R2 and R3. This circuit represents a portion of the 555 and we will develop it from this point to the full 555 block diagram by adding extra functionality. First, though, a quick word on timing formulae.

Timing Formulae

Rather than thinking of the comparator switching point for Fig.1 as being at a particular voltage, it is better to consider it as a fraction of the supply voltage. If we do this, then as we saw last month, the applied voltage (supply voltage) can be cancelled from the charging equation. We get

\[t = -RC \ln(1 - k_1) \]

where in the specific case of the circuit in Fig.1

\[k_1 = \frac{R3}{R2 + R3} \]

For which we can find the value of the natural log (call this \(k_2 \)) to get

\[t = k_2RC \]

Table 1 shows some RC timing formulae for a few simple fractions (\(k_1 \) values) and special case of \(k_1 = 0.632 \) for which \(k_2 = 1 \)

<table>
<thead>
<tr>
<th>Fraction of applied voltage</th>
<th>Timing Equation (comp switches at)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td>(t = 0.405RC)</td>
</tr>
<tr>
<td>1/2</td>
<td>(t = 0.693RC)</td>
</tr>
<tr>
<td>0.632</td>
<td>(t = RC)</td>
</tr>
<tr>
<td>2/3</td>
<td>(t = 1.10RC)</td>
</tr>
<tr>
<td>3/4</td>
<td>(t = 1.39RC)</td>
</tr>
</tbody>
</table>

The circuit in Fig.1 is not particularly useful because it only times once when power is applied. This is easily solved by adding a transistor to discharge the capacitor, which is what is done in the 555. Applying a signal to the control input to turn on TR1 will discharge the capacitor. If the control input is then held at 0V, C1 will start charging and the comparator will switch at the time determined by the supply voltage fraction set by resistors R2 and R3. The timing formulae in Table 1 can be applied (\(R = R1 \) times \(C = C1 \)) in this situation.

Triggering

In general, if we want to start a timing operation in a circuit it is better to trigger it using the edge of the control waveform, that is a 1 to 0 or 0 to 1 transition, rather than requiring that the control signal is held in place for at least the duration of the timed period, as is the case with the circuit in Fig.2. To achieve this we can use a flip-flop to hold the control signal in the appropriate state – see Fig.3.

In the circuit in Fig.3, when the circuit is idle the output is low and the control signal is high, so the transistor is on and the capacitor is discharged. When the trigger input goes low, the flip-flop sets, so \(Q \) (and hence the output) goes high, and \(Q \) goes low, causing the transistor to...
turn off, allowing the capacitor to charge. Thus the timing cycle starts and V_C charges towards the supply voltage.

When V_C reaches the comparator (IC1) threshold set by R2 and R3, the comparator switches (output goes low) and the flip-flop (IC2) is reset. The circuit output (flip-flop Q) goes low again and the transistor switches on, discharging the capacitor. This removes the reset signal from the flip-flop so it is ready for the next trigger input. The circuit waveforms (for two timing operations) are shown in Fig.4.

The timing period for the circuit in Fig.3 is the same as that in Fig.2. The circuit in Fig.3 performs in almost the same way as the 555 in monostable mode. For the 555, the comparator switching threshold is set at two-thirds of the supply voltage by internal resistors (equivalent to R2 and R3), thus from Table 1 (or formulae given above) the timed period, T, is

$$T = 1.1RC$$

The circuit in Fig.3 requires a short trigger pulse, just as the 555 does, which only has to be long enough to set the flip-flop

Continuous Pulses

So far all the circuits we have discussed have provided monostable or ‘one-shot’ timing. It is also common to need a continuous sequence of timed pulses, referred to as astable or ‘free running’ operation. To achieve this we need to continuously switch between charging and discharging the timing capacitor.

The waveform in Fig.4 shows the capacitor voltage falling very quickly once the transistor turns on to discharge it. The capacitor will follow a discharge curve whose timing is governed by the effective collector to emitter resistance of the transistor. This resistance is small and so the discharge is rapid, however, if we insert a resistor in series with the transistor we can slow down the discharge to be similar to the charging time.

In Fig.5 is shown part of the circuit from Fig.3 with the addition of a possible way of including a discharge resistor. This is perhaps the most obvious way to do it, but it is not ideal because R1 and R4 create a potential divider which would prevent the capacitor fully discharging. Hopefully this can be seen clearly in the simplified equivalent circuit.

A better approach is shown in Fig.6, in which the capacitor charges through both R1 and R4 and discharges through R4. Note that in Fig.6 when the switch is closed and the capacitor is discharging, resistor R1 is effectively connected to ground and does not contribute to the timing or voltage on the capacitor. This resistor arrangement is used in the standard 555 astable circuit, in which resistors R1 and R4 are the external timing resistors.

Our current circuit (Fig.3) has a single comparator which detects when the capacitor voltage reaches the limit to

RC EQUATIONS

Capacitor Charging

C charges from 0V towards V_{in} through R when S closes at $t = 0$

$$V_C = V_{in} \left(1 - \exp\left(-\frac{t}{RC}\right)\right)$$

Time after S closes taken to reach voltage V_C

$$t = \frac{RC}{\ln\left(1 - V_C/V_{in}\right)}$$

Capacitor Discharging

C discharges from V_i towards 0V through R when S closes at $t = 0$

$$V_C = V_i \exp\left(-\frac{t}{RC}\right)$$

Time after S closes taken to reach voltage V_C

$$t = \frac{RC}{\ln\left(V_C/V_i\right)}$$

and which must be shorter than the monostable timing period. In standard 555 monostable circuits, R1 and C1 are the external timing components (R2 and R3 are internal, as already mentioned).
which we want it to charge (at the end of the charging period). For astable operation we also need to define the end of the discharge period and detect when the capacitor reaches this voltage. We need another comparator to accomplish this. Obviously, the discharge limit voltage must always be less than the charging limit voltage. A good circuit arrangement for this is shown in Fig. 7.

In Fig.7, comparator 1 (IC1) is used to detect the charging limit. This is equivalent to the comparator we have already used. Comparator 2 (IC2) is a new addition to our circuit and detects the discharge limit. Both comparator thresholds can be expressed as fractions of the supply voltage as follows:

\[k_\text{comp} = \frac{R_3 + R_5}{R_2 + R_3 + R_5} \quad k_\text{comp2} = \frac{R_5}{R_2 + R_3 + R_5} \]

If all three resistors have the same value \((R_2 = R_3 = R_5)\) we get \(k_\text{comp} = 2/3\) and \(k_\text{comp2} = 1/3\). This is what is done in the 555 (these resistors are internal components).

Astable Operation

Fig.8 shows the full circuit for astable operation – Fig. 3 with the additional circuitry that we have just discussed. The circuit operates as follows. At power-up C1 is fully discharged. The voltage is below the lower threshold, so comparator 2 will set the flip-flop and the transistor will be off, allowing the capacitor to charge towards the supply (through R1 and R4). As Vc passes \(k_\text{comp}VDD\) comparator 2 switches and removes the set signal from the flip-flop. This process will repeat indefinitely so that VC will charge up to \(k_\text{comp}VDD\) and then discharge to \(k_\text{comp2}VDD\). For the 555, the capacitor voltage oscillates between one and two-thirds of the supply voltage.

Calculating Astable Timing

To calculate the timing period of the astable, we have to work out the charge time and the discharge time and add these together. For this we will assume that the charge and discharge limits are set to two-thirds and one-third of the supply voltage respectively, as they are in the 555.

In these articles we have not developed a formula to directly give us the time taken to charge from one-third to two-thirds of the supply (or similar situations), but this is straightforward to work out. All we have to do is take the time taken to reach two-thirds of the supply charging from 0, and subtract the time taken to reach one-third of the supply voltage charging from 0.

\[t_\text{charge} = \frac{RC}{2} \ln(1 - 2/3) - \frac{RC}{3} \ln(1 - 1/3) \]

\[t_\text{discharge} = \frac{RC}{3} \ln(1/3) + \frac{RC}{3} \ln(2/3) \]

\[t_\text{charge} = 1.09861RC \quad t_\text{discharge} = 0.693RC \]

For charging we have \(R = R_1 + R_4\) and C = C1 so for the circuit in Fig 8 we get

\[t_\text{charge} = 0.963(R_1 + R_4)C_1 \]

For discharge we have \(R = R_4\) and \(C = C_1\), so for the circuit in Fig 8 we get

\[t_\text{discharge} = 0.693R_4C_1 \]

The total time of one cycle, \(T\), is the sum of the charge and discharge times:

\[T = t_\text{charge} + t_\text{discharge} = 0.693(R_1 + R_4)C_1 + 0.693 \]

\[T = 0.693(R_1 + 2R_4)C_1 \]

The frequency of oscillation of the astable is \(f = 1/T\) so:

\[f = \frac{1.44}{(R_1 + 2R_4)C_1} \]

These formulae (\(T\) and \(f\)) give the timing for the standard 555 astable.

The modified circuit in Fig.8 can also be used to form the basis of the monostable shown in Fig.3 (note that R4 is not present in the monostable). One difference is that the trigger signal passes through comparator 2 rather than being connected directly to the flip-flop. This means that the monostable trigger activates as the trigger voltage falls below one-third of the supply. Note that the trigger signal is connected to the external trigger, not to the capacitor for monostable operation.
Everyday Practical Electronics, December 2006

Surfing The Internet

Net Work

Alan Winstanley

Recycle Risk Confirmed

This month’s Net Work is over to you, readers, with your feedback following up on recent articles.

In October’s issue I described how old computers and personal data dumped by consumers onto British rubbish tips were finding their way into the hands of Nigerian dealers. I suggested various software products that could shred personal data thoroughly, to protect against data theft once a disk is discarded. A reader supplied more background:

“Your October 2006 column queried how personal computer hardware and data could end up on sale in Nigeria. I run an electronics repair company, and I buy faulty discarded electronic equipment that I refurbish and sell on: for years my source of this faulty equipment has been the local authority rubbish tip or ‘recycling centre’.

“Most people associate the word ‘recycling’ with items that have been smashed up, melted down and made into something else, but in reality this is far from the truth. Go to your local recycling centre with a pocket full of cash and you can buy anything on display, of course items such as TVs and videos will probably be faulty and require some sort of repair – no problem to someone like myself, but computers are usually thrown away working because people have upgraded to the latest model.

“Two computers I have bought in the past come to mind, one was from a solicitor’s office and contained confidential files and letters, and another came from a florist and had company accounts, names and addresses of bad payers etc. One guy I met was removing hard drives and buying them for a couple of pounds a time, when I questioned what use he had for them he said: “none at all, I just put them on eBay and sell them at a profit”. It’s not really difficult to see how your old hard drive can end up in Nigeria.” Name and address supplied.

Thank you for confirming what I half-suspected. It is also why I disagree with the policy of ‘rotate’ the staff on duty at recycling centres to prevent people becoming too friendly with them.

A Better VNC?

Thomas Stratford writes: “In last month’s Net Work article you mention Real VNC as a way of remotely operating a PC. We use it all the time at work as it works really well but the screen refresh is a little slow. I have recently found out that there were security flaws in Real VNC, see the Techtarget web site at http://tinyurl.com/y95h6q

“One of our customers was hacked, they had Real VNC loaded. The hacker opened Microsoft Word and defaced a document, closed Word again then disconnected. If we find Real VNC installed now we are removing it and installing Tight VNC instead, from www.tightvnc.com.”

Tight VNC is claimed to be an enhanced version of Real VNC. An upgrade claiming to fix all known security issues was posted by Real VNC in May 2006, and a limited version of the latest version 4.1.2 is available as a free download from www.realvnc.com. Incidentally readers, Thomas does a sterling job of running the Official EPE PIC Mirror Site at http://homepages.nildram.co.uk/%7Estarbug/epepic.htm or link via the EPE Downloads page. This is a very useful web-style front end to almost every EPE PIC source code ever published.

IP Cameras

My thanks to regular reader Allan Sancto EA/G0LFM (via email) who writes from Spain:

“I read with great interest your Net Work article about webcams in September 2006 EPE. We have lived in rural Spain for a few months and were just beginning to feel at home and reasonably secure, when my nearest neighbour some 200 metres away was burgled in spite of a very expensive alarm system connected (via mobile phone technology I believe) to the nearest Police Station! I have the same system!

“Consequently your piece on Webcam security looks very interesting for our purposes. If I wish to connect more than one camera, would it not be necessary to provide some amplification on cable runs longer than the average webcam connection to the PC?”

For reliable operation, there is a theoretical limit on a USB lead length of 5 metres or so. The simplest solution is an Active 5 Metre USB repeater cable, which amplifies the signal over longer cable runs. One supplier claims that you can daisy-chain up to five of them together, so you could make up to a 25 metre USB link. Examples are on eBay (search for ‘USB repeater’) for roughly £6 to £10 each. This becomes a bit pricey for a multiple camera setup, though.

Note that webcams tend to use a fair amount of power (judging by how warm mine becomes) so if you use multiple cameras it might be worth trying a powered USB hub, running from a mains adaptor (see our USB Power Injector in this issue).

A smarter but far more expensive solution to the cable problem is to use an 802.11g wireless IP camera – the IP (Internet Protocol) bit means that it acts as its own server with its own IP address (so no host PC is needed), so it can be hooked directly to a TCP/IP network wirelessly. The clever Panasonic BLC30 (see photo) is a tripod-mountable indoor wireless camera offering PIR motion detection, remote control of pan and tilt via a PC or Internet-connected mobile phone, a Privacy button and E-mail snapshots.

The wireless signal is encrypted to prevent unauthorised interception. Panasonic claims that setup is very simple but a bit of experience of handling an IP network might be handy. Wireless network users will know that brick walls, copper pipes, wiring etc. tend to interfere with the signal range. More details and a data sheet from www.panasonic.co.uk/ip-cameras/blc30.html. Online vendors of the BLC30 include www.ipcctvcameras.co.uk

A wide range of wireless CCTV cameras and other dedicated devices are available by mail order from Cricklewood Electronics (www.cricklewoodelectronics.co.uk) and Henrys Electronics (www.henrys.co.uk).

If you have any comments or possible suggestions for future topics, you can email the author at alan.epemag.demon.co.uk

59
ELECTRONICS SERVICE MANUAL

Everything you need to know to get started in repairing electronic equipment

- Around 900 pages
- Fundamental principles
- Troubleshooting techniques
- Servicing techniques
- Choosing and using test equipment
- Reference data
- Manufacturers’ web links
- Easy-to-use Adobe Acrobat format
- Clear and simple layout
- Vital safety precautions
- Professionally written
- Supplements

SAFETY: Safety Regulations, Electrical Safety and First Aid.
UNDERPINNING KNOWLEDGE: Electrical and Electronic Principles, Active and Passive Components, Circuit Diagrams, Circuit Measurements, Radio, Computers, Valves and Manufacturers’ Data, etc.

PRACTICAL SKILLS: Learn how to identify Electronic Components, Avoid Static Hazards, Carry Out Soldering and Wiring, Remove and Replace Components.

TEST EQUIPMENT: How to Choose and Use Test Equipment, Assemble a Toolkit, Set Up a Workshop, and Get the Most from Your Multimeter and Oscilloscope, etc.

SERVICING TECHNIQUES: The Manual includes vital guidelines on how to Service Audio Amplifiers. The Supplements include similar guidelines for Radio Receivers, TV Receivers, Cassette Recorders, Video Recorders, Personal Computers, etc.

TECHNICAL NOTES: Commencing with the IBM PC, this section and the Supplements deal with a very wide range of specific types of equipment – radios, TVs, cassette recorders, amplifiers, video recorders etc.

REFERENCE DATA: Diodes, Small-Signal Transistors, Power Transistors, Thyristors, Triacs and Field Effect Transistors. Supplements include Operational Amplifiers, Logic Circuits, Optoelectronic Devices, etc.

PRACTICAL SKILLS:
- Troubleshooting techniques
- Servicing techniques
- Choosing and using test equipment
- Reference data
- Manufacturers’ web links
- Clear and simple layout
- Professional presentation
- Extensive data tables
- Detailed assembly instructions
- Troubleshooting checklists
- In-depth theory
- Professional advice
- Productive workshops
- Easy-to-use Adobe Acrobat format
- Comprehensive subject range
- Safety
- Frequent projects
- Easy-to-use Adobe Acrobat format
- Comprehensive subject range
- Supplemental glossary
- Clear and simple layout
- Professional presentation
- Extensive data tables
- Detailed assembly instructions
- Troubleshooting checklists
- In-depth theory
- Professional advice
- Productive workshops
- Easy-to-use Adobe Acrobat format
- Comprehensive subject range
- Supplemental glossary

The essential reference work for everyone studying electronics

- Over 800 pages
- In-depth theory
- Projects to build
- Detailed assembly instructions
- Full components checklists
- Extensive data tables
- Manufacturers’ web links
- Easy-to-use Adobe Acrobat format
- Clear and simple layout
- Comprehensive subject range
- Professionally written
- Supplements

BASIC PRINCIPLES: Electronic Components and their Characteristics; Circuits Using Passive Components; Power Supplies; The Amateur Electronics Workshop; The Uses of Semiconductors; Digital Electronics; Operational Amplifiers; Introduction to Physics, including practical experiments; Semiconductors and Digital Instruments.

CIRCUITS TO BUILD: The Base Manual describes 12 projects including a Theremin and a Simple TENS Unit.

ESSENTIAL DATA: Extensive tables on diodes, transistors, thyristors and triacs, digital and linear i.c.s.

EXTENSIVE GLOSSARY: Should you come across a technical word, phrase or abbreviation you’re not familiar with, simply look up the glossary and you’ll find a comprehensive definition in plain English.

The Manual also covers Safety and provides web links to component and equipment Manufacturers and Suppliers.

Presentation: CD-ROM suitable for any modern PC. Requires Adobe Acrobat Reader which is included on the CD-ROM.

Wimborne Publishing Ltd., 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Tel: 01202 873872. Fax: 01202 874562.

ORDER FORM

Simply complete and return the order form with your payment to the following address:

Wimborne Publishing Ltd,
408 Wimborne Road East, Ferndown,
Dorset BH22 9ND

Price includes postage to anywhere in the World

We will happily exchange any faulty CD-ROMs but since the content can be printed out we do not offer a refund on these items.

Your CD-ROM(s) will be posted to you by first class mail or airmail, normally within four working days of receipt of your order
Everyday Practical Electronics, December 2006

Li-ion Batteries

Dear EPE,

Batteries for lions (Readout Sept '06)? What will they think of next?

Seriously though, I have at least three of them in various units and I have not experienced the problems highlighted by Godfrey Manning. With all these new batteries, like NiCads, they all lose a small percentage of the stored charge weekly and I can only assume that Godfrey’s friend had an older digital camera which was battery hungry.

I still have a four-year old Ricoh camera, complete with power zoom, which needed four sets of four spare AA rechargeables if you went out for the day and just took about 40 shots, and that was not using flash either. I later got hold of a set of big 1.2V rechargeables from JPG Electronics (see their ad) which I wired up into two sets of four and carried them around in a holdall connected to the camera by a three-foot cable and even then I used to exhaust one set after about 60 shots.

Luckily the camera could only support a 32 meg memory card. If it had supported a one gig card, like the present meg card and a spare battery I carry around, and I have never had cause to use it yet.

George Chatley, via email

Thanks George, I passed your comments on to Godfrey.

On the subject of unusual uses for batteries, I once jokingly commented to a friend of ours has just had a food allergy test and described how different glass tubes. As she described the test and described how different glass resistors are shown drawn in parallel = 3.33 ohm, oops!

A quickie about food allergy testing with a Vega? electronic machine – a lady friend of ours has just had a food allergy test and described how different glass phials with various food substances were used to diagnose her reaction by measuring skin resistance. As she described the test I could not see how her body could react to anything in an insulated glass tube.

I then did a bit of research on the net and found that the BBC had run a program de-bunking the machine. Now my total medical knowledge is confined to an aspirin tablet, but... are there any of your readers who can explain how such a machine could work? What if an AC carrier/current of x-frequency was passed through the substance in the glass tube as a capacitive dielectric and then through the person under test? Food for thought?

Great mag, eagerly awaited every month!

Bryon Epps, via email

Whooops, that oversight is down to me! I no longer have Robert Powell’s email address, and cannot check with him, what he really meant to say/show. Robert – are you tuned in here? If so, drop me an email via HQ please.

Regarding the question, readers can you help Bryon?

Chip off the Old Block?

Dear EPE,

It’s nice to know that there are still people who make good use of salvaged components – not to mention pieces of kitchen chopping boards – in order to create something new and useful (Human Powered Torches, Sep '06).

Thank you for the interesting article. Now I know what to do with my old stepper motors.

Francis K. Hall, Meinerzhagen, Germany

So many things, Francis, have uses well beyond that which they were designed for. That’s a general philosophy I follow when I’m designing something and am looking for unusual non-electronic parts. Amazing what you can find that has multiple uses if you put your mind to it.
A plethora of 20 “hand-PICked” PIC Projects from selected past issues of *EPE*
Together with the PIC programming software for each project plus bonus articles

The projects are:

PIC-Based Ultrasonic Tape Measure
You’ve got it taped if you PIC this ultrasonic distance measuring calculator.

EPE Mind PICkler
Want seven ways to relax? Try our PIC-controlled mind machine!

PIC MIDI Sustain Pedal
Add sustain and glissando to your MIDI line-up with this inexpensive PIC-controlled effects unit

PIC-based MIDI Handbells
Ring out thy bells with merry tolling – plus a MIDI PIC-up, of course!

EPE Mood PICker
Oh for a good night’s sleep! Insomniacs rejoice – your wakeful nights could soon be over with this mini-micro under the pillow!

PIC Micro-Probe
A hardware tool to help debug your PIC software

PIC Video Cleaner
Improving video viewing on poorly maintained TVs and VCRs

PIC to Printer Interface
How to use dot-matrix printers as data loggers with PIC microcontrollers

PIC Polywhatsit
A novel compendium of musical effects to delight the creative musician

PIC Magick Musick
Conjure music from thin air at the mere untouching gesture of a fingertip

PIC Virus Zapper
Can disease be cured electronically? Investigate this controversial subject for yourself

PIC Controlled Intruder Alarm
A sophisticated multi-zone intruder detection system that offers a variety of monitoring facilities

PIC Freezer Alarm
How to prevent your food from defrosting unexpectedly

PIC World Clock
Graphically displays world map, calendar, clock and global time-zone data

PICAXE Projects
A 3-part series using PICAXE devices – PIC microcontrollers that do not need specialist knowledge or programming equipment

Versatile PIC Flasher
An attractive display to enhance your Christmas decorations or your child’s ceiling

ORDER FORM

Please send me (quantity) EPE PIC PROJECTS VOL 1 CD-ROM
Price £14.45 each – includes postage to anywhere in the world.

Name ...
Address ..
..
..
..
..
Post Code ..

☐ I enclose cheque/P.O./bank draft to the value of £

☐ Please charge my Visa/Mastercard/Amex/Diners Club/Maestro

£ ...

Card No. ..

Card Security Code (The last 3 digits on or just under
the signature strip)

Start Date Expiry Date Maestro Issue No. ...

SEND TO: Everyday Practical Electronics,
Wimborne Publishing Ltd.,
408 Wimborne Road East, Ferndown, Dorset BH22 9ND.
Tel: 01202 873872. Fax: 01202 874562.
Email: orders@epemag.wimborne.co.uk

Payments must be by card or in £ Sterling – cheque or bank draft drawn on a UK bank.

Normally supplied within seven days of receipt of order. Send a copy of this form, or order by letter if you do not wish to cut your issue.

EPE PIC PROJECTS CD-ROM ORDER FORM

ONLY £14.45
INCLUDING VAT and P&P

EPE PIC PROJECTS

VOLUME 1

MINI CD-ROM

A plethora of 20 “hand-PICked” PIC Projects from selected past issues of *EPE*
Together with the PIC programming software for each project plus bonus articles

The projects are:

PIC-Based Ultrasonic Tape Measure
You’ve got it taped if you PIC this ultrasonic distance measuring calculator.

EPE Mind PICkler
Want seven ways to relax? Try our PIC-controlled mind machine!

PIC MIDI Sustain Pedal
Add sustain and glissando to your MIDI line-up with this inexpensive PIC-controlled effects unit

PIC-based MIDI Handbells
Ring out thy bells with merry tolling – plus a MIDI PIC-up, of course!

EPE Mood PICker
Oh for a good night’s sleep! Insomniacs rejoice – your wakeful nights could soon be over with this mini-micro under the pillow!

PIC Micro-Probe
A hardware tool to help debug your PIC software

PIC Video Cleaner
Improving video viewing on poorly maintained TVs and VCRs

PIC to Printer Interface
How to use dot-matrix printers as data loggers with PIC microcontrollers

PIC Polywhatsit
A novel compendium of musical effects to delight the creative musician

PIC Magick Musick
Conjure music from thin air at the mere untouching gesture of a fingertip

PIC Virus Zapper
Can disease be cured electronically? Investigate this controversial subject for yourself

PIC Controlled Intruder Alarm
A sophisticated multi-zone intruder detection system that offers a variety of monitoring facilities

PIC Freezer Alarm
How to prevent your food from defrosting unexpectedly

PIC World Clock
Graphically displays world map, calendar, clock and global time-zone data

PICAXE Projects
A 3-part series using PICAXE devices – PIC microcontrollers that do not need specialist knowledge or programming equipment

Versatile PIC Flasher
An attractive display to enhance your Christmas decorations or your child’s ceiling

BECOME A PIC PROJECT BUILDER WITH THE HELP OF EPE!

EPE PIC PROJECTS

VOLUME 1

MINI CD-ROM

A plethora of 20 “hand-PICked” PIC Projects from selected past issues of *EPE*
Together with the PIC programming software for each project plus bonus articles

EPE PIC PROJECTS CD-ROM

ORDER FORM

Please send me (quantity) EPE PIC PROJECTS VOL 1 CD-ROM
Price £14.45 each – includes postage to anywhere in the world.

Name ...
Address ..
..
..
..
..
Post Code ..

☐ I enclose cheque/P.O./bank draft to the value of £

☐ Please charge my Visa/Mastercard/Amex/Diners Club/Maestro

£ ...

Card No. ..

Card Security Code (The last 3 digits on or just under
the signature strip)

Start Date Expiry Date Maestro Issue No. ...

SEND TO: Everyday Practical Electronics,
Wimborne Publishing Ltd.,
408 Wimborne Road East, Ferndown, Dorset BH22 9ND.
Tel: 01202 873872. Fax: 01202 874562.
Email: orders@epemag.wimborne.co.uk

Payments must be by card or in £ Sterling – cheque or bank draft drawn on a UK bank.

Normally supplied within seven days of receipt of order. Send a copy of this form, or order by letter if you do not wish to cut your issue.

EPE PIC PROJECTS

VOLUME 1

MINI CD-ROM

EPE PIC PROJECTS CD-ROM

ORDER FORM

Please send me (quantity) EPE PIC PROJECTS VOL 1 CD-ROM
Price £14.45 each – includes postage to anywhere in the world.

Name ...
Address ..
..
..
..
..
Post Code ..

☐ I enclose cheque/P.O./bank draft to the value of £

☐ Please charge my Visa/Mastercard/Amex/Diners Club/Maestro

£ ...

Card No. ..

Card Security Code (The last 3 digits on or just under
the signature strip)

Start Date Expiry Date Maestro Issue No. ...

SEND TO: Everyday Practical Electronics,
Wimborne Publishing Ltd.,
408 Wimborne Road East, Ferndown, Dorset BH22 9ND.
Tel: 01202 873872. Fax: 01202 874562.
Email: orders@epemag.wimborne.co.uk

Payments must be by card or in £ Sterling – cheque or bank draft drawn on a UK bank.

Normally supplied within seven days of receipt of order. Send a copy of this form, or order by letter if you do not wish to cut your issue.

EPE PIC PROJECTS

VOLUME 1

MINI CD-ROM

EPE PIC PROJECTS CD-ROM

ORDER FORM

Please send me (quantity) EPE PIC PROJECTS VOL 1 CD-ROM
Price £14.45 each – includes postage to anywhere in the world.

Name ...
Address ..
..
..
..
..
Post Code ..

☐ I enclose cheque/P.O./bank draft to the value of £

☐ Please charge my Visa/Mastercard/Amex/Diners Club/Maestro

£ ...

Card No. ..

Card Security Code (The last 3 digits on or just under
the signature strip)

Start Date Expiry Date Maestro Issue No. ...

SEND TO: Everyday Practical Electronics,
Wimborne Publishing Ltd.,
408 Wimborne Road East, Ferndown, Dorset BH22 9ND.
Tel: 01202 873872. Fax: 01202 874562.
Email: orders@epemag.wimborne.co.uk

Payments must be by card or in £ Sterling – cheque or bank draft drawn on a UK bank.

Normally supplied within seven days of receipt of order. Send a copy of this form, or order by letter if you do not wish to cut your issue.
The books listed have been selected by Everyday Practical Electronics editorial staff as being of special interest to everyone involved in electronics and computing. They are supplied by mail order direct to your door. Full ordering details are given on the last page book.
THEORY AND REFERENCE

BEBO THE TOOLEN BOOGIE
Second Edition
Clive (call me Max) Maxfield
The legendary radio engineer writes the big picture of digital electronics. This in-depth, highly readable, up-to-the-minute guide shows you how electronic devices work and how they're made. You'll discover how transistors operate, how printed circuit boards are fabricated, and what the innards of memory ICs look like. You'll also gain a working knowledge of Boolean Algebra and Karnaugh Maps, and understand what Reed-Muller logic is and how it's used. And there's much, MUCH more. The author's tongue-in-cheek humour makes it a delight to read, but this is a REAL technical book, extremely detailed and accurate.

Contents: Fundamental concepts; Analog versus digital; Conductors and insulators; Voltage, resistance, capacitance and inductance; Semiconductors; Primitive logic functions; Binary arithmetic; Boolean algebra; Karnaugh maps; State diagrams, tables and machines; Analog-to-digital and digital-to-analog; Integrated circuits (ICs); Memory ICs; Programmable ICs; Application-specific integrated circuits (ASICs); Circuit boards (PWBs and DWBs); Hybrid; Multichip modules (MCMs); Alternative and future technologies.

470 pages – large format

Order code PC13 £26.95

BEBOB BYTES BACK (and the Bebop Computer Simulator)
CD-ROM
Clive (Max) Maxfield and Alvin Brown
This follow-on to Bebop to the Boolean Boogie is a treasure trove of electronic gadgetry, an extravaganza of information about the way electronics works. It picks up where “Bebop I” left off, guiding you through the wondrous world of computer design – and you’ll have a few chuckles, if not belly laughs, along the way. In addition to over 200 megabytes of mega-cool multimedia, the CD-ROM contains a virtual microcomputer, simulating the motherboard and standard computer peripheral devices in an extremely realistic manner. In addition to a wealth of technical information, myriad nuggets of trivia, and hundreds of carefully drawn illustrations, the CD-ROM contains a lab of experiments for the virtual microprocessor that let you recreate the experiences of early computer pioneers. If you’re the slightest bit interested in the inner workings of computers, then don’t dare to miss this page-

Order code BEB2 CD-ROM £21.95

QUICK GUIDE TO ANALOGUE SYNTHESIS
Ian Waugh
Even though music production has moved into the digital domain, modern synthesizers invariably use analogue synthesis techniques. The reason is simple – analogue synthesis is flexible and versatile, and it’s relatively easy for us to understand. The basics are the same for all analogue synths, and you’ll quickly be able to adapt the book’s principles to any instrument, to add existing sounds and create exciting new ones. This book describes: How analogue synthesis works; The essential modules every synthesizer has; The three steps to synthesis; How to create pitch based sounds; How to generate filter sweeps; Advanced synth modules; How to create simple and complex synth patches; Where to get affordable equipment.

60 pages

Order code PC18 £7.45

QUICK GUIDE TO MP3 AND DIGITAL AUDIO
Ian Waugh
MP3 files, the latest digital music format, have taken the music industry by storm. What are they? How do you get them? How do you use them? Why have they thren leveling record companies into a panic? Will they make music easier to buy? And cheaper? Is this the future of music? All these questions and more are answered in this concise and practical book which explains everything you need to know about MP3s in a simple and easy-to-understand manner. It explains what MP3s are; The history of MP3s; How to play MP3s on your computer; How to use MP3s on handheld MP3 players; Where to find MP3s on the Web; How MP3s work; How to tune into Internet radio stations; How to create your own MP3s; How to record music from CDs to MP3 files; Other digital audio music formats.

60 pages

Order code PC19 £7.45

ELECTRONIC PROJECTS FOR VIDEO ENTHUSIASTS
R. A. Penfold
This book provides a number of practical designs for video accessories that will help you get the best results from your camcorder and VCR. All the projects use inexpensive components that are readily available, and they are easy to construct. Full construction details are provided, including stripboard layouts and wiring diagrams. Where appropriate, simple setting up procedures are detailed; no test equipment is needed. The projects covered in this book include: Four channel audio mixer, Tone control, feedback, gain, and phase correction network, Automatic audio fader, Video filter, TV colour bar generator, Mains power supply unit.

108 pages

Order code BP156 £6.45

THE INVENTOR OF STEREOPHONE – THE LIFE AND WORKS OF ALAN DOWER BLUMELIN
Robert Alexander Charles
This book is the definitive study of the life and works of one of Britain's most important inventors who, due to a cruel set of circumstances, has all but been overlooked by history.

Edward Blumlein (1907-1982) was an engineer who devoted his life to the development of stereophonic sound. Born in London on the 17th of September 1907, Blumlein was brought up in the house of his parents in Cleveland Street, London. His father, Louis Blumlein, was a businessman who ran a small general hardware business in the area. Blumlein attended the United Synagogue in Camden Town and later on went to the City School in Shoreditch, which was later renamed the City of London School for Boys. He then went on to work at the Royal College of Music, where he was responsible for the installation of the first ever soundproofed recording studio in the world.

Blumlein's most famous invention is the Multichannel Stereo microphone, which was developed in the mid-1940s. This microphone consisted of three microphones arranged in a Y-shaped configuration, with each microphone mounted on a separate stand. The three microphones were then fed into a central mixing console, where they could be balanced and adjusted to create the desired stereo effect.

Blumlein went on to work for the BBC and contributed significantly to the development of television and radio broadcasting. He was involved in the development of the first television broadcast, which took place in 1926. He also worked on the development of the first radio broadcast, which took place in 1927. Blumlein's work in these areas was instrumental in the development of modern radio and television broadcasting.

Blumlein's work in the field of stereo sound was also significant. He developed the Multichannel Stereo microphone, which was used to broadcast stereo sound to millions of people around the world. This microphone was used in the broadcast of the first ever stereo sound broadcast, which took place in 1954.

Blumlein was also involved in the development of the first ever stereo sound film, which was released in 1962. This film, entitled "A World Apart," was broadcast on the BBC and was watched by millions of people around the world.

Blumlein's work in the field of stereo sound was recognized with a number of awards, including the Royal Academy of Engineering Award in 1977 and the Royal Television Society Award in 1980. He was also made a Freeman of the City of London in 1980.

Blumlein was a wealthy man and he used his wealth to support a number of charitable causes. He was a member of the board of directors of the Royal Academy of Engineering and he was also a member of the board of governors of the Royal College of Music.

Blumlein died on the 17th of September 1982, having made a significant contribution to the world of technology and engineering. He is remembered as one of the most important inventors of the 20th century, and his work continues to be used in the development of modern audio and visual technology.

124 pages

Order code PC115 £4.55

GREAT ELECTRO-VIDEO PROJECTS
Ian R. Sinclair
This book, intended for enthusiasts, students and technicians, seeks to establish a firm foundation in digital electronics by treating the topics of gates and flip-flops thoroughly and from the beginning. There is no background other than the basic knowledge of electronics is assumed, and the more theoretical topics are explained from the beginning, as also are many working practices. The book contains a plethora of microprocessor techniques as applied to digital logic.

200 pages

Order code PC209 £9.95

PRACTICAL ELECTRONICS HANDBOOK – FIRST EDITION
Jonathan Hill
Provides a practical and comprehensive collection of circuits, rules of thumb and design techniques for general electronics engineers, students and enthusiasts, and therefore enough background to allow the understanding and development of a range of basic circuits.

Contents: Passive components, Active discrete components, Circuits, Linear ICs, Energy conversion components, Digital ICs, Microprocessors and microcontroller systems, Transferring digital data, Digital-analogue conversions, Computer aids in electronics, Hardware components and practical work, Micro-controllers and PLCs, Digital broadcasting, Electronic security.

440 pages

Order code NE21 £19.99

VIDEO PROJECTS FOR THE ELECTRONICS CONSTRUCTOR
R. A. Penfold
Written by highly respected author R. A. Penfold, this book contains a collection of electronic projects specially designed for video enthusiasts. At the heart of each project is a microcontroller, which is used to control the various functions of the project. All the projects are designed to be easily constructed, and many of them can be built using off-the-shelf components.

There are faders, wipers and effects units which will add sparkle and originality to your video recordings, an audio mixer and noise reducer to enhance your soundtrack, if required, and a basic computer control interface. Also, there’s a useful selection on basic video production techniques, which are explained from the beginning.

Complete with explanations of how the circuit works, shopping lists of components, advice on power supply and guidance on setting up and using the projects, this invaluable book will save you a small fortune.

Circuits include: Video enhancer, improved video enhancer, video fader, horizontal expansion, improved video fader, vertical expansion, video mixer, audio mixer, line extender, line enhancer, amplifier, dynamic noise reducer, automatic dater, pushbutton fader, computer control interface, 12 volt mains power supply.

124 pages

Order code PC116 £19.99

Everyday Practical Electronics, December 2006
PRACTICAL OSCILLATOR CIRCUITS
A. Findl

Extensive coverage is given to circuits using capacitors and resistors to control frequency. Designs using CMOS, timer ICs and op-amps are all described in detail, with a special chapter on “novel oscillator” (i.e. Relateable “white” and “pink” noise generator circuits are also included. Various circuits using inductors and capacitors are covered, with emphasis on stability and frequency generation. Some of these are amazingly simple, but still work very well.

Crystal oscillators have their own chapter. Many of the circuits are readily available from radio component suppliers for simplicity and reliability, and offer several output frequencies. Finally, complete constructional details are given for an audio sinewave generator.

133 pages

£5.45

PICTURE SYMPOSIUM
David W. Smith

A graded course based around the practical use of the PIC microcontroller through project work. Principles are introduced gradually, through hands-on experience, allowing hobbyists and students to develop their understanding at their own pace. The book is particularly aimed at a variety of specialist electronic hobby interests. Contents: Introduction to the PIC microcontroller; Programming the 16F84 microcontroller; Using inputs; Keycode scanning; Program examples; The 16C54 microcontroller; Alphanumeric displays; Analogue to digital conversion; Radio transmitters and receivers; EEPROM data memory; Interrupts; The 12CXXX 8-bit microcontroller; The 16F87X microcontroller; The 16F62X microcontroller; Projects: instruction set, files and registers; Appendices; Index.

272 pages

Order code NE19

£17.49

COIL DESIGN AND CONSTRUCTIONAL MANUAL
B. B. Babylon

A complete book for the home constructor on “how to make” RF, IF, audio and power coils, chokes and transformers. Practically every coil type is discussed and calculations necessary are given and explained in detail. Although this book is now twenty years old, with the exception of toroids and pulse transformers little has changed in coil design since it was written.

96 pages

Order code EP170

£4.49

PRACTICAL ELECTRONIC FAULT FINDING AND TROUBLESHOOTING
Robin Pain

To be a real fault finder, you must be able to get a feel for what is going on in the circuit you are examining. In this book Robin Pain explains the basic techniques needed to be a fault finder.

Simple circuit examples are used to illustrate principles and concepts fundamental to the process of fault finding. This is not a book of theory, it is a book of practical tips, hints and rules of thumb, all of which will equip the reader to tackle any job. You may be an engineer or technician in search of information and guidance, a college student, a hobbyist building a project from a magazine, or simply a keen self-taught amateur who is interested in electronic fault finding but finds books on the subject too theoretical or specialist.

The fundamental principles of analogue and digital fault finding are described (although of course, there is no such thing as a “digital fault” – all faults are by nature analogue). This book is written entirely for a fault finder using only the basic fault-finding equipment: a digital multimeter and an oscilloscope. The treatment is non-mathematical (apart from Ohm’s law) and all jargon is strictly avoided.

274 pages

Order code NE22

£25.99

OPERATIONAL AMPLIFIER USER’S HANDBOOK
R. A. Penfold

The first part of this book covers standard operational amplifier based “building blocks” (integrator, precision rectifier, function generator, amplifiers, etc.) and considers the ways in which modern devices can be used to give superior performance in each one. The second part describes a number of practical circuits that exploit modern operational amplifiers, such as high slew-rate, ultra low noise, and low input offset devices. The projects include: Low noise tape preamplifier, low noise RIAA pre-amplifier, audio power amplifiers, d.c. power controllers, opto-isolator audio link, audio millivolt meter, temperature monitor, low distortion audio signalgenerator, simple video fader, and many more.

120 pages

Order code BP235

£5.45

BOOK ORDER FORM
Full name:
Address:
Post code:
Telephone No:
Signature: ____________________________
□ I enclose cheque/PO payable to DIRECT BOOK SERVICE for £ ____________________
□ Please charge my card £ ____________________
Card Number: ____________________
Card Security Code: ____________
Card Holder Name: ____________________
Card Expiry Date: ________________
Date: ________________

Please send book order codes: __

Please continue on separate sheet of paper if necessary.
Printed circuit boards for most recent EPE constructional projects are available from the PCB Service, see list. These are fabricated in glass epoxy and are fully drilled and rolled tinned. All prices include VAT and postage and packing. Add £1 per board for overseas orders outside the EC. Remittances should be sent to The PCB Service, Everyday Practical Electronics, Wimborne Publishing Ltd., 498 Wimborne Road East, Ferndown, Dorset BH22 9ND. Tel: 01202 873872; Fax 01202 874682; Email: orders@epemag.wimborne.co.uk. On-line Shop: www.epemag.wimborne.co.uk/shopdoor.htm. Cheques should be crossed and made payable to Everyday Practical Electronics (Payment in £ sterling only).

NOTE: While 95% of our boards are held in stock and are dispatched within seven days of receipt of order, please allow a maximum of 28 days for delivery – overseas readers allow extra if ordered by surface mail.

Back numbers or photocopies of articles are available if required – see the Back Issues page for details. We do not supply kits or components for our projects.

Please check price and availability in the latest issue. A large number of older boards are listed on our website. Boards can only be supplied on a payment with order basis.

Boards up to 200mm x 150mm shape for £6.66.

<table>
<thead>
<tr>
<th>PROJECT TITLE</th>
<th>Order Code</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC Ultrasound Scanner</td>
<td>JUN '05</td>
<td>503 £6.66</td>
</tr>
<tr>
<td>Radio Control Model Switcher</td>
<td>JUN '05</td>
<td>504 £5.37</td>
</tr>
<tr>
<td>Back-To-Basics 3 – Scanner</td>
<td>JUN '05</td>
<td>505 £5.99</td>
</tr>
<tr>
<td>Digital Lock</td>
<td>JUN '05</td>
<td>506 £6.66</td>
</tr>
<tr>
<td>PCB Flash Interface Board</td>
<td>JUN '05</td>
<td>507 £6.66</td>
</tr>
<tr>
<td>LF/VS LV Converter</td>
<td>JUL '05</td>
<td>508 £5.71</td>
</tr>
<tr>
<td>– Fixed Capacitor Board</td>
<td>JUL '05</td>
<td>509 £5.96</td>
</tr>
<tr>
<td>– Mixer/Selector Board</td>
<td>JUL '05</td>
<td>510 £5.23</td>
</tr>
<tr>
<td>– Buffer Amplifier</td>
<td>JUL '05</td>
<td>511 £5.23</td>
</tr>
<tr>
<td>– Q Multiplier</td>
<td>JUL '05</td>
<td>512 £4.28</td>
</tr>
<tr>
<td>– Tuning Capacitor Board</td>
<td>JUL '05</td>
<td>513 £6.34</td>
</tr>
<tr>
<td>Back-To-Basics 4 – Doorchime</td>
<td>JUL '05</td>
<td>514 £6.82</td>
</tr>
<tr>
<td>Jumbo System</td>
<td>JUL '05</td>
<td>515 £6.66</td>
</tr>
<tr>
<td>Audio System</td>
<td>AUG '05</td>
<td>516 £6.02</td>
</tr>
<tr>
<td>– Preamp</td>
<td>AUG '05</td>
<td>517 £5.23</td>
</tr>
<tr>
<td>– Mic. Supply Board</td>
<td>AUG '05</td>
<td>518 £6.02</td>
</tr>
<tr>
<td>– Power Amp</td>
<td>AUG '05</td>
<td>519 £7.14</td>
</tr>
<tr>
<td>– Preamplifier</td>
<td>AUG '05</td>
<td>520 £7.45</td>
</tr>
<tr>
<td>– Back-To-Basics 5 – Kitchen Timer</td>
<td>AUG '05</td>
<td>521 £6.87</td>
</tr>
<tr>
<td>– Room Thermometer</td>
<td>AUG '05</td>
<td>522 £6.02</td>
</tr>
<tr>
<td>All-Band Radio – Full Version</td>
<td>SEPT '05</td>
<td>523 £5.71</td>
</tr>
<tr>
<td>– Mini Version</td>
<td>SEPT '05</td>
<td>524 £5.23</td>
</tr>
<tr>
<td>– Multicore Cable Tester – Main</td>
<td>SEPT '05</td>
<td>525 £6.19</td>
</tr>
<tr>
<td>– Active</td>
<td>SEPT '05</td>
<td>526 £5.55</td>
</tr>
<tr>
<td>– Back-To-Basics 6 – Daily Reminder</td>
<td>SEPT '05</td>
<td>527 £6.19</td>
</tr>
<tr>
<td>– Whistle Switch</td>
<td>SEPT '05</td>
<td>528 £5.87</td>
</tr>
<tr>
<td>– Model Railway Signal Control</td>
<td>SEPT '05</td>
<td>529 £6.19</td>
</tr>
<tr>
<td>– Brocker/Darts Scoreboard</td>
<td>SEPT '05</td>
<td>530 £8.72</td>
</tr>
<tr>
<td>Photocell Phone – Transmitter</td>
<td>OCT '05</td>
<td>531 £9.98</td>
</tr>
<tr>
<td>– Receiver</td>
<td>OCT '05</td>
<td>532 £9.98</td>
</tr>
<tr>
<td>Back-To-Basics 7 – Parking Radar</td>
<td>OCT '05</td>
<td>533 £5.71</td>
</tr>
<tr>
<td>– Telephone switch</td>
<td>OCT '05</td>
<td>534 £5.55</td>
</tr>
<tr>
<td>– HALowen HOWler</td>
<td>OCT '05</td>
<td>535 £6.02</td>
</tr>
<tr>
<td>– PIC-Based USB Interface</td>
<td>OCT '05</td>
<td>536 £5.19</td>
</tr>
<tr>
<td>– PIC Chromatone</td>
<td>OCT '05</td>
<td>537 £6.82</td>
</tr>
<tr>
<td>Back-To-Basics 8 – Noughts and Crosses Enigma</td>
<td>OCT '05</td>
<td>538 £6.66</td>
</tr>
<tr>
<td>– Weather Vanes Repeater</td>
<td>OCT '05</td>
<td>539 £6.18</td>
</tr>
<tr>
<td>– Multi-Function PIC Switch</td>
<td>OCT '05</td>
<td>540 £5.87</td>
</tr>
<tr>
<td>– Speed Camera Watch Mod</td>
<td>OCT '05</td>
<td>541 £6.35</td>
</tr>
<tr>
<td>Solid-State Valve Power Supply</td>
<td>DEC '05</td>
<td>542 £6.35</td>
</tr>
<tr>
<td>– Vehicle Frost Box Mod</td>
<td>DEC '05</td>
<td>543 £5.71</td>
</tr>
<tr>
<td>– Propeller Monitor</td>
<td>DEC '05</td>
<td>544 £6.02</td>
</tr>
<tr>
<td>– Solid-State Hammond</td>
<td>DEC '05</td>
<td>545 £6.18</td>
</tr>
<tr>
<td>SEG Pic Amplifier</td>
<td>JAN '06</td>
<td>546 £5.71</td>
</tr>
<tr>
<td>– Sunset Switch</td>
<td>JAN '06</td>
<td>547 £6.98</td>
</tr>
<tr>
<td>– Current Clamp Adaptor for Multimeters</td>
<td>JAN '06</td>
<td>548 £5.39</td>
</tr>
<tr>
<td>– Triac-Style Gear Indicator – Micro Board</td>
<td>JAN '06</td>
<td>549 £6.19</td>
</tr>
<tr>
<td>– Display Board</td>
<td>JAN '06</td>
<td>550 £5.29</td>
</tr>
<tr>
<td>G8 Speed Camera Watch Mod</td>
<td>JAN '06</td>
<td>551 £6.35</td>
</tr>
<tr>
<td>Keypad Alarm</td>
<td>FEB '06</td>
<td>552 £6.02</td>
</tr>
<tr>
<td>– 3-Way Active Crossover</td>
<td>FEB '06</td>
<td>553 £9.20</td>
</tr>
<tr>
<td>– Jazzy Heart</td>
<td>FEB '06</td>
<td>554 £6.02</td>
</tr>
<tr>
<td>– Status Monitor – Transmitter</td>
<td>FEB '06</td>
<td>555 £7.61</td>
</tr>
<tr>
<td>– Receiver</td>
<td>FEB '06</td>
<td>556 £6.35</td>
</tr>
<tr>
<td>Power Supply</td>
<td>MAR '06</td>
<td>557 £6.82</td>
</tr>
<tr>
<td>Video/Audio Booster (double-sided)</td>
<td>MAR '06</td>
<td>558 £12.00</td>
</tr>
<tr>
<td>– Oscilloscope Interface</td>
<td>MAR '06</td>
<td>559 £6.50</td>
</tr>
<tr>
<td>‘Smart Slave Flash</td>
<td>APR '06</td>
<td>560 £6.18</td>
</tr>
<tr>
<td>Programmable Continuity Tester</td>
<td>APR '06</td>
<td>561 £5.87</td>
</tr>
<tr>
<td>– Microphone Board</td>
<td>APR '06</td>
<td>562 £6.18</td>
</tr>
<tr>
<td>– Auxiliary Board</td>
<td>APR '06</td>
<td>563 £5.87</td>
</tr>
<tr>
<td>– Main Board</td>
<td>APR '06</td>
<td>564 £6.02</td>
</tr>
<tr>
<td>– Charger Board</td>
<td>APR '06</td>
<td>565 £6.66</td>
</tr>
<tr>
<td>Omni Pendulum</td>
<td>APR '06</td>
<td>566 £6.34</td>
</tr>
</tbody>
</table>

PCB SERVICE

EPE PRINTED CIRCUIT BOARD SERVICE

Order Code	Project	Quantity	Price

Name ……………………………
Address ……………………………
Tel. No. ……………………………

I enclose payment of £……………... (cheque/PO in £ sterling only) to:

Everyday Practical Electronics

MasterCard, Amex, Diners Club, Visa or Switch/Maestro

Card No …………………….
Valid From …………………… Expiry Date ……………………

Card Security Code …………………… Maestro Issue No ……………………
(The last 3 digits on or just under the signature strip)

Signature ……………………

NOTE: You can also order p.c.b.s by phone, Fax, Email or via our Web site on a secure server:

http://www.epemag.wimborne.co.uk/shopdoor.htm

EPE SOFTWARE

PCB MASTERS

PCB masters for boards published from the March '06 issue onwards can also be downloaded from our UK website (www.epemag.co.uk), go to the “Downloads” section.
If you want your advertisements to be seen by the largest readership at the most economical price our classified and semi-display pages offer the best value. The prepaid rate for semi-display space is £10 (+VAT) per single column centimetre (minimum 2.5cm). The prepaid rate for classified adverts is 40p (+VAT) per word (minimum 12 words).

All cheques, postal orders, etc., to be made payable to Everyday Practical Electronics. VAT must be added.

Advertisements, together with remittance, should be sent to Everyday Practical Electronics Advertisements, 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Phone: 01202 873872. Fax: 01202 874562. Email: epeads@wimborne.co.uk. For rates and information on display and classified advertising please contact our Advertisement Manager, Stewart Kearn as above.

Everyday Practical Electronics reaches twice as many UK readers as any other UK monthly hobby electronics magazine, our sales figures prove it. We have been the leading monthly magazine in this market for the last twenty one years.

CLASSIFIED ADVERTISEMENTS

Everyday Practical Electronics

If you want your advertisements to be seen by the largest readership at the most economical price our classified and semi-display pages offer the best value. The prepaid rate for semi-display space is £10 (+VAT) per single column centimetre (minimum 2.5cm). The prepaid rate for classified adverts is 40p (+VAT) per word (minimum 12 words).

All cheques, postal orders, etc., to be made payable to Everyday Practical Electronics. VAT must be added. Advertisements, together with remittance, should be sent to Everyday Practical Electronics Advertisements, 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Phone: 01202 873872. Fax: 01202 874562. Email: epeads@wimborne.co.uk. For rates and information on display and classified advertising please contact our Advertisement Manager, Stewart Kearn as above.

Everyday Practical Electronics reaches twice as many UK readers as any other UK monthly hobby electronics magazine, our sales figures prove it. We have been the leading monthly magazine in this market for the last twenty one years.
Rechargeable Batteries With Solder Tags

NIMH NICAD

AA 2000mAh £2.82
C 4Ah £4.70
D 9Ah £7.60
PP3 150mAh £4.95

AA 650mAh £1.41
C 2.5Ah £3.60
D 4Ah £4.95

Instrument case with edge connector and screw terminals

Size 112mm x 52mm x 105mm tall

This box consists of a cream base with a PCB slot, a cover plate to protect your circuit, a black lid with a 12 way edge connector and 2 screws to hold the lid on. The cream bases have minor marks from dust and handling price £2.00 + VAT (€3.25) for a sample or £44.00+VAT (€51.70) for a box of 44.

666 battery pack originally intended to be used with an orbitel mobile telephone it contains 10 1.6Ah sub C batteries (42 x 22 dia. the size usually used in cordless screwdrivers etc.) the pack is new and unused and can be broken open quite easily £7.46 + VAT = £8.77

Please add £1.66 + VAT = £1.95 postage & packing per order

Display Electronics
29 / 35 Osborne Road
Thornton Heath
Surrey UK CR7 8PD

Telephone
[44] 020 8653 3333
Fax [44] 020 8653 8888

ADVERTISERS INDEX

AGAR 62
ANTEX 49
AUDON ELECTRONICS 49
BETA-LAYOUT 15
BRUNNING SOFTWARE 55
BULL GROUP Cover (ii)
BYVAC 49
DISPLAY ELECTRONICS 72
EASYSYNC Cover (iii)
EPT SOFTWARE 15
ESR ELECTRONIC COMPONENTS 6
JAYCAR ELECTRONICS 32/33
JPG ELECTRONICS 72
LABCENTER Cover (iv)
LASER 62
LICHFIELD ELECTRONICS ... 63
MAGENTA ELECTRONICS 5
MILFORD INSTRUMENTS ... 4
NURVE NETWORKS LLC 62
PEAK ELECTRONIC DESIGN ... 45
PICO TECHNOLOGY 25
QUASAR ELECTRONICS 2/3
SAFFRON ELECTRONICS 15
SCANTOOL 44
SHERWOOD ELECTRONICS 63
STEWART OF READING 63

EVERYDAY PRACTICAL ELECTRONICS is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

Published on approximately the second Thursday of each month by Wimborne Publishing Ltd, 408 Wimborne Road East, Ferndown, Dorset BH22 9ND. Printed in England by Apple Web Offset Ltd., Warrington, WA1 4RS. Distributed by Seymour, 86 Newman St., London W1T 3EX. Subscriptions INLAND £18.75 (6 months); £35.50 (12 months). ABROAD £20.75 (6 months); £41.50 (12 months). Express Rates: £35.50 (6 months); £66 (2 years). Payments payable to “Everyday Practical Electronics”. Subs Dept Wimborne Publishing Ltd. E-mail subs@epeads.wimborne.co.uk

EVERYDAY PRACTICAL ELECTRONICS is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

January '07 issue on sale Dec 14

DEEP CYCLE BATTERY CHARGER

If deep cycle batteries are not properly charged, they will never be able to deliver their full capacity and their life will be greatly reduced. You can’t use a general purpose 12V car battery charger. This 3-step charger is specially designed for deep cycle batteries and will charge at up to 16.6A.

BALANCED MICROPHONE PREAMP

This Balanced Microphone Preamp comes with a 3-band equaliser and is suitable for Karaoke, public address or many other applications. It can run from a plugpack, its own internal 9V battery or phantom power.

HIGH-EFFICIENCY POWER SUPPLY FOR 1W LUXEON STAR LEDs

Looking for a highly-efficient switchmode power supply to run a 1W Luxeon Star LED from batteries? This easy-to-build design lets you use a pair of 1.5V ‘D’ cells and includes brightness control to further extend battery life.
SERIAL COMMUNICATIONS SPECIALISTS
Test and Measurement Solutions

featured products

CAN-USB
USB - CAN Bus adapter
£81.50

CAN-232
RS232 + CAN Bus adapter
£61.00

USB-2COM-M
2 Port Industrial USB RS232 Serial with wall mount bracket and 9V DC auxiliary output
£36.00

** NEW LOW PRICE **

USB-COM-PL
Quality USB to RS232 converter cable with detachable 10cm extender cable. FTDI Chipset and Drivers for superior compatibility and O.S. support.
£12.50

Affordable CAN Bus Solutions from £61 (CAN-232)
CANUSB and CAN-232 are small adapters that plug into any PC USB / RS232 Port respectively to give instant CAN connectivity. These can be treated by software as a standard Windows COM Port. Sending and receiving can be done in standard ASCII format. These are high performance products for much less than competitive solutions.

=== Bronze Prize Winner ===
NASA Tech Briefs 2004
Products of the Year
£125.00

ANT16
16 channel logic analyzer
- probe set extra
£195.00

DS1M12
2 channel 1MS/s PC scope, signal generator & data logger

USB Instruments - PC Oscilloscopes & Logic Analyzers
Our PC Instruments may be budget priced but have a wealth of features normally only found in more expensive instrumentation. Our oscilloscopes have sophisticated digital triggering including delayed timebase and come with application software and DLL interface to 3rd Party apps. Our ANT8 and ANT16 Logic Analyzers feature 8/16 capture channels of data at a blazing 500MS/s sample rate in a compact enclosure.

uPCI-400HS
4 Port uPCI RS232 Serial Card
Spider Cable or COMBOX IO (extra)
£65.00

Low Profile Version also available.

£10.00

UPCI Serial Cards from £15 (uPCI-100L)
Discover our great value for money range of multi-port uPCI serial cards. Supporting from one to eight ports, the range includes RS232, RS422, RS485 and opto-isolated versions. Our 4 port and 8 port models can connect through external cables or the innovative wall mounting COMBOX.

1 to 16 port USB to Serial Adapters from £12.50
With over 20 different models available, we probably stock the widest range of USB Serial Adapters available anywhere. We offer converter cables, multi-port enclosure style models in metal and plastic, also rack mount units with integral PSU such as the USB-16COM-RM. Serial interfaces supported include RS232, RS422 and RS485. We also supply opto-isolated RS422 and RS485 versions for reliable long distance communications. All our USB Serial products are based on the premium chips and drivers from FTDI Chip for superior compatibility, performance and technical support across Windows, MAC-OS, CE and Linux platforms.

NETCOM-813
£350.00

ES-W-3001-M
£125.00

8 Port Industrial Ethernet RS232 / RS422 / RS485 Serial Server with wall mount bracket and PSU.

Ethernet & Wi-Fi 802.11b/g RS232/422/485 Serial Servers
One to eight port industrial strength Ethernet and Wireless ethernet serial RS232/RS422/RS485 Servers. Connect to your serial device remotely over your Wireless network, Ethernet or via the Internet. Based on the 32-bit ARM CPU these systems offer powerful serial connectivity and a wealth of features. WLAN models comply with IEEE 802.11b/g, max. 54 Mb/s and also offer a 10/100Mbps secondary ethernet connection. All models come complete with PSU.

Prices start at only £85.00 (NetCOM 111).

EasySync Ltd
373 Scotland Street
Glasgow G5 8QB U.K.
Tel: +44 (141) 418-0181 Fax: +44 (141) 418-0110
Web: http://www.easysync.co.uk
E-Mail: sales@easysync.co.uk

* Prices shown exclude carriage and VAT where applicable
PROTEUS
ELECTRONIC DESIGN
FROM CONCEPT
TO COMPLETION

SCHEMATIC CAPTURE PROSPICE EMBEDDED SIMULATION PCB DESIGN

ISIS SCHEMATIC CAPTURE
A powerful capture package tailored for today's engineer and designed to allow rapid entry of complex schematics for simulation and PCB layout.

PROSPICE MIXED MODE SIMULATOR
A customized implementation of the industry standard Berkeley SPICE 3F5 engine with extensive optimisations and enhancements for true mixed mode simulation and circuit animation.

VSM VIRTUAL SYSTEM MODELLING
The world's first and best schematic based microcontroller co-simulation software. Proteus VSM allows you to simulate the interaction between software running on a microcontroller and any analog or digital electronics connected to it. This streamlines the project lifecycle and obviates the need for expensive hardware analysis tools.

ARES PCB DESIGN
A modern and professional layout package which seamlessly integrates with the ISIS capture software. Features such as autoplacement and autorouting, interactive DRC and an intuitive interface all serve to maximise productivity and reduce time to market.

CONTACT US NOW
to discuss requirements or request a FREE evaluation copy.

Labcenter Electronics Ltd., 53-55 Main Street, Grassington, North Yorks, BD23 5AA. Registered in England 4692454

Tel: 01756 753440
Fax: 01756 752857
Email: info@labcenter.co.uk

labcenter
Electronics
www.labcenter.co.uk