SUPER ACCURATE GPS-BASED FREQUENCY REFERENCE
Uses the GPS ‘atomic clocks’ to generate accurate 10MHz and 1MHz signals

VERSATILE 4-INPUT MIXER
With tone controls and a built-in headphone amp

OSCAR NOUGHTS & CROSSES MACHINE

Plus RECYCLE IT!
A highly sensitive vibration sensor for next to nothing
The materials and works contained within *EPE Online* — which are made available by Wimborne Publishing Ltd and TechBites Interactive Inc — are copyrighted. You are permitted to make a backup copy of the downloaded file and one (1) hard copy of such materials and works for your personal use. International copyright laws, however, prohibit any further copying or reproduction of such materials and works, or any republication of any kind.

TechBites Interactive Inc and Wimborne Publishing Ltd have used their best efforts in preparing these materials and works. However, TechBites Interactive Inc and Wimborne Publishing Ltd make no warranties of any kind, expressed or implied, with regard to the documentation or data contained herein, and specifically disclaim, without limitation, any implied warranties of merchantability and fitness for a particular purpose.

Because of possible variances in the quality and condition of materials and workmanship used by readers, *EPE Online*, its publishers and agents disclaim any responsibility for the safe and proper functioning of reader-constructed projects based on or from information published in these materials and works. In no event shall TechBites Interactive Inc or Wimborne Publishing Ltd be responsible or liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or any other damages in connection with or arising out of furnishing, performance, or use of these materials and works.
Low Cost PCB Manufacturing Service

- Prototypes manufactured from student's own designs
- Professional quality for a discount price
- The PCB-POOL® concept has made professional quality PCB prototypes available to students & hobbyists worldwide

Simply send us your files & receive your prototypes in a few days!!!

Download our FREE PCB Layout Software!

- Schematic Capture
- PCB Layout
- Auto Router & Auto Placer
- Complete Component Library
- Professional Version

www.free-pcb-software.com

WATCH UR PCB®

View your PCB as it gets manufactured!

We send HD images at each production stage so you can track its progress!!

- Drilling
- Exposure
- Tin Stripping
- UV curing
- Hot air levelling (HAL)

www.pcb-pool.com

Email: sales@pcb-pool.com Free Phone UK: 0800 389 8560
Simply send your files & order ONLINE WWW.PCB-POOL.COM
Projects and Circuits

GPS-BASED FREQUENCY REFERENCE by Jim Rowe
Super-accurate 10MHz and 1MHz signals for calibration purposes

OSCAR NOUGHTS & CROSSES MACHINE by Brian Healy
Modern reincarnation of a 1960s electronic game

VERSATILE 4-INPUT MIXER by Jim Rowe
Low cost, low noise for a wide range of signal sources

INGENUITY UNLIMITED Sharing your ideas with others
Wind-Water Speed Indicator; Alternators As Servos

BREADBOARDING PROJECTS by Dr Malcolm Plant
Part 7 – Ultrasonic Remote Control – Transmitter and Receiver

Series and Features

TECHNO TALK by Mark Nelson
Light In The Gloom

RECYCLE IT by Julian Edgar
A vibration sensor for a few pounds

INTERFACE by Robert Penfold
Using handshake outputs as power sources

CIRCUIT SURGERY by Ian Bell
Selecting op amps

PIC N’ MIX by Mike Hibbett
Video from a PIC

NET WORK by Alan Winstanley
When broadband goes off the rails

Regulars and Services

EDITORIAL

NEWS – Barry Fox highlights technology’s leading edge
Plus everyday news from the world of electronics

SUBSCRIBE TO EPE and save money

PIC PROJECTS CD-ROM
A plethora of handiPicked projects

PIC RESOURCES CD-ROM
EPE PIC Tutorial V2, plus PIC Toolkit Mk3 and a selection of PIC-related articles

BACK ISSUES Did you miss these?

CD-ROMS FOR ELECTRONICS
A wide range of CD-ROMs for hobbyists, students and engineers

READOUT Matt Pulzer addresses general points arising

DIRECT BOOK SERVICE
A wide range of technical books available by mail order, plus more CD-ROMs

EPE PCB SERVICE

ADVERTISERS INDEX

PIC & ATMEG Programmers
We have a wide range of low cost PIC and ATMEG Programmers. Complete range and documentation available from our web site.

Programmer Accessories:
40-pin Wide ZIF socket (ZIF40W) £14.95
18Vdc Power supply (PSU010) £18.95
Leads: Parallel (LCD136) £3.95 / Serial (LCD441) £3.95 / USB (LCD644) £2.95

NEW! USB & Serial Port Programmer
USB/Serial connection. Header cable for ICSP. Free Windows XP software. See website for PICs supported. ZIF Socket and USB lead extra. 18Vdc.
Kit Order Code: 3149ZT - £49.95
Assembled Order Code: AS3149 - £59.95

NEW! USB ‘All-Flash’ PIC Programmer
USB PIC programmer for all Flash® devices. No external power supply making it truly portable. Supplied with box and Windows XP Software. ZIF Socket and USB lead not incl. Available as:
Kit Order Code: AS3128 - £49.95
Assembled with ZIF socket Order Code: AS3128ZIF - £64.95

‘PICALL’ ISP PIC Programmer
Available as:
Kit Order Code: AS3117 - £29.95
Assembled with ZIF socket Order Code: AS3117ZIF - £44.95

ATMEG 89xxx Programmer
Uses serial port and any standard terminal comm program. 4 LED’s display the status. ZIF sockets not included. Supplied: 18Vdc.
Kit Order Code: 3123KT - £27.95
Assembled Order Code: AS3123 - £37.95

Introduction to PIC Programming
Go from complete beginner to burning a PIC and writing code in no time! Includes 49 page step-by-step PDF Tutorial Manual, Programming Hardware (with LED test section), Win 3.1—X Program Programming Software (Program, Read, Verify & Erase), and a re-writable PIC16F84A that you can use with different code (4 detailed examples provided for you to learn from). PC parallel port.
Kit Order Code: 3085KT - £16.95
Assembled Order Code: AS3085 - £24.95

PIC Programmer Board

PIC Programmer & Experiment Board
The PIC Programmer & Experiment Board with test buttons and LED indicators to carry out educational experiments, such as the supplied programming examples. Includes a 16F627 Flash Microcontroller that can be reprogrammed up to 1000 times for experimenting at will. Software to compile and program your source code is included.
Kit Order Code: K8048KT - £39.95
Assembled Order Code: VM111 - £59.95

Controllers & Loggers
Here are just a few of the controller and data acquisition and control units we have. See website for full details. 12vdc PSU for all units: Order Code PSU44S £7.95

USB Experiment Interface Board
5 digital input channels and 8 digital output channels plus two analogue inputs and two analogue outputs with 8 bit resolution.
Kit Order Code: K8055KT - £38.95
Assembled Order Code: VM110 - £64.95

Rolling Code 4-Channel UHF Remote
State-of-the-Art. High security. 4 channels. Momentary or latching relay output. Range up to 40m. Up to 15 Tx’s can be learnt by one Rx (kit includes one Tx but more available separately). 4 indicator LED’s. Rx: PCB 77x85mm. 12Vdc8mA.
Kit Order Code: 3180KT - £49.95
Assembled Order Code: AS3180 - £59.95

Computer Temperature Data Logger
Serial port 4-channel temperature logger. °C or °F. Continuously logs up to 4 separate sensors located 200m+ from board. Wide range or tree software applications for storing/using data. PCB just 45x45mm. Powered by PC. Includes one DS1820 sensor.
Kit Order Code: 3149KT - £19.95
Assembled Order Code: AS3149 - £26.95
Additional DS1820 Sensors - £3.95 each

4-Ch DTMF Telephone Relay Switcher
Call your phone number using a DTMF telephone from anywhere in the world and remotely turn off/on any of the 4 relays as desired. User settable Security Password, Anti-Tamper, Rings to Answer, Auto Hang-up and Lockout. Includes plastic case. 130 x 110 x 30mm. Power: 12vdc.
Kit Order Code: 3140KT - £74.95
Assembled Order Code: AS3140 - £89.95

8-Ch Serial Port Isolated I/O Relay Module
Computer controlled 8 channel relay board. 5A mains rated relay outputs and 4 opto-isolated digital inputs (for monitoring switch states, etc). Useful in a variety of control and sensor applications. Programmed via serial port (use our new Windows interface, terminal emulator or batch files). Serial cable can be up to 35m long. Includes plastic case 130x100x30mm. Power: 12vdc/500mA.
Kit Order Code: 3108KT - £64.95
Assembled Order Code: AS3108 - £79.95

Infrared RC 12-Channel Relay Board
Control 12 onboard relays with included infrared remote control unit. Toggle or momentary. 15mm+ range. 112 x 122mm.
Supply: 12vdc/0.5A
Kit Order Code: 3142KT - £59.95
Assembled Order Code: AS3142 - £69.95

Audio DTMF Decoder and Display
Detect DTMF tones from tape recorders, receivers, two-way radios, etc using the built-in mic or directly from the phone line. Characters are displayed on a 16 character display as they are received and up to 32 numbers can be displayed by scrolling the display. All data written to the LCD is also sent to a serial output for connection to a computer. Supply: 9-12V DC (Order Code PSU445). Main PCB: 55x85mm.
Kit Order Code: 3153KT - £34.95
Assembled Order Code: AS3153 - £44.95

Telephone Call Logger
Stores over 2,500 digit DTMF numbers with time and date. Records all buttons pressed during a call. No need for any connection to computer during operation but logged data can be downloaded into a PC via a serial port and saved to disk. Includes a plastic case 130x100x30mm. Supply: 9-12V DC (Order Code PSU445).
Kit Order Code: 3164KT - £54.95
Assembled Order Code: AS3164 - £69.95

Most items are available in kit form (KT suffix) or pre-assembled and ready for use (AS prefix).
Hot New Products!
Here are a few of the most recent products added to our range. See website or join our email Newsletter for all the latest news.

40 Second Message Recorder
Feature packed non-volatile 40 second multi-message sound record module using a high quality Winbond sound recorder IC. Standalone operation using just six onboard buttons or use onboard SPI interface. Record using built-in microphone or external line in. 8-24 Vdc operation. Just change one resistor for different recording duration/sound quality. Sampling frequency 4-12 kHz.
Kit Order Code: 3189KT - £28.95
Assembled Order Code: AS3188 - £36.95
120 second version also available

Bipolar Stepper Motor Chopper Driver
New bipolar chopper driver gives better performance from your stepper motors. It uses a full dual bridge motor driver based on SGS Thomson TSC1320 & L298. Motor current for each phase is set using an on-board potentiometer. Can handle motor winding currents of up to 2 Amps per phase. Operates from a DC supply voltage of 9-36V. All basic motor controls provided including full or half stepping of bipolar steppers and direction control. Synchroniseable when using multiple drivers. Perfect for desktop CNC applications.
Kit Order Code: 3187KT - £39.95
Assembled Order Code: AS3187 - £49.95

Shaking Dice
This electronic construction kit is great fun to build and play with. Simply shake and watch it slowly roll to stop on a random number. Great fun project.
Kit Order Code: MK150KT - £12.95

Running MicroBug
This electronic construction kit is an attractive bright coloured bug shaped miniature robot. The MicroBug is always hungry for light and travels toward it! Great fun robot project.
Kit Order Code: MK127KT - £12.95

Video Signal Cleaner
Digitally cleans the video signal and removes unwanted distortion in video signal. In addition it stabilises picture quality and luminance fluctuations. You will also benefit from improved picture quality on LCD monitors or projectors.
Kit Order Code: KB036KT - £32.95
Assembled Order Code: VM106 - £49.95

Motor Speed Controllers
Here are just a few of our controller and driver modules for AC, DC, Unipolar/Bipolar stepper motors and servo motors. See website for full details.

DC Motor Speed Controller (100V/7.5A)
Control the speed of almost any common DC motor rated up to 100V/7.5A. Pulse width modulation output for maximum motor torque at all speeds. Supply: 5-15Vdc. Box supplied.
Dimensions (mm): 60Wx100Lx60H.
Kit Order Code: 3067KT - £17.95
Assembled Order Code: AS3067 - £24.95

Computer Controlled / Standalone Unipolar Stepper Motor Driver
Drives any 5-35Vdc 5, 6 or 8-lead unipolar stepper motor rated up to 6 Amps. Provides speed and direction control. Operates in stand-alone or PC-controlled mode for CNC use. Connect up to six 3179 driver boards to a single parallel port. Board supply: 9Vdc. PCB: 80x50mm.
Kit Order Code: 3179KT - £15.95
Assembled Order Code: AS3179 - £22.95

Computer Controlled Bi-Polar Stepper Motor Driver
Drive any 5-50Vdc, 5 Amp bi-polar stepper motor using externally supplied 5V levels for STEP and DIRECTION control. Opto-isolated inputs make it ideal for CNC applications using a PC running suitable software. Board supply: 8-30Vdc. PCB: 75x85mm.
Kit Order Code: 3185KT - £23.95
Assembled Order Code: AS3185 - £33.95

Bidirectional DC Motor Speed Controller
Control the speed of most common DC motors (rated up to 32Vdc/10A) in both the forward and reverse direction. The range of control is from fully OFF to fully ON in both directions. The direction and speed are controlled using a single potentiometer. Screw terminal block for connections.
Kit Order Code: 3166v2KT - £22.95
Assembled Order Code: AS3166v2 - £32.95

AC Motor Speed Controller (700W)
Reliable and simple to install project that allows you to adjust the speed of an electric drill or 230V AC single phase induction motor rated up to 700 Watts. Simply turn the potentiometer to adjust the motors RPM. PCB: 48x65mm. Not suitable for use with brushless AC motors.
Kit Order Code: 1074KT - £14.95
Assembled Order Code: AS1074 - £20.95

See www.quasarelectronics.com for lots more motor controllers

500-in-1 Electronic Project Lab
Top of the range. Complete self-contained electronics course. Takes you from beginner to ‘A’ Level standard and beyond! Contains all the hardware and manuals to assemble 500 projects. You get 3 computer connection cables, 560 preamplified breadboards (total 368 pages) - Hardware Entry Course, Hardware Advanced Course and a microprocessor based Software Programming Course. Each book has individual circuit explanations, schematic and connection diagrams. Suitable for age 12+
Order Code EPL500 - £199.95
Also available: 30-in-1 £19.95, 50-in-1 £29.95, 75-in-1 £39.95 £130-in-1 £49.95 & 300-in-1 £84.95 (see website for details)

Tools & Test Equipment
We stock an extensive range of soldering tools, test equipment, power supplies, inverters & much more - please visit website to see our full range of products.

Two-Channel USB PC Oscilloscope
This digital storage oscilloscope uses the power of your PC to visualize electrical signals. Its high sensitive display resolution, down to 0.15mV, combined with a high bandwidth and a sampling frequency of up to 1GHz are giving this unit all the power you need.
Order Code: PCSU1000 - £399.95

Personal Scope 10MS/s
The Personal Scope is not a graphical multimeter but a complete portable oscilloscope at the size and the cost of a good multimeter. Its high sensitivity - down to 0.1mV/div - and extended scope functions make this unit ideal for hobby, service, automotive and development purposes. Because of its exceptional value for money, the Personal Scope is well suited for educational use.
Order Code: HPS10 - £189.95
£169.95

See website for more super deals!

www.quasarelectronics.com
Secure Online Ordering Facilities ● Full Product Listing, Descriptions & Photos ● Kit Documentation & Software Downloads
EVERYDAY PRACTICAL ELECTRONICS

FEATURED KITS

As published in EPE Magazine June 2008

MINI THEREMIN SYNTHESISER MKII KIT

KC-5426 £42.50 plus postage & packing

By moving your hand between the metal antennas, create unusual sound effects! The Theremin MkII improves on its predecessor by allowing adjustments to be made to the tonal quality and features better waveform. With a multitude of controls this instrument’s musical potential is only limited by the skill of its player.

- Kit includes stand, PCB with overlay, machined case with silkscreen printed lid and all electronic components.
- As published in EPE Magazine May/June 2008

LED WATER LEVEL INDICATOR MKII KIT

KC-5449 £10.25 plus postage & packing

This simple circuit illuminates a string of LEDs to quickly indicate the water level in a rainwater tank. The more LEDs that illuminate, the higher the water level is inside the tank. The input signal is provided by ten sensors located in the water tank and connected to the indicator unit via-tight duty figure-8 cable.

- Kit supplied with PCB with overlay, machined case with screened printed lid and all electronic components.
- As published in EPE Magazine March 2009

VOICE KIT

GALACTIC VOICE KIT

KC-5431 £13.25 plus postage & packing

Effect and depth controls allow you to vary the voice to simulate everything from C-3PO to the hysterical ranting of Daleks. Sound emulator kit includes a reed magnet switch, IR beam or PIR detector to trigger the unit.

- Kit includes PCB with overlay, case & all electronic components with clear English instructions.
- Requires 9-12VDC power.
- As published in EPE Magazine June 2006

LUXEON STAR LED KIT

KC-5389 £9.75 plus postage & packing

Luxeon high power LEDs are some of the brightest LEDs available in the world. They offer up to 120 lumens per unit, and last up to 100,000 hours! This kit allows you to power the fantastic 1W, 3W and 5W Luxeon Star LEDs from 12VDC. This means that you can create unusual sound effects in your car, boat, or caravan.

- Kit supplied with PCB, and all electronic components.
- As published in EPE Magazine April 2007

SMALL SERIAL MONITOR KIT

VOLTAGE MONITOR KIT

KC-5424 £6.00 plus postage & packing

This versatile kit will allow you to monitor the battery voltage, the airflow meter or oxygen sensor in your car. The kit features a 10 LED bar graph that lights the LEDs in response to the measured voltage, preset 9-15V, 0-5V or 0-1V ranges complete with a fast response time, high input impedance & auto dimming for night time driving.

- Kit includes PCB with overlay, LED bar graph & all electronic components.
- Requires 12VDC power.
- Recommended battery: LRBs HB-6015
- As published in EPE Magazine June 2006

AC/DC CURRENT CLAMP METER KIT FOR DMM’S

KC-5368 £8.75 plus postage & packing

It uses a simple hall effect sensor & iron ring core set up, & connects to your digital multimeter. It will measure AC & DC current & has a calibration dial to allow for any magnetising of the core. Much cheaper than pre-built units.

- Kit supplied with PCB, clamp, case with silk screened front panel & all electronic components.
- As published in EPE Magazine June 2006

RADAR SPEED GUN MKII KIT

KC-5441 £29.00 plus postage & packing

If you’re into any kind of racing like cars, karts, boats or even the horses, this kit is for you. The electronics are mounted in the supplied jiffy box and the radar gun assembly can be made simply with two coffee tins fitted end to end. The circuit needs 12VDC at only 130mA so you can use a small SLA or rechargeable battery pack.

- Kit includes PCB and all specified electronic components.

PIR DETECTOR KIT

KC-5392 £5.95 plus postage & packing

Many modern cars feature a time delay on the interior light. It still allows you time to buckle up and get organised before the light dims and finally goes out. This kit provides that feature for cars which don’t already provide it. It has a soft fade out after a set time has elapsed, and features much simpler universal wiring than previous models we have had.

- Kit supplied with PCB, and all electronic components.
- Suitable for circuits switching ground or +12V or 24VDC (car & truck with negative chassis.)
- As published in EPE Magazine February 2007

SECURITY LIGHT DELAY KIT

KC-5391 £5.95 plus postage & packing

Many modern cars feature a time delay on the interior light. It still allows you time to buckle up and get organised before the light dims and finally goes out. This kit provides that feature for cars which don’t already provide it. It has a soft fade out after a set time has elapsed, and features much simpler universal wiring than previous models we have had.

- Kit supplied with PCB, and all electronic components.
- As published in EPE Magazine December 2008

FREE CATALOGUE TODAY!

- **FREE ON-LINE ORDERING**
- **ALL PRICES IN POUNDS STERLING**
- **MINIMUM ORDER ONLY £10**
CAR KITS FOR ELECTRONIC ENTHUSIASTS

HAND CONTROLLER KIT
KC-5386 £25.95 + post & packing
This LCD hand controller is required during the initial setting-up procedure. It plugs into the main unit and can be used while the engine is either running or stopped. Using this Hand Controller, you can set all the initial parameters and also program the ignition advance/retard curve.
- Kit supplied with silk screened and machined case, PCB, LCD, and all electronic components.

DIGITAL FUEL ADJUSTER KIT
KC-5385 £25.95 + post & packing
This unit gives you complete control of the air/fuel ratio at 128 points across the entire engine load range and provides incredible mapping resolution and brilliant drivability. It uses the handheld Digital Controller – KC-5386 (available separately) so there is no need for a laptop. Supports both static and real-time mapping.
- Kit supplied with a quality solder masked PCB with overlay, machined case with processed panels, programmed micro and all electronic components.

ECONOMY ADJUSTABLE TEMPERATURE SWITCH KIT
KC-5381 £9.75 + postage & packing
It has an adjustable switching temperature (up to 245°C) and can be configured to trigger on rising or falling temperature. Useful for running cooling fans or over temp warning lights or alarms, etc.
- Kit supplied with PCB, NTC Thermistor, and all electronic components.

UNIVERSAL VOLTAGE SWITCH KIT
KC-5377 £9.95 + postage & packing
This is a universal module which can be adapted to suit a range of different applications. It will trip a relay when a preset voltage is reached. It can be configured to trip with a rising or falling voltage, so it is suitable for a wide variety of voltage outputting devices e.g., throttle position sensor, air flow sensor, EGO sensor. It also features adjustable hysteresis (the difference between trigger on/off voltage), making it extremely versatile. You could use it to trigger an extra fuel pump under high boost, anti-lag wastegate shut-off, and much more.
- Kit supplied with PCB, & all electronic components.

CAR BATTERY MONITOR KIT
KA-1683 £5.50 + postage & packing
Don’t get caught with a flat battery! This simple electronic voltmeter lets you monitor the condition of your car’s battery so you can act before getting stranded. 10 rectangular LEDs let you know your battery’s condition.
- Kit includes PCB board and all components.

FUEL MIXTURE DISPLAY KIT
KC-5290 £19.99 + postage & packing
Unlike its’ bulky predecessor from August 1991, this PIC based tachometer is housed neatly in a small JJA box (34 x 54 x 31mm), which mounts nicely on your dashboard. It’s amazing features include 4-digit LED display showing up to 9,900rpm in 100rpm increments, 10 LED bargraph with optional dot or bar mode (showing 8-independent rpm thresholds), calibration options for 1-12 cylinder 4-stroke or 1-6 cylinder 2-stroke engines, anti-display flickering feature and automatic night-time display dimming, to perform engine limiting.
- Kit includes case with silk-screened panel, PCBs, pre-programmed PIC micro, 7-segment displays, red acrylic, hook-up wire and all electronic components.

IMPROVED TACHOMETER KIT FOR CARS

FREQUENCY SWITCH KIT
KC-5378 £11.75 + postage & packing
This is a great module which can be adapted to suit a range of different applications. It uses a standard tacho, road speed, or many other pulse outputs to switch a relay. The switch frequency can be set to trip when it is rising or falling, and it features adjustable hysteresis (the difference between trigger on/off frequency). You could configure it to trigger water spray cooling on deceleration, shift light activation, adjustable aerodynamics frequency). You could configure it to trigger water spray cooling on deceleration, shift light activation, adjustable aerodynamics
- Kit supplied with PCB, and all electronic components.

ELECTRONIC PROJECTS FOR CARS VOL. II

FREE CATALOGUE
Checkout Jaycar’s extensive range
We have kits & electronic projects for use in:
- Audio & Video
- Car & Automotive
- Computer
- Lighting
- Power
- Test & Meters
- Learning & Educational
- General Electronics Projects
- Gifts, Gadgets & Just for fun!
For your FREE catalogue log on to: www.jaycarelectronics.co.uk or check out the range at: www.jaycarelectronics.co.uk

Prices valid until 30/4/09

HOW TO ORDER
- ORDER ON-LINE: www.jaycarelectronics.co.uk
- PHONE: 0800 032 7241*
- FAX: +61 2 8832 3118*
- EMAIL: techstore@jaycarelectronics.co.uk
- POST: P.O. Box 107, Rydalmere NSW 2116 Australia
- ALL PRICING IN POUNDS STERLING
- MINIMUM ORDER ONLY £10

*Australian Eastern Standard Time (Monday - Friday 09.00 to 17.30 GMT + 10 hours only) Expect 10-14 days for air parcel delivery

POST & PACKING CHARGES
Order Value Cost
£10 - £49.99 £5
£50 - £99.99 £10
£100 - £199.99 £20
£200 - £499.99 £30
£500+ £40

Max weight 123lb (5kg).
Heavy parcels POA.
Minimum order £10.

Note: Products are despatched from Australia, so local customs duties & taxes may apply.

How we deliver:
- Order before 2pm Monday-Friday
- Standard delivery 3-5 working days
- Express delivery 1-2 working days
- Collection from store
- Printed packing slides included

How we pay:
- Credit card, debit card, PayPal, bank transfer

How we ship:
- Standard delivery £3.95
- Express delivery £6.95
- International shipping may apply

**
Free Catalogue
Order online at www.jaycarelectronics.co.uk or call 0800 032 7241 for your free catalogue
**

0800 032 7241 jaycarelectronics.co.uk
<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>74HC138</td>
<td>£0.26</td>
</tr>
<tr>
<td>74HC74</td>
<td>£0.15</td>
</tr>
<tr>
<td>74HC20</td>
<td>£0.28</td>
</tr>
<tr>
<td>40174B</td>
<td>£0.46</td>
</tr>
<tr>
<td>4515B</td>
<td>£0.99</td>
</tr>
<tr>
<td>4099B</td>
<td>£0.35</td>
</tr>
<tr>
<td>4073B</td>
<td>£0.17</td>
</tr>
<tr>
<td>4068B</td>
<td>£0.19</td>
</tr>
<tr>
<td>4066B</td>
<td>£0.17</td>
</tr>
<tr>
<td>4063B</td>
<td>£0.41</td>
</tr>
<tr>
<td>4048B</td>
<td>£0.34</td>
</tr>
<tr>
<td>4021B</td>
<td>£0.22</td>
</tr>
<tr>
<td>4006B</td>
<td>£0.65</td>
</tr>
<tr>
<td>74LS192</td>
<td>£0.60</td>
</tr>
<tr>
<td>74LS191</td>
<td>£0.27</td>
</tr>
<tr>
<td>74LS114</td>
<td>£0.36</td>
</tr>
<tr>
<td>74LS51</td>
<td>£0.24</td>
</tr>
<tr>
<td>74LS32</td>
<td>£0.23</td>
</tr>
<tr>
<td>74LS20</td>
<td>£0.27</td>
</tr>
<tr>
<td>74HC4511</td>
<td>£0.64</td>
</tr>
<tr>
<td>74HC4053</td>
<td>£0.22</td>
</tr>
<tr>
<td>74HC688</td>
<td>£0.46</td>
</tr>
<tr>
<td>74HC374</td>
<td>£0.34</td>
</tr>
<tr>
<td>74HC259</td>
<td>£0.29</td>
</tr>
<tr>
<td>74HC157</td>
<td>£0.22</td>
</tr>
<tr>
<td>MAX635ACP</td>
<td>£4.99</td>
</tr>
<tr>
<td>MAX232CPE</td>
<td>£1.30</td>
</tr>
<tr>
<td>M34-1</td>
<td>£0.30</td>
</tr>
<tr>
<td>LF351N</td>
<td>£0.44</td>
</tr>
<tr>
<td>ICL7611DCP</td>
<td>£1.00</td>
</tr>
<tr>
<td>ADM485JN</td>
<td>£2.97</td>
</tr>
<tr>
<td>AD829JN</td>
<td>£6.41</td>
</tr>
<tr>
<td>AD797AN</td>
<td>£7.25</td>
</tr>
<tr>
<td>AD648JN</td>
<td>£2.57</td>
</tr>
<tr>
<td>AD620AN</td>
<td>£9.88</td>
</tr>
<tr>
<td>74LS373</td>
<td>£0.39</td>
</tr>
<tr>
<td>TL431CP</td>
<td>£0.14</td>
</tr>
<tr>
<td>L296</td>
<td>£4.42</td>
</tr>
<tr>
<td>79L24</td>
<td>£0.30</td>
</tr>
<tr>
<td>79L12</td>
<td>£0.26</td>
</tr>
<tr>
<td>27128-200</td>
<td>£3.99</td>
</tr>
<tr>
<td>EPROM's</td>
<td></td>
</tr>
<tr>
<td>74LS74N-200</td>
<td>£0.41</td>
</tr>
<tr>
<td>TS272CN</td>
<td>£0.57</td>
</tr>
<tr>
<td>TL061CP</td>
<td>£0.21</td>
</tr>
<tr>
<td>TDA2050V</td>
<td>£2.51</td>
</tr>
<tr>
<td>TDA2003V</td>
<td>£1.25</td>
</tr>
<tr>
<td>TDA2004</td>
<td>£2.24</td>
</tr>
<tr>
<td>TDA1170S</td>
<td>£4.80</td>
</tr>
<tr>
<td>OP400GP</td>
<td>£11.81</td>
</tr>
<tr>
<td>16F84-04P</td>
<td>£3.14</td>
</tr>
<tr>
<td>ICL7109CPL</td>
<td>£7.75</td>
</tr>
<tr>
<td>35A 600V</td>
<td>£1.90</td>
</tr>
<tr>
<td>25A 100V</td>
<td>£1.47</td>
</tr>
<tr>
<td>3A 400V</td>
<td>£0.40</td>
</tr>
<tr>
<td>1.5A 600V</td>
<td>£0.24</td>
</tr>
<tr>
<td>1.5A 400V</td>
<td>£0.20</td>
</tr>
<tr>
<td>1A 800V</td>
<td>£0.43</td>
</tr>
<tr>
<td>BAV21</td>
<td>£0.07</td>
</tr>
<tr>
<td>BA157</td>
<td>£0.07</td>
</tr>
<tr>
<td>1N5404</td>
<td>£0.09</td>
</tr>
<tr>
<td>Mixed LEDs</td>
<td>£5.95</td>
</tr>
<tr>
<td>Mixed Packs</td>
<td></td>
</tr>
<tr>
<td>Diodes</td>
<td></td>
</tr>
<tr>
<td>Thyristors</td>
<td></td>
</tr>
<tr>
<td>Transistors</td>
<td></td>
</tr>
<tr>
<td>Disc</td>
<td></td>
</tr>
<tr>
<td>Transistors</td>
<td></td>
</tr>
<tr>
<td>ZTX851</td>
<td>£0.50</td>
</tr>
<tr>
<td>ZTX790A</td>
<td>£0.41</td>
</tr>
<tr>
<td>ZTX751</td>
<td>£0.34</td>
</tr>
<tr>
<td>ZVP2106A</td>
<td>£0.42</td>
</tr>
<tr>
<td>TIP122</td>
<td>£0.37</td>
</tr>
<tr>
<td>STW80NE-10</td>
<td>£3.80</td>
</tr>
<tr>
<td>MJ2955</td>
<td>£0.90</td>
</tr>
<tr>
<td>IRF830</td>
<td>£0.68</td>
</tr>
<tr>
<td>ESR Electronic Components Ltd.</td>
<td></td>
</tr>
<tr>
<td>PLEASE ADD CARRIAGE & VAT TO ALL ORDERS</td>
<td></td>
</tr>
</tbody>
</table>
Retro electronics

Reading Brian Healy’s fascinating account of how he first developed his Oscar Noughts & Crosses game in the late 60s reminded me that few things date as quickly as old electronic equipment. Electronic engineers, from new-to-the-hobby amateurs to seasoned professionals are generally forward-looking people who relish the prospect of better, cheaper, neater solutions to problems, and that is of course a good thing. It’s driven the digital revolution in very powerful super computers and despite ongoing predictions of reaching ‘physical limits’ to development, physicists and engineers in R&D teams have been endlessly creative in squeezing more out of less and less semiconductor real estate.

Every now and again though, it’s worth pausing and revisiting old technology to see if in the rush to discard it, a viable or just plain interesting solution has been overlooked. I was reminded of this twice in the last week. First, in my random wandering on eBay I came across Nixie tubes – those now obsolete display devices that were primarily used to indicate numbers — they look like vacuum tubes, give out a warm glow and are now used to make attractive retro electronic clocks. Is there anyone out there who would like to write a short piece for us on how to use these devices?

My other trip down electronic memory lane occurred when I met up with an old friend from Sussex University. He’s a highly skilled technician with a particular interest in hi-fi. His latest project is a vacuum-tube-based DAC to play digital music – a wonderful combination of the oldest and newest technologies. He’s no crank! At the university he specialises in developing low noise circuitry to accurately measure minute signals, so I’m sure the results will be well worth listening to – if not exactly iPod sized.

SUBSCRIPTIONS

Subscriptions for delivery direct to any address in the UK: 6 months £19.95, 12 months £37.50, two years £70.50; Overseas: 6 months £23.00 standard air service or £32.00 express airmail, 12 months £40.00 standard air service or £62.00 express airmail, 24 months £83.00 standard air service or £119.00 express airmail.

Online subscriptions, for downloading the magazine via the Internet, £18.99/US (approx £13) for one year available from epe@epe.magu.com.

Cheques or bank drafts (in £ sterling only) payable to Everyday Practical Electronics and sent to EPE Subs Dept, Wimborne Publishing Ltd, Sequoia House, 398a Ringwood Road, Ferndown, Dorset BH22 9AU. Tel: 01202 873872. Fax: 01202 874562. Email: subs@epemag.wimborne.co.uk. Also via the Web at: www.epemag.com. Subscriptions start with the next available issue. We accept MasterCard, Maestro or Visa. (For past issues see above address. These are finished in blue PVC, printed with the magazine logo in gold on the spine. Price £7.95 plus £3.50 p&p for overseas readers postage is £6.00 to everywhere except Australia and Papua New Guinea which cost £10.50. Normally sent within seven days, but please allow 28 days for delivery — more for overseas.

Payment in £ sterling only. Please, Visa, Maestro and MasterCard accepted. Send, fax or phone your card number, card expiry date, valid from date and card security code (the last 3 digits on or just under the signature strip), with your name, address etc. Or order on our secure server via our UK website. Overseas customers — your credit card will be charged by the card provider in your local currency at the existing exchange rate.

TRANSMITTERS/BUGS/TELEPHONE

We advise readers that certain items of radio transmitting and telephone equipment which may be advertised in our pages cannot be legally used in the UK. Readers should check the law before buying any transmitting or telephone equipment, as a fine, confiscation of equipment and/or imprisonment can result from illegal use or ownership. The laws vary from country to country; readers should check local laws.
A roundup of the latest EverydayNews from the world ofelectronics

Broadband by satellite
The UK government wants everyone to have two-meg broadband by 2012. Barry Fox reports that a new two-way broadband-by-satellite service should help achieve this.

At least 100,000 and probably up to 800,000 homes in the UK are in 1300 ‘notspots’. These are areas where there is no hope of getting broadband by DSL, phone line or cable because homes are too far from a telephone exchange (5km or more) or are using old and poor quality phone lines.

“We are only selling to people who can only get dial-up” says Mike Locke of Eurosat. “We know where they are. There is no need to spend a lot of money on TV adverts. We can target the notspots”.

The service – called Astra2Connect – comes from the 23.5 East slot vacated by Germany’s Kopernikus satellite, using Astra 1E and 3A craft. A2C is already used by around 50,000 homes in 11 European countries. Data packages range from 256kbps to 2Mbps, with monthly rental from £20 to £75 after purchase of the 79cm dish and receiver modem kit for £300. The dish has a dual feed, enabling it to get data from 23.5 East and receive conventional TV from 19.2 East (for mainland Europe) and 28.2 East (for the UK).

Eurosat charges around £100 for installation, but DIY fitting is possible thanks to a ‘point and play’ device that connects between the dish and receiver/modem and makes guide sounds in an earpiece as the correct satellite is found and accurately sighted. Uplink transmission power is 500mW, and Astra has negotiated a class licence, which means the user does not have to apply for official permission to transmit.

No software is installed on the PC. The receiver/modem connects to the PC by Ethernet cable and is accessed by a web browser in the same way as a DSL modem. This avoids the problems Astra encountered five years ago with a one-way service that used a dial-up phone line as the return link to control satellite downloading, and required complex control software on the PC.

A2C has no data caps, but fair use policies throttle the few users who are downloading large files such as movies at peak hours in the evenings or over weekends. Astra plans a Voice Over IP service ‘later this year’ to bring speech calls to parts of Europe which cannot get a phone line and where there is no cellphone service. Although the current service will support Skype, A2C VOIP will use a dedicated channel for speech.

Latency delays can never be less than 240ms, the round trip between ground and satellite, plus delays in the communications hubs, so the service is not recommended for online gaming, which needs a more rapid response.

Pico’s 12GHz SAMPLING SCOPE

Pico Technology has unveiled the PicoScope 9000 Series dual-channel PC Sampling Oscilloscopes. With a bandwidth of 12GHz, they redefine the performance of sampling oscilloscopes at this price level.

The dual-channel PicoScope 9201 uses sequential equivalent-time sampling to achieve a sampling rate of 3TS/s. The wide bandwidth allows acquisition and measurement of fast signals with a transient response of 50ps or faster. Timebase stability, accuracy, and a sampling interval of 200fs allow timing characterization of jitter in the most demanding applications. The ability to trigger on high frequencies up to 10GHz allows measurements on microwave components with extremely fast data rates.

With excellent measurement repeatability, exceptional vertical resolution (16 bits) and fast display update rate, the PicoScope 9201 is a powerful measurement tool for semiconductor testing and high-speed digital data communications.

Data acquisition and measurement analysis are performed in parallel, enabling the instrument to achieve outstanding measurement throughput. The instruments provide fast acquisition speed up to 100kS/s and waveform performance analysis with automated direct or statistical measurements on both single-valued signals (sinewave, pulse, impulse) and multi-valued signals (NRZ, RZ). Markers and histograms, maths and FFT analysis, colour-graded display, parametric limit testing, eye diagrams and mask template testing can be used independently or in concert.

For more information, browse www.picotech.com.
Microchip Expands Support

Microchip has announced expanded support for Motor Control applications based on the dsPIC Digital Signal Controller (DSC). The dsPICDEM MCLV Development Board (part #DM330021) is a new low-voltage brushless DC (BLDC) motor-control development platform supporting the dsPIC33F family of motor control DSCs. It provides a cost-effective method for evaluating and developing sensor or sensorless BLDCs and permanent magnet synchronous Motor (PMSM) control applications.

The board contains a three-phase inverter bridge circuit, which can drive a BLDC or PMSM motor using different control techniques, without requiring any additional hardware. The dsPICDEM MCLV board is capable of controlling motors rated up to 48V and 15A, and supports multiple communication channels, such as USB, CAN, LIN and RS-232. It employs a processor-differentiated Plug-In Module (PIM) strategy to support a variety of dsPIC33F motor-control DSCs with different memory and pin configurations. The dsPICDEM MCLV Development Board also includes a dsPIC33FJ32MC204 PIM (32kB Flash 44 pins).

Additionally, Microchip has announced two new motor-control software solutions; one shows how power factor correction (PFC) algorithms can be combined with sensorless motor-control algorithms on a single chip. Application Note AN1208 describes the process. The second software solution demonstrates how to run an AC induction motor (ACIM) faster than its rated speed for a class of applications, to lower cost, save space or reduce weight. The strategy is described in Application Note AN1206. Both solutions are available today, free of charge, from www.microchip.com/motor.

The dsPICDEM MCLV Development Board (part #DM330021) is available now. Source code for the motor control libraries is also available now and can be downloaded free from www.microchip.com/motor.

Research Will Create Robot Societies

The creation of a society of robots able to communicate with each other and perform both individual and group tasks is being carried out by researchers at the University of Wales, Newport. The aim of the research, being conducted by a team led by Dr Torbjorn Dahl, of the Robotic Intelligence Laboratory at Newport Business School, is to reproduce in robots the behaviour patterns of ants and people.

“We currently have eight e-puck, or mini-robots, and will soon have 25 or more, the biggest collection of mini-robots in the UK, which we will program to exist together as a self-regulating society,” explained Dr Dahl.

“By studying ant and human societies, we hope to implement this behaviour into robots so that they become a self-organising community that functions without top-down control.

“Our aim is to create a mini-society of robots with built-in behavioural patterns that enable them to not only do tasks set them but also realise what else needs to be done, as worker ants do. The robots are equipped with spatial awareness and use this to communicate and tell each other about various tasks. Each robot learns how to work in a way that improves the group by filling the roles of others as well as the role they are assigned to do.

“The results of this research could impact upon the organisation of towns, villages and cities, as well as improving automation in factories so that there is minimal human input required.”

For this collaborative research project, which is sponsored by the Engineering and Physical Sciences Research Council (EPSRC), Newport’s University is working closely with the University of the West of England (UWE), University of Hull and Imperial College London.

WIDER TVs

Philips says that “cinema will come home” with “no more black bars” after the commercial launch of the world’s first ultra-wide screen 21:9 TVs this Spring.

At a demonstration of preview sets in London, Philips showed widescreen cinema movie material on a 42-inch 16:9 LCD TV, and on a 56-inch Cinema 21:9 LCD set. The two sets had the same height screen and the 21:9 set clearly showed the advantage of completely filling the screen and the 21:9 set clearly showed the picture without black letterbox bars at the top and bottom.

Although Philips promises that conventional 16:9 broadcast programming, and even old 4:3 material, will look equally good thanks to intelligent auto-formatting, there was no demonstration of this crucial consideration. “This is a pre-production sample without the necessary picture processing circuitry,” said Consumer Marketing Director, Paul Hobden.

When some 16:9 material was accidentally fed to the 21:9 set during the demonstration, it displayed the on-screen message “video format not supported”. Hobden explained that in the final set 16:9 source material will be auto-expanded to fit the 21:9 screen by slightly stretching the outer edges, much as done when current 16:9 sets display 4:3 material. When 4:3 material is played through the new 21:9 sets, there will be some stretching, with black borders at the sides of the screen to complete the picture.

Some confusion arose during the London briefing over the slight mathematical difference between the exact cinema aspect ratio of 2.39:1 and the Cinema 21:9 name used by Philips. Philips confirms that technically the set is “absolutely aligned with the cinema format” and the numerical ratio has been rounded to 21:9 “for marketing reasons”. So no formatting and auto-expansion of the picture will be needed if the set is fed with true cinema format material.

However, slight formatting and auto-expansion may be needed with Blu-ray discs until the disc producers use the option in the BD standard to record true cinema format pictures.

Barry Fox
NOT TOO MANY decades ago, the only way most people could generate reasonably accurate frequency signals was by using a quartz crystal oscillator. Following this, it became possible to achieve slightly better accuracy by heterodyning a local quartz oscillator with an HF radio signal from one of the standard frequency and time stations, such as WWV in the USA or VNG in Australia.

By about 1980, even higher accuracy could be obtained by locking a local quartz crystal oscillator with the horizontal sync signals from one of the national TV networks. That’s because the networks used a master timing clock that was locked to either a caesium beam or rubidium vapour oscillator.

GPS system

The Global Positioning System (GPS) became operational around 1990 and is run by the US Department of Defense (US DOD). By using this system as a reference, it’s possible to generate reference frequencies with extremely high accuracy – even better than using the previously listed methods.

That’s because each of the 22-odd GPS satellites orbiting the Earth has two caesium beam atomic clocks on board. These are necessary to generate the very accurate frequency and time signals needed for accurate positioning. Since there are always at least four GPS satellites ‘in view’ at any time from any point on the Earth, this means that there’s always access to an ‘ensemble’ of about eight caesium beam clocks to serve as a frequency reference – provided you have the right GPS receiving equipment, that is.

The only problem was that until recently, GPS receivers were quite expensive. However, costs have fallen quite dramatically since then – so much so, that handheld and mobile GPS navigators are now everyday consumer items. In fact, low-end navigators with colour LCD screens are now down to around £140. Small wonder they’re becoming so popular!
As you might expect, inside each of these navigators is a complete GPS receiver module. However you don’t have to buy a navigator to get the receiver module, because they are also available separately for use in other equipment. And that’s just what we’ve done here – used one of these ‘bare bones’ receiver modules as the heart of this project.

Garmin GPS 15L

The GPS module we chose to use is a Garmin GPS 15L, which is available from local distributors for about £40. It’s quite a small device, measuring just 46 × 36 × 8.5mm and weighing in at only 14g. But don’t let the size fool you, because there’s a lot packed into it.

Inside, there’s a complete 12-channel GPS receiver, which can track and use up to 12 GPS satellites at once. And it can provide a swag of GPS-derived time, date, position and satellite status information in serial RS-232C text form – updated each second.

It also provides a one-pulse-per-second (1PPS) output, where the leading edges of the pulses are very accurately locked to the UTC-derived GPS timing system. It’s these pulses that we mainly use in the reference to control the frequency of a local 10MHz crystal oscillator.

Antenna

For best performance, you do need to feed the Garmin GPS 15L receiver with good-quality signals. This means mounting a small active GPS antenna in a clear area outside; as high as possible, so that it can get an unobstructed ‘view’ of the sky in order to receive the satellite signals.

The antenna is connected to the antenna input of the receiver using a suitable length of good quality 50Ω coaxial cable. This delivers the amplified 1.575GHz GPS signals to the receiver and also feeds the active antenna with DC power (provided by the receiver).

In our case, we chose a Garmin GA 29 flush-mount active antenna, which costs about £40. This was mounted on a plastic junction box and fitted to the top of the author’s TV antenna mast (see photo).

Taken together, the GPS receiver module and an active antenna will set you back about £80. The rest of the parts will probably be around the £60 mark, so you should be able to build the whole shebang for about £140. This is just a fraction of the price you’ll pay for a commercially available GPS-based frequency reference.

How it works

To get some idea on how it all works, refer to the block diagram of Fig.1. Basically, the frequency of the 10MHz crystal oscillator (top, right of Fig.1) is controlled using a phase-locked loop (PLL). This PLL, in turn, uses the very accurate 1Hz pulses from the GPS receiver module as its reference. However, the PLL configuration is a bit more complicated than normal, so let’s look at this in greater detail.

Basically, the reason for the added complexity is that it isn’t easy to control a 10MHz crystal oscillator using a reference frequency as low as 1Hz – at least not using a standard PLL. That’s because with a standard PLL configuration, the oscillator frequency must be divided by 10,000,000 (to get 1Hz), to be compared with the reference frequency in the phase comparator. However, such a high division factor involves a relatively long time delay and this adversely affects the error correction feedback, making it very difficult to stabilise the PLL.
with the 50kHz pulse nearest to it and
generates a 'phase error' pulse, the width
of which is directly equivalent to the
timing difference. One of these phase
error pulses is produced at the start of
each 1Hz GPS pulse and they can vary
in width from zero (when the two signals
are exactly in step) up to a theoretical
maximum of 20µs (when the two signals
are one period of 50kHz out of step).

In practice, we use the PLL's feedback
loop to maintain a fixed phase error of about 10µs (ie, halfway in the
range). This gives the PLL the widest
possible control range, to ensure reliable locking of the 10MHz crystal
oscillator.

Deriving the feedback voltage
OK, so how do we use the varying
phase error pulses from the compara-
tor to produce an error correction
feedback voltage for the 10MHz oscillator? Well, what we do is use
the error pulses to control an AND
gate, which then passes pulses from
a second crystal oscillator (running
at about 10MHz) to an 8-bit binary
counter. So, as the error pulse width
varies, it allows a varying number of these ‘about-10MHz’ pulses to reach
the counter.

For example, if the phase error
pulses are 8µs wide, 80 pulses will
be gated through to the counter. And
if the pulses are 11µs wide, 110 pulses
will be fed through, and so on. So, at
the start of each 1Hz GPS pulse, a burst
of ‘about-10MHz’ pulses will be fed to
the counter, the number of pulses in
the burst being directly proportional
to the phase error.

The counter is actually reset at
the end of each 1Hz GPS pulse, so it
counts up from zero each time. At the
output of the counter we also have
an 8-bit latch and a simple digital-
to-analogue converter (DAC) using a
resistor ladder network. After the
end of each phase error pulse, the lat-
est error-proportional pulse count is
transferred into the latch, replacing
the previous count.

As a result, the output of the DAC is
a DC voltage which varies in level each
second, according to the phase error.
So, the phase error has been converted
into a varying DC error voltage.

Get the idea? When there's a fixed
phase error of say 10µs, the counter
will have a count of 100 each time and
the DAC will have an output voltage
of almost exactly 1.953V.

This voltage will vary up or down,
in steps of 19.53mV, as the phase error
pulses vary in width and the number
of ‘about-10MHz’ pulses fed to the coun-
ter varies up or down. Each of the
‘about-10MHz’ pulses fed to the coun-
ter corresponds to a phase error step of
close to 100ns, so our phase error-to-
DC error voltage conversion circuit has
a conversion gain of 19.53mV/100ns or
just under 2mV for every 10ns change
in phase error.

Why two 10MHz oscillators?
By now, you are probably wonder-
ning why we go to the trouble of using
a second 10MHz crystal oscillator
to provide the 100ns pulses for the
phase error counter. Why not just use
the output of the main temperature-
controlled 10MHz oscillator (shown upper right)?

We use a second 10MHz oscillator
because this inevitably drifts in phase
compared with the main oscillator and
this introduces a small amount of
‘dither’ into the phase error counting
operation. The random noise intro-
duced into the DAC’s output voltage as a result of this dither allows the
PLL’s error correction to have a signif-
ificantly higher resolution than if we
used pulses from the main 10MHz
oscillator.

The reason for this is quite straight-
forward. If we had used the pulses from
the main oscillator, the fact that
they would be locked to the 50kHz pulses (and hence the phase error
pulses as well) would mean that the
DC error voltage could only ever
change in 19.53mV increments. This
corresponds to 100ns changes in phase
error.

However, the dither introduced by
using the second oscillator means that
the average error voltage will change
in somewhat smaller increments.
And that means that we can maintain
the main oscillator’s phase locking to
much closer than 100ns.

As shown in Fig.1, the DC phase er-
or voltage from the DAC is fed through
a buffer to a low-pass filter stage based
on capacitor C1 and resistors R1 and R2. The filtered error correction
voltage is then used to control the ca-
pacitance of a varicap diode (VC1), to
fine-control the frequency and phase
of the main 10MHz oscillator.

This unusual type of PLL system is
very effective when it comes to
phase-locking a 10MHz oscillator to

A small active GPS antenna is
necessary to receive the GPS signals.
The author used a Garmin GA 29
antenna. This was mounted on a
plastic junction box and fitted to the
top of an existing TV antenna mast.

To get around this problem, we di-
vide the 10MHz oscillator output by
a much smaller factor – just 200. This
is done in separate divide-by-10 and
divide-by-20 stages using synchronous
divider ICs, so that we end up with
50kHz pulses which have the timing of
their leading edges (L-H transitions)
very closely synchronised with the
leading edges of every 200th pulse
from the 10MHz oscillator.

This means we have effectively
transferred the phase of the 10MHz
oscillator signal (averaged over 20µs)
to the 50kHz signal at the output of
the divide-by-20 divider. And it’s the
phase of this signal which we feed into
the second input of the phase compara-
tor, where it’s compared with the
leading edges of the 1Hz pulses from
the GPS receiver module.

Phase compactor
The phase comparator does exactly
what its name implies – it compares
the leading edge of each 1Hz GPS pulse

Get the idea? When there's a fixed
phase error of say 10µs, the counter
will have a count of 100 each time and
the DAC will have an output voltage
of almost exactly 1.953V.
the GPS 1Hz pulses, but it does have a limitation. Because it divides down the oscillator frequency by only 200 times instead of 10,000,000, it’s just as effective at phase-locking an oscillator at a frequency of 9.999800MHz or 9.999600MHz, or 10.000200MHz or 10.000400MHz.

In other words, it’s capable at phase-locking at frequencies that are separated from 10.000000MHz by exactly 200Hz or multiples of that frequency difference. This means that when you are setting up the frequency reference, it’s very important to adjust the free-running frequency of the main crystal oscillator to within 100Hz of 10.000000MHz. If you don’t, the PLL may lock it to 9.999800MHz or 10.000200MHz instead of the correct frequency!

Making use of the data

OK, that’s how the main part of the GPS Frequency Reference works. The only part we haven’t discussed yet is the section down in the lower left of the block diagram. This section is functionally quite separate from the main section. Its purpose is to make use of the stream of useful data that emerges from the GPS receiver module each second, along with (but separate from) those accurate 1Hz pulses.

This data is delivered as ASCII text and appears at the module’s RS-232C serial output port. It’s in the form of coded data ‘sentences’, sent at a rate of 4800bps (bits per second) using a sentence format known as NMEA1083. This format was first standardised by the US National Marine Electronics Association (NMEA) for information exchange between marine navigation equipment.

As shown in Fig.1, we use a programmed PIC16F628A microcontroller to ‘catch’ and analyse this serial data. The decoded data is then fed to an LCD module. Pushbutton switches S1-S3 are included to allow you to display some of the more esoteric information for a short time, as required. Normally, the display simply shows the current UTC time and date (updated each second), plus the GPS fix and PLL locking status.

The fourth switch (S4) forces the PIC micro to send an initialisation code command to the GPS receiver module, to initialise it correctly if it ever becomes ‘confused’ (the GPS receiver also contains a microcontroller, of course). In fact, the receiver module has an RS-232C serial input as well as the output, provided for this very purpose.

However, because this initialisation is rarely required, S4 is not readily accessible like switches S1 to S3. Instead, it must be accessed through a small hole in the front panel of the project, using a small screwdriver or probe tip.

Circuit details

Now that you have a basic understanding of the way the GPS-Based Frequency Reference works, we should be able to work quickly through the main circuit, to clarify the fine details. Fig.2 shows the main circuit diagram, while Fig.3 shows the associated display circuit with its LCD module. The two connect via a 16-way header cable.

In operation, the Garmin GPS 15L receiver module (lower left of Fig.2) is fed via an external active antenna. The resulting GPS-locked 1Hz pulses are sent on the grey wire of its 8-way output cable and this goes to pin 5 of a 10-way IDC line socket that mates with CON7. The 1Hz pulses are then fed through Schmitt inverters IC11a and IC11b, which provide the clean input to the phase-locked loop.
which act as buffer stages. The resulting 5V peak-to-peak pulses from IC11b are then fed directly to pin 14 of IC7, which is the phase comparator.

The 10MHz crystal oscillator that’s phase-locked to the GPS pulses is based on inverter IC3f and crystal X1, plus varicap diode VC1 and several low-value capacitors. Its 10MHz output is fed via inverting buffer stage IC3b to CON1 and also via IC3c to divider stage IC4. This stage divides the signal by 10 and provides two 1MHz outputs, at pins 12 and 15. Pin 12 output is then fed via inverter IC3d to CON2, to provide the 1MHz output signal at BNC connector CON2.
By contrast, the 1MHz pulse output from pin 15 is fed to a second divide-by-10 stage based on IC5 (ie, to the CET input at pin 10). The resulting 100kHz pulse output from pin 15 of IC5 is then fed to the J and K inputs of flip-flops IC6a and IC6b. Note that the 10MHz output from IC3c is used to clock IC5, IC6a and IC6b, the latter two stages via inverter IC3e. This ensures that the counter and divider outputs are correctly synchronised.

Fig.2 (above): the complete circuit for the GPS-Based Frequency Reference except the display circuitry (LCD and LED indicators). The PLL-controlled 10MHz oscillator is built into a small temperature-controlled oven to ensure stability, with power transistor Q1 acting as the oven heater.
IC6a and IC6b are both wired for divide-by-2 operation. The 50kHz pulses from the Q output (pin 12) of IC6a are fed to the C in input (pin 3) of phase comparator IC7, for comparison with the 1Hz GPS pulses on pin 14 (S in). Note that these 50kHz pulses have their rising edges closely aligned with the rising edge of every 200th pulse from the 10MHz oscillator.

The phase error pulses emerge from pin 15 of IC7 and are fed directly to the clock gating inputs of 4-bit synchronous counters IC8 and IC9 (74HC161), which together form the 8-bit phase error pulse width counter. This is done because the AND gate shown in Fig.1 is actually inside the two counter chips, rather than being a separate device.

The ‘about-10MHz’ clock oscillator used by the error counter is based on crystal X2 and inverter stage IC14c. Its output is buffered by IC14a and IC14f and fed to the clock inputs (pin 2) of the two counters. The eight output bits from the two counters are then fed to the data inputs of IC12, the octal latch. Its outputs are used to drive the resistive-ladder DAC (digital-to-analogue converter).

In practice, this counter-latch-DAC sub-circuit is arranged so that it performs a new count of the phase error pulse width at the start of every 1Hz pulse from the GPS receiver module. The sequence is as follows: on the falling edge of each 1Hz pulse (100ns after the start), the counters (IC8/IC9) are reset by a very short pulse on their MR pins (pin 1). These short reset pulses are derived from the 1Hz pulses at the output of IC11a. The 1Hz pulses are differentiated using a 100pF capacitor and a 1kΩ resistor and fed to the MR pins of IC8 and IC9 via IC11c.

The two counters begin counting when the phase error pulse from IC7 arrives at their CEP pins (7). This allows them to count the ‘about-10MHz’ pulses, which are fed to their CP (pin 2) inputs via buffer stages IC11a and IC11b. Counting continues until the end of the phase error pulse and then stops. Another very short pulse, this time derived from the falling edge of the phase error pulse signal and applied via IC11e to pin 11 of IC12, then transfers the count into IC12’s latches, replacing the previous count.

As a result, the DC output voltage from the DAC changes in response to the new count. The counters are then reset again at the end of the 1Hz GPS pulse, ready for the next sequence.

The varying DC error voltage from the DAC is fed first through buffer stage IC13a and then to a low-pass loop filter which is formed using a 1kΩ resistor (R1 in Fig.1), a 10μF capacitor (C1) and three 1MΩ resistors (R2). From there, the filtered error voltage is then fed through IC13b to become the automatic phase correction (APC) voltage. This APC voltage is applied to varicap diode VC1, which varies its capacitance accordingly.

As previously stated, VC1 forms part of the 10MHz crystal oscillator circuit and its capacitance variations bring the oscillator into phase lock. Trimmer capacitor VC2 and its parallel 4.7pF capacitor are used to initially adjust the oscillator so that its free-running frequency is within 100Hz of 10MHz – ensuring that the PLL locks correctly to this frequency.

Temperature stabilisation

OK, so that’s the basic PLL section of the GPS-Based Frequency Reference...
circuit. By now, though, you’re probably wondering about the function of comparator IC2, transistor Q1 and the LM335Z temperature sensor (IC10). What are they for?

These parts are used to achieve temperature stabilisation of the main 10MHz oscillator crystal (X1), varicap diode VC1 and its series 15pF capacitor. In practice, these components are housed in a ‘mini oven’ to keep the temperature constant. This oven includes a small TO-220 heatsink to which is attached the crystal, the LM335Z temperature sensor and a power transistor (Q1). It’s basically an insulated enclosure made from a cut-down 35mm film canister, which is lined inside using expanded polystyrene.

The construction of this mini oven will be described next month. All you need to know for now is that IC10 (LM-335Z) is mounted inside the enclosure to sense the internal temperature. Basically, the voltage across IC10 is directly proportional to its temperature (in Kelvin) and this voltage is applied to the non-inverting input of comparator IC2. IC2’s inverting input is fed with a reference voltage of close to 3.15V, derived from a voltage divider (2kΩ and 3.3kΩ) across the regulated 5V supply rail. As a result, IC2’s pin 7 output switches high when the temperature sensor’s voltage rises slightly above 3.15V and switches low when the sensor’s voltage falls somewhat below this level (depending on the hysteresis applied to the comparator).

IC2 is used to control power transistor Q1, which is used here purely as a heater. This transistor is attached to the finned heatsink which forms the frame of the mini oven, so when it conducts it generates heat to increase the temperature. As a result of the feedback provided by IC10, the temperature inside the mini oven is maintained at very close to 42°C (315K) – within about ±1°C, in fact. The exact temperature can be adjusted over a small range using trimpot VR1.

Specification summary

1. This unit is a low-cost frequency and time reference based on a Garmin GPS 15L receiver module. It is able to control the frequency of a local 10MHz crystal oscillator by reference to the very accurate 1pps (1Hz) pulses broadcast by GPS satellites (referenced back to UTC as maintained by the USNO). This allows the frequency of the local 10MHz oscillator to be controlled to within about 0.2Hz averaged over a 30 second period and even more tightly when averaged over a longer period such as 30 minutes.

2. The built-in 10MHz reference crystal is housed in a small temperature-stabilised enclosure or ‘mini oven’. Buffered 10MHz and 1MHz outputs are provided for external use. Buffered outputs are also provided for the 1Hz GPS pulses and the phase error signals from the internal phase-locked loop (PLL) used to control the 10MHz oscillator. The error signals allow the user to log instantaneous phase error in the PLL, if this is desired for traceability.

3. The unit provides a continuously updated display on an LCD module, showing UTC time and date, GPS fix and PLL lock status information. It also allows optional short-term display of receiving antenna latitude, longitude and height above mean sea level, plus the number of satellites in current view and their reception quality.

4. The complete reference operates from 12V DC, which can be supplied from a battery or a mains power supply. Average current drain is approximately 340mA, while peak current drain is about 420mA.
A few facts about GPS

The GPS satellite network is controlled and operated by the US Department of Defense (US DOD). Currently, there are between 22 and 24 GPS satellites orbiting the Earth at a height of 20,200km, in six fixed planes angled at 55° to the equator.

Each satellite orbits the Earth in 11 hours 58 minutes – ie, about twice each day. This means that at least four satellites are within ‘view’ of a given GPS receiver at almost any time, wherever it is located (providing it has a clear sky view).

The GPS satellites broadcast pseudo-random spread spectrum digital code signals on two UHF frequencies: 1575.42MHz (known as ‘L1’) and 1227.6MHz (‘L2’). There are two different code signals broadcast: the ‘coarse acquisition’ or C/A code, broadcast on L1 only, and the ‘precision’ or P code broadcast on both L1 and L2. Most commercial GPS navigation receivers process only the L1 signal.

Each GPS satellite carries either caesium-beam or rubidium vapour ‘atomic clock’ oscillators, or a combination of both. These are ‘steered’ from US DOD ground stations and are referenced back to Coordinated Universal Time (UTC), as maintained by the US Naval Observatory (USNO) – itself kept within 100ns of UTC as maintained by the US NIST. This ensures they provide an accurate reference for both the carrier frequencies and the code signals from each satellite.

Although the GPS network was designed mainly for accurate terrestrial navigation, the high frequency and time accuracy of the signals from the satellites has made them very useful as a reference source for frequency and time calibration.

How accurate is it?

What kind of frequency accuracy can you get from this DIY GPS reference? Well, the 10MHz output is accurate to within 0.2Hz, averaged over a 30-second period. It’s even more accurate when averaged over a longer period, such as 30 minutes or an hour.

The accuracy of the 1MHz output is the same in relative terms, since it’s derived from the 10MHz output by frequency division. So it’s quite reasonable to describe the nominal frequency accuracy as within two parts in 10^8 – considerably better than a free running crystal oscillator, and good enough for most frequency calibration purposes.

RS-232C data

The RS-232C data from the GPS receiver module emerges on the yellow lead and is connected (via the IDC line socket) to pin 2 of CON7. From there, it’s fed through inverting buffer IC14e to the RB1 input (pin 7) of PIC microcontroller IC1, which is used to process the serial data.

Similarly, the RS-232C serial input for the GPS receiver module is its blue lead and this goes to pin 1 of CON7. As a result, initialisation commands from the micro’s serial output (RB2, pin 8) are fed to the module via inverting buffer IC14d.

The phase error pulse from IC7 is also fed to the RB3 input (pin 9) of IC1, so that the micro is able to monitor whether or not the PLL is maintaining lock.

Display circuit

The display circuit (Fig.3) interfaces to the main circuit via connector CON9 and includes the 2-line × 16-character LCD module – which is directly driven by microcontroller IC1 – plus its contrast control VR2.

In addition, there are the four control switches (S1 to S4) plus three status indicator LEDs (LED1 to LED3), in turn driven by transistor switches Q2 to Q4. Note that Q2 and Q3 (and thus LED1 and LED2) are controlled by the micro itself (via RA1 and RA2), whereas Q4 (LED3) is driven by the 1Hz pulses from the GPS module via IC11b. The microcontroller also scans the switches. As stated, S1 to S3 are pressed to display specialised data on the LCD, while S4 initialise the GPS receiver module.

Parts List: GPS-Based Frequency Reference

1. **PC board, code 706 (Main), size, 142 x 123mm**
2. **PC board, code 707 (Display), size 144 x 58mm**
 (Both boards are available as a set from the EPE PCB Service)
3. **ABS instrument case, size, 158 x 155 x 65mm**
4. **Garmin GPS 15L GPS receiver module**
5. **External active GPS antenna to suit – see text**
6. **2-line x 16 character alphanumeric LCD display module**
7. **TO-220 finned heatsinks, PC-mount**
8. **SPST PC-mount snap-action pushbutton switches (black) (S1-S3)**
9. **SPST PC-mount mini pushbutton switch (S4)**
10. **10MHz quartz crystals, HC-49U package (X1, X2)**
11. **PC-mount BNC sockets (CON1-CON4)**
12. **PC-mount 2.5mm concentric DC socket (CON5)**
13. **16-pin IDC line sockets**
14. **10-pin IDC line socket**
15. **PC-mount 10-pin IDC header plug (CON7)**
16. **PC-mount RCA phono socket (CON8)**
17. **Panel-mount BNC-BNC male-female adapter**
18. **8-pin IC sockets, high quality machined pin type**
19. **14-pin IC sockets, machined clip type**

Semiconductors

1. **PIC16F628A microcontroller programmed with GPSFrqRF.hex (IC1)**
2. **LM311 comparator (IC2)**
3. **74HC04 hex inverters (IC3, IC14)**
4. **74HC160 synchronous decade counters (IC4, IC5)**
5. **74HC73 dual flipflop (IC6)**
6. **74HC4046 phase comparator (IC7)**
7. **74HC161 synchronous 4-bit counters (IC8, IC9)**
8. **LM335Z temperature sensor (IC10)**
9. **1Hz Schmitt trigger (IC11)**
10. **74HC374 octal D-type flipflop (IC12)**
11. **LM358 dual op amp (IC13)**
12. **7805 +5V regulator (REG1)**
13. **BD136 PNP power transistor (Q1)**
14. **PN100 NPN transistors (Q2-Q4)**
15. **1mm green LED (LED1)**
16. **5mm red LED (LED2)**
17. **5mm orange/yellow LED (LED3)**
18. **BB119 varicap diode (VC1)**

Capacitors

1. **1000μF 16V radial elect.**
2. **10μF 16V radial elect.**
3. **10μF 25V tantalum**
4. **4.7μF 25V tantalum**
5. **100nF ceramic**
6. **2.2nF metallised polyester**
7. **1nF metallised polyester**
8. **7×2 length of DIL pin header strip**
9. **1mm PC board terminal pins**
10. **35mm film canister, 34mm dia. x 34mm long**
11. **2 cable ties**

Potentiometers

1. **5kΩ mini trimpot, horizontal (VR1)**
2. **10kΩ mini trimpot, horizontal (VR2)**

Resistors

1. **1MΩ**
2. **2.2kΩ**
3. **680Ω**
4. **22kΩ**
5. **470Ω**
6. **100Ω**
7. **330Ω**
8. **220Ω**
9. **680Ω**
10. **1kΩ**
11. **3.3kΩ**
12. **10kΩ**
13. **33Ω**
14. **2.2kΩ**
15. **68kΩ**
16. **47kΩ**
17. **33kΩ**
18. **1.8kΩ**
19. **220kΩ**
20. **1MΩ**

Power supply

Power for the circuit is derived from an external 12V DC supply (eg, a plugpack rated at 500mA or more). This is applied via power connector CON5 and diode D1, which provides reverse polarity protection.

Diods D5 to D7 provide a supplementary voltage drop to reduce the power dissipation in 3-terminal regulator REG1, which delivers a regulated +5V rail to power most of the circuit. The only sections driven directly from the unregulated +11.4V input are comparator IC2 and heater transistor Q1 in the mini oven.

Other signals

That’s about it for the circuit description, except to note that various useful signals (in addition to the main 10MHz and 1MHz outputs) are brought out of the frequency reference to allow its operation to be monitored.

First, the very accurate 1Hz GPS pulses are brought out via IC11d and CON3. Second, an inverted version of the phase error pulse from IC7 is brought out via IC11f and CON4.

Finally, the unfiltered DC error voltage from IC13a is brought out via CON8. Either of the last two signals can be used for logging the reference’s operation.

That’s all we have space for this month. Next month, we’ll show you how to build it and describe the setting up and adjustment procedures. **EPE**
A recent breakthrough by Cambridge University researchers could well turn out to be the turning point for low-cost LED lighting in homes and offices. The scientist who developed this ‘holygrail’ claims the new bulbs are more eco-friendly than the hated compact fluorescents in use now and could be on the market in five years. Mark Nelson investigates the claims.

A s well-informed people know, today’s version of low-energy lighting, using compact fluorescent lights (CFLs), is the wrong technology. The products are relatively cheap to buy, but they have a number of practical disadvantages, as well as significant ecological problems in their production and disposal. Although they are evidently the wrong solution, up to now the right way to go has been too expensive for domestic use.

Brighter future
The brighter future is the light-emitting diode or LED. Based on a far more efficient light source and producing a purer white light, the affordable LED lamp bulb is seemingly within our reach at last. According to Prof Colin Humphreys of Cambridge University’s Centre for Gallium Nitride, the new breed of LED lamp bulbs will last 60 years and could slash the proportion of electricity used for lighting from 20 to just five per cent.

In Britain, this could eliminate the need for eight power stations. Even better, the new bulbs do not contain mercury and they are dimmable.

Says Humphreys, “We are very close to achieving highly efficient, low-cost white LEDs that can take the place of both traditional and currently available low-energy light bulbs. This could well be the holy grail in terms of providing our lighting needs for the future. That won’t just be good news for the environment; it will also benefit consumers by cutting their electricity bills”.

New recipe
LED lamps are not new by any means and they are already used widely in torch bulbs, camera flash units, vehicle lights and display lighting in shops, to mention just a few applications. But for ‘general lighting service’ (that’s ordinary lamp bulbs to you and me), the production costs are too expensive for widespread use in homes and offices.

Colin Humphreys’ breakthrough at Cambridge University has been to make the new LEDs from Gallium Nitride (GaN), a man-made semiconductor that emits a brilliant bright light but uses very little electricity. His team has developed a new way of making GaN that could produce LEDs for a tenth of current prices.

The new technique grows GaN on silicon wafers, which achieves a 50 per cent improvement in cost and efficiency on previous approaches employing expensive wafers of sapphire, used since the 1990s. The idea is that commercially-produced versions of Humphreys’ LED will be in use around homes and offices within five years.

Fine tuning
Demonstrating a concept in the lab is one thing, but refining it for mass production is another. The light produced by most ‘white’ LEDs tends to have a blue-ish cast, which is not suitable for domestic lighting. The ‘golden yellow’ LEDs are not ideal either. Humphreys says that by applying a phosphor to the LED, it can produce a more agreeable white light.

Another stumbling block to overcome is turning point sources of light into a bulb or globe that radiates in all directions. LEDs used in torches, spotlights and vehicle head and tail lights tend to be focused in a single direction. This glare is unwelcome in homes and offices, where people prefer a more omnidirectional and diffuse light source.

The team at Cambridge is also carrying out research into more specialist but equally vital applications for GaN light. They want to see how these could mimic sunlight to help three million people in the UK with Seasonal Affective Disorder (SAD). Ultraviolet rays produced from GaN lighting could also aid water purification and disease control in developing countries, identify the spread of cancer tumours and help fight hospital ‘super bugs’.

On the right lines
One field where existing LED technology is making rapid inroads is aboard trains, even though you might not have noticed. Here, ruggedness, low maintenance and reduced power consumption outweigh the initial installation cost of retrofit LED lighting. The figures work out well, as this example from British firm Dialight proves.

A typical fluorescent-tube lighting installation on a commuter train requires 2kW of electricity to achieve adequate brightness for reading. LED fixtures can achieve the same lighting level from 500W, reducing the number of voltage converters from 52 to just four. Reflectors control the direction of light across the carriage ceiling via a range of optical beam patterns, rather than bouncing it straight down to the floor. With lights left on in trains for 16 hours a day, it’s obvious that significant energy savings are possible.

Another British firm actively involved in exploiting the market for ‘lighting class’ LEDs is Zetex, which employs more than 750 people worldwide. If the name doesn’t ring a bell, let me just mention that Zetex is the semiconductor division of the Ferrari company of lengthy heritage. Its ZXL1362 switching LED driver operates from input voltages of 6V to 60V at up to 95 per cent efficiency. The smallest of its kind at this current rating, it can drive up to 16 high-power LEDs with an adjustable output current of up to 1A.

The race is on
With the world’s nations determined to develop their way out of the recession and also reduce energy consumption, the race is on to develop more efficient methods of solid-state lighting. Cambridge University’s breakthrough in white LEDs could lead to mass manufacture in the UK. Prof Humphreys is well aware of the technical difficulties of growing LEDs on a silicon substrate, but is optimistic nevertheless.

He told trade paper Electronics Weekly: “We have only been working for a year or so and we are still on a steeply rising curve. [Nevertheless] our way is so much cheaper, I think it is probably commercially viable even now”. His team is working with QinetiQ, formerly known as the Defence Evaluation & Research Agency, and the German manufacturer Aixtron to turn its science into a commercial production process.

The US government is also backing the LED lighting revolution, with an $18.5 million five-year award to the Smart Lighting Engineering Research Center at Rensselaer Polytechnic Institute in Troy, New York. A recent study authored by RPI professors Fred Schubert and Jong Kyu Kim issued ‘a call to arms for scientists and engineers’, stating that over the next 10 years savings of more than $1.8 trillion will eliminate the need to burn almost a billion barrels of oil in power plants that would otherwise produce 10 gigatons in carbon dioxide emissions.

Declared Prof Jong Kyu Kim, “Such enormous savings will result from replacing 80 per cent of traditional lighting with LEDs over the next 10 years. And besides replacement, there are also new capabilities possible in this lighting revolution”.

One of the most interesting applications under development at RPI is spectrum control, which they say will enable the colour of lighting to be altered during the day to influence the mood of workers positively, as well as curing certain medical problems that are caused today by poor lighting conditions.
The first computers were built during World War II to decode German coded military signals. From this early work sprang 'EDSAC' (Electronic Delay Storage Automatic Calculator), the first truly programmable computer. It was built at Cambridge University in 1949.

This computer, shown in the background above, was used by mathematicians for research and learning. It contained 3000 valves and consumed an astonishing 12kW of power.

History was made in 1952 by A.S. Douglas, a young PhD student, when he used it for another purpose: he programmed it to play noughts and crosses. The computer used a cathode ray tube to display its output, which means this was the very first video game in the world.

In the mid-1960s, both Sydney and Melbourne technical museums in Australia attracted large crowds with a ‘computer’ which played noughts and crosses against a human opponent.

In 1968, when the author was aged 24, he and a friend built a machine using 70-odd telephone relays and a uniselector to play the game.

A uniselector, by the way, is a rotary, solenoid driven, 50-position switch. They were commonly used in automatic telephone exchanges at the time and were even found in some...
older exchanges until quite recently, before first solid-state devices and then microcontrollers took over. In a busy telephone exchange, the noise of the uniselectors switching back and forth following the numbers dialled on a phone perhaps 10 kilometres or more away was quite deafening!

Oscar on hire

Our machine was as large as a refrigerator and about twice as heavy! We called him ‘OSCAR’ and he worked very well. When you pressed a button for your turn, the machine started whirring loudly (the sound coming from the uniselector), a row of lights flashed, relays clicked in and out and finally it all stopped as it brought up its reply. It was very impressive.

We hired it out to retailer David Jones and a new shopping centre called ‘Westfield’ in Wollongong (a large city south of Sydney, Australia) where it attracted large crowds.

It must be very difficult for people who did not come through that era to understand such a reaction, so I will try to explain.

It was akin to the crowds who gathered on pavements outside electrical retailers a decade or so earlier to watch that new-fangled invention, television, playing in the windows.

In 1968, very few people had ever seen a computer ‘in the flesh’. They may have seen one in a film, where typically it would be in an almost sacred situation, a series of large metal cabinets, some with large tape spools rotating. All attended by well groomed, bespectacled technicians, wearing white lab coats, hovering over it like nurses over a new-born baby. What the computer actually did was a complete mystery, and there was no way you were ever going to be able to get close enough to touch one.

Fig.1: not a Uniselector in sight (or even hidden!). The PIC chip does all the work of the mechanical monster of 40 plus years ago – and this OSCAR is much easier to build.

Reproduced by arrangement with SILICON CHIP magazine 2009.
www.siliconchip.com.au
batteries. It has nine green buttons in a \(3 \times 3\) array and nine bicolour LEDs, also in a \(3 \times 3\) array – see photos. When you press a button, to take your first turn, the corresponding LED illuminates green. Oscar now ‘thinks’ for a second or two and then has ‘his’ move, illuminating his position in red. It is then your chance to have your second move – and I think you know the rest.

If Oscar wins, which is pretty common, the winning row of three red LEDs flashes, calling attention to the player’s loss(!) and the game is halted. You cannot continue when you have been defeated.

The first version of the software was written so that Oscar never lost a game. However, that quickly becomes boring and so the software was later reworked to give its opponent a chance to win approximately one in 10 games. If you do win, your three green LEDs will flash to indicate success.

There are two more buttons. The white button is to reset Oscar for a new game and the red button is to allow Oscar to have the first move in the game. It is polite and fair to give him the first turn at least sometimes. He is very clever here, as the square he chooses for his first move is truly random.

Generating truly random numbers is difficult for a PC and very difficult for a PIC, but Oscar employs a useful trick here.

At the end of a game, following a reset, Oscar is not just sitting there doing nothing – not at all. He is repeatedly counting rapidly from one through to nine at high speed, until you press a key to start the game, at which time he stops counting. The number that he stops on will be the square he chooses if you give him first turn.

How it works

If you glance at the circuit (Fig.1), you will see that it is quite simple and does not use any active components apart from the PIC.

The circuit is powered from four AA batteries, housed in a plastic battery box. The maximum voltage for the PIC is 6V, so don’t be tempted to install a 9V battery.

This PIC, a 16F84A, can have various oscillators, but in this case we are using a resistor/capacitor circuit on pin 16 of the chip. With the values chosen, the circuit oscillates at around 700kHz. The RC oscillator is a little cheaper and somewhat slower than a crystal, making delay loops easier.

You can see the 700kHz triangular waveform on pin 16 with a ‘scope and high impedance probe. The PIC divides this by four to become the system clock and you can see the resulting 175kHz square-wave on pin 15.

Multiplexing

Because we are connecting so many devices to the PIC, we need to do some multiplexing. The PIC has only 13 input/output connections available, but we have nine position buttons, nine red LEDs, nine green LEDs and a couple more buttons.

If you have a look at the circuit you will see that for each of the nine locations, the common cathode (K) of the green/red LED and one side of the pushbutton switches are all connected together. So we have a common

So, if suddenly you were able to have contact with a computer, to challenge it at a game that you understood well, this was very exciting. Lots of my older friends still remind me about Oscar.

We initially did not know even how to start to build such a machine. We eventually worked out that the machine had to go through a logical series of steps, in sequence. We never called it a program, but of course, it was a program.

I have never forgotten the sequence, so now that PICs have become available, I set out to put the exact same program from the 1968 Oscar into a PIC16F84A.

New OSCAR

The new OSCAR is a tiny fraction of the size of the original. And instead of requiring a lot of power to operate, it will run for months on a couple of batteries. It has nine green buttons in a \(3 \times 3\) array and nine bicolour LEDs, also in a \(3 \times 3\) array – see photos.

When you press a button, to take your first turn, the corresponding LED illuminates green. Oscar now ‘thinks’ for a second or two and then has ‘his’ move, illuminating his position in red. It is then your chance to have your second move – and I think you know the rest.

If Oscar wins, which is pretty common, the winning row of three red LEDs flashes, calling attention to the player’s loss(!) and the game is halted. You cannot continue when you have been defeated.

The first version of the software was written so that Oscar never lost a game. However, that quickly becomes boring and so the software was later reworked to give its opponent a chance to win approximately one in 10 games. If you do win, your three green LEDs will flash to indicate success.
Everyday Practical Electronics, April 2009

Fig.2: follow this parts layout diagram and the accompanying photo to assemble the unit. In the prototype, ordinary copper wire was used for the links, but we suggest tinned copper wire to prevent oxidisation.

connection for the button, red LED and green LED, and of course there are nine separate common points.

The PIC holds these lines high at 5V and then, one at a time, drops the line to 0V for around one millisecond, then pulls it back up to +5V and drops the next one to zero for one millisecond and so on. So, the PIC is relentlessly scanning from one to nine, regardless of the state of the game.

Let's now look at pins 1 and 18 of the PIC. These pins are configured as outputs and are normally held low by the PIC. Pin 1 connects to all the green LED anodes and pin 18 connects to all the red LED anodes.

If, during the scanning, the PIC needs to illuminate, let's say, green LED number six, it waits until the scanning reaches position number six and then, just for one millisecond, while the cathode (K) is held low, it raises the anode (A) via pin 1 of the PIC to 5V. Only that LED will light because it is the only one with power on one end and 0V on the other end.

In this way, the PIC lights the LEDs one at a time at high speed, so you are unaware that they are actually flashing rapidly. It will never light both green and red for the one location, as that situation never occurs.

The common sides of the pushbutton switches are all connected to pin 2 of the PIC. This pin is configured as an input and is normally held high by a 4.7kΩ resistor (R4). However, if you press a button, this pin will be switched low if the LED should be green. Similarly, if the LED should be red, pin 18 will be switched high.

If the position is not occupied (no red, no green), then (and only then) the PIC looks at pin 2 to see if a button has been pressed. This means that if the player presses the button for a position already occupied, it is ignored.

Game logic

Let's ignore the housekeeping software and just look at the game's logic itself.

When you press a button, the green LED is illuminated immediately, and
then there is a deliberate delay of one to two seconds so that Oscar appears to be ‘thinking’. Then the PIC very rapidly goes through four separate procedures, looking for a response. As soon as a response is indicated, the PIC executes it and quits any further procedures until it’s time for the next move.

The first procedure, called ‘Win for Sure’ is to test every position to see if in any row of three LEDs, there are two red LEDs lit and the third position blank. If it finds one, it of course puts a red LED there, stops the game and declares a win.

The second procedure is called ‘Prevent Win’ and is similar to the first. Its job is to test every row to see if there are two green LEDs in a row and a third position blank. If it finds one it puts a red LED there to prevent defeat.

The third procedure is the most difficult. It is called ‘Tactics’. It goes through quite a few algorithms and tries to do something intelligent.

The fourth procedure, if the first three produce nothing, is simple: just find an empty position and go there. There is more software for responding when the player lets Oscar have first turn and also to highlight the winning row of three red LEDs by making them flash.

Software

The software files are available for download via the EPE Library site, access via www.epemag.com. Pre-programmed PICs are available from Magenta Electronics – see their advert in this issue for contact details.

Assembly

The whole circuit is built on one PC board, which mounts inside the lid of a UB1-type box. This board is available from the EPE PCB Service, code 705.

The most difficult part of the construction process is the precise drilling of the lid. Photocopy or cut out the front panel art and use it as a template – see Fig.3. Tape it to the box lid and drill a small pilot hole for each marked spot. That done, increase the size of the drill bit, being careful to keep the drill perpendicular to the lid at all times.

Check that the LEDs will fit into the holes easily and that the switch buttons have about 1mm clearance all around. If the switches get caught on the hole edges and jam on, the project won’t work!

Assemble all the components onto the board except the LEDs. This is important – leave the LEDs until later.

It’s best to use a socket for the PIC in case you need to remove it. The end of the socket with the notch in it is near the edge of the board. Leave the PIC out for the moment.

Select the software files and assemble the LEDs, switches and battery holder into the lid. The PIC 16F84A is fitted to the socket and placed on the board. Connect the wires to the switches, buttons and LEDs as shown in the circuit diagram, and temporarily fit the lid to the box to check the operation.

Manufacture the lid art and stick it to the box lid as a template and drill the small holes. Increase the size of the drill bit and check that the LEDs will fit and the switch buttons have 1mm clearance all around.

Assemble the complete kit, but leave the battery holder and batteries until last. Check that all the LEDs are vibrant. Fit the battery holder and batteries and your Oscar is ready to play!
invariably tinned copper wire) and the four resistors.

The small electrolytic capacitor is polarised. Install the four 10mm metal standoffs to the PCB board. Test fit the board to see how well you have drilled the holes for the switch buttons; file or ream the holes a little if necessary.

When you are happy with the fit of the buttons in the holes, fit all nine LEDs into their holes in the circuit board, taking great care with their polarity (flat side is on the anode 1 (red) leg), but don’t solder them just yet.

Now mount the board on the case lid using the standoffs and fit the screws to both ends, so that the board is in its correct position. That done, push the LEDs one at a time hard into their corresponding holes in the lid. Make sure each LED is fully pressed into its hole, then solder its leads. Repeat until all the LEDs have been soldered in place.

If you have done this well, all the LEDs will be protruding through the lid by the same amount (around 3mm).

The battery box can be attached to the bottom of the box with double sided tape. Finally, fit the PIC into its socket, install the batteries, switch on and give it a go.

Faultfinding
If you have trouble with any of the functions you can check out the board as follows.

First, power off and remove the PIC, then make a short jumper out of a single strand of telephone wire. Put one end in pin 14 of the socket and the other end in pin 18.

Put one end of a 220Ω resistor in pin 5 and the other into pin 6. The first LED should light red. Swap the resistor end from pin 6 to pin 7 and the second LED should light red. Keep going into pins 8, 9, 10, 11, 12, 13 and 17 and each LED should light red in turn.

To check the green LEDs, change the jumper linking pins 14 and 18 to pins 14 and 1. Repeat as above with the 220Ω resistor and again, each LED should light (green) in turn.

If you have an LED in backwards it will light green when it should have lit red, and vice versa.

If these checks are OK, then it is highly likely that you have a faulty PIC or a PIC that has not been programmed or is programmed incorrectly.

EPE
Versatile 4-Input Mixer

with tone controls and a built-in headphone amp!

This low-cost 4-input mixer features low-noise input preamps, each of which can be configured to suit a wide range of signal sources: microphones, guitar pick-ups, tape decks, synthesisers or CD players. Other features include a built-in equaliser with bass, midrange and treble controls, along with a monitoring amplifier which can drive stereo headphones.

By JIM ROWE
Input Mixer

Built-in headphone amp!

Specifications

Input sensitivity (for 2.0V RMS output, each main preamp configuration):
- Dynamic mic, low impedance: 2.6mV RMS
- Electric guitar: 28mV RMS
- Tape deck: 145mV RMS
- CD player: 463mV RMS

Frequency response: –3dB at 23Hz and 40kHz, –1dB at 40Hz and 22kHz
(with tone controls flat; see Fig.4)

Maximum output: 3.2V RMS (9V p-p) before clipping; see Fig.6

Output noise level (with respect to 2V RMS output, maximum gain and volume, tone
controls flat, inputs terminated with 1kΩ, unweighted 20Hz-20kHz bandwidth):
- CD player input: –92dB unweighted; –96dB A-weighted
- Tape deck input: –92dB unweighted; –96dB A-weighted
- Guitar input: –85dB unweighted; –89dB A-weighted
- Low-Z mic input: –67dB unweighted; –70dB A-weighted

Total harmonic distortion (THD): Less than 0.01% up to 3.2V RMS output

Graphic equaliser:
- Bass: +13dB and –12.5dB at 100Hz, ±18dB at 40Hz, ±0.5dB at 1kHz
- Mid-range: ±11dB at 1kHz, ±1dB at 100Hz, ±2.5dB at 10kHz
- Treble: ±10.5dB at 12kHz, ±1dB at 1kHz, ±11.5dB at 15kHz

Headphone amplifier:
- Output voltage before clipping: 590mV RMS into 2 x 33Ω loads
- THD for 500mV RMS into 2 x 33Ω loads: 0.08%

Supply voltage: 12V DC (nominal) – see text

Maximum current drain: 45mA
It is many years since we published a design for a low-cost four-input guitar mixer module for small bands and groups. Although it was very popular, it apparently wasn’t quite as flexible as many users wanted, particularly in terms of its ability to configure the input preamps for signal sources other than guitar pick-ups – eg, for dynamic mics, tape decks, CD players and synthesisers. It also didn’t include a built-in headphone amplifier for monitoring.

These shortcomings have been addressed in this design. There’s now more flexibility in configuring the input preamps, together with a built-in headphone amplifier.

Block diagram

The block diagram for the Versatile 4-Input Mixer is shown in Fig.1. It provides four inputs, each with its own preamp stage and gain control. Each of the four input preamps can be configured by the user to provide the appropriate gain and input impedance values to suit a wide range of signal sources – from the millivolt or two of a low-impedance dynamic mic to the 1V to 2V signals of a CD/MP3 player or keyboard synthesiser. This makes the unit very versatile.

Following the input gain controls, there’s a standard mixer stage, to allow the signals to be combined in whatever proportions you wish. The resulting composite audio signal is then fed to a 3-channel ‘mini equaliser’ stage, where three tone controls (bass, mid-range and treble) allow you to adjust the tonal balance.

This equaliser stage is basically an expanded version of a standard ‘Baxandall’ feedback tone control, with three controls instead of two.

From there, the output of the equaliser stage is passed to the master volume control and finally to the output jack, via an output buffer amplifier operating with a gain of 2.2.

The headphone amplifier (shown above the output buffer) allows the output audio signal to be monitored via a pair of standard stereo headphones.

The mixer circuit operates from a single 12V DC supply. This can be provided either by a mains plugpack or a 12V battery, making the unit suitable for portable and mobile use.

The full circuit diagram for the Versatile 4-Input Mixer is shown in Fig.3. It’s quite easy to relate each circuit section to its corresponding block in Fig.1.

At the far lefthand side are the four signal input jacks CON1 to CON4, each connected to its own preamp stage and gain control. These preamps each use one section of an LM833 low-noise dual op amp IC – ie, two ICs are used (IC1 and IC2).

Although the four preamps shown in Fig.3 all have exactly the same circuit configuration, some of the components in each stage do not have specific values. Instead they have symbolic values like Rm, Rin, Rza, Rzb, Rf and Cf, to indicate their basic function rather than their value. This is because their values need to be chosen when each preamp is configured to suit a particular signal source.

Specifically, Rm, Rin, Rza and Rzb are given values to provide the appropriate input impedance for the source, while Rf and Cf are given values to provide the appropriate gain and/or signal handling capability. The inset table in the circuit diagram gives the values for each of the various input sources.

As the mixer is a mono device and there is a good chance that stereo devices may be connected to it (eg, an MP3 or CD player) all four channels have the capability of being ‘summed’ to mono via Rma and Rmb – again, the values are shown in the inset table.

Some devices, such as microphones, are generally mono, so Rma and Rmb may be substituted with links and/or omitted completely. Yes, we know there are stereo microphones out there, but these are the exception, not the rule.

For example, to configure a preamp for an electric guitar input, Rin, Rza and Rzb are 1MΩ (giving an input impedance of 330kΩ), while Rf is 22kΩ (to give a gain of 19 times, or about 25dB). Finally, Cf is given a value of 100pF to ensure stability.

Similarly, to configure a preamp for the much higher stereo output from a CD player or synthesiser keyboard, Rza

Fig.1: the block diagram for the Versatile Mixer. The four inputs are amplified, mixed and then fed to the tone control/equaliser stage before passing to an output buffer, to be fed into an external power amplifier and/or a low-power headphone amplifier for monitoring.
and Rzb are given values of 100kΩ, while Rin is changed to 2.2kΩ. Rma and Rmb are given values of 47kΩ. These values give an input impedance of close to 50kΩ. Resistor Rf is made 27kΩ, lowering the preamp gain to unity so that it can handle the much larger input signals without overloading.

Note that resistors Rza and Rzb must always have the same value. That’s because they also form the bias voltage divider for the preamp concerned.

No provision has been made for powering electret microphones, but in a permanent installation this could be easily achieved through the use of a suitable bias resistor (10kΩ is commonly used) from the nominal 12V line to the ‘hot’ input of the electret.

Preamp outputs

The outputs from the preamp stages are fed via 2.2μF electrolytic capacitors to gain control potentiometers VR1 to VR4. The signals at the wipers (moving contacts) are then fed, via 47kΩ mixing resistors and a 2.2μF capacitor, to pin 2 input of mixer/amplifier stage IC3a.

IC3a operates as a standard inverting amplifier with a gain of –2 (100kΩ/47kΩ) for each of the four inputs. It also provides a low ‘virtual earth’ input impedance, to ensure that there is no interaction between the four gain controls (VR1 to VR4).

A half-supply rail bias (+6V) for IC3a is provided by op amp IC3b. This is connected as a voltage follower with its pin 5 input set at +6V by a voltage divider consisting of two 47kΩ resistors across the supply rail. The resulting +6V bias voltage from pin 7 of IC3b is applied to pin 3 of IC3a via a 100kΩ resistor. It’s also used to bias op amps IC4a (pin 3) and IC4b (pin 5).

Tone control stage

The heart of the tone control/equaliser stage is IC4a. As mentioned previously, this is an extended version of the standard Baxandall feedback tone control configuration – ie, it has three controls instead of the usual two. The operation is exactly the same though, with each pot (VR5, VR6 and VR7) acting as a gain control for signals within a set frequency range.

In operation, the pots vary the effective negative feedback ratios for their respective frequency bands.

Fig.2 shows a simplified scheme for the bass control. When the pot is in its centre position, IC4a has equal input and feedback impedances for the frequencies in its control range, thus giving it unity gain for those frequencies.

However, when the pot is turned to the ‘maximum boost’ (fully clockwise) position, the ratio of the feedback and input impedances increases to 11:1 (110kΩ/10kΩ), so the stage gain for those frequencies increases to 11 times or +21dB.

Conversely, when the pot is turned to the ‘maximum cut’ (fully anticlockwise) position, the ratio of feedback and input impedances reduces to 1:11 (10kΩ/110kΩ). As a result, the stage no longer amplifies those frequencies but...
attenuates them instead – ie, by about 11 times, or –21dB.

Going back to Fig.3, all three tone controls act in this same way, but each covers its own range of frequencies, as determined by the values of the various capacitors in the feedback networks.

IC4a’s output appears at pin 1 and is AC-coupled to VR8, which is the master volume control. This controls the signal level fed to output buffer stage IC4b, which is configured as a standard inverting amplifier with a gain of 2.2 (22kΩ/10kΩ). Its output is in turn fed to output jack CON5 via a 2.2μF DC blocking capacitor.
Fig.3: don’t be daunted by the size of the circuit diagram – it really is quite an easy project to understand (especially when you compare it to the block diagram). And the good news is it’s even easier to put together because all of the components mount on a single PC board. No wiring should mean no mistakes.

Headphone amplifier

The output signal at CON5 is also used to feed the headphone amplifier (IC5a), via a 100Ω isolating resistor and potentiometer VR9 (the headphone volume control). The headphone amplifier itself is based on IC5a, which is half of an LM358 low-power dual op amp. IC5b is wired in a similar manner to IC3b (ie, as a voltage follower) and is used to bias pin 3 of IC5a to +6V.

Transistors Q1 and Q2 are used to boost the output current capability of IC5a, to provide sufficient drive for both sides of a standard low-impedance stereo headphones/earbuds (33Ω per earpiece). These transistors are configured
It also makes it possible to use an unregulated 9V DC plugpack at a pinch – hum will be higher, but at least it might get you out of trouble if the specified regulated 12V DC plugpack is unavailable.

Self-contained battery power?

We know it’s going to be asked, so we will answer the question: can you make the mixer portable and run it from internal batteries – say a couple of 9V alkalines?

The answer, with a couple of reservations, is yes, it is possible – because the op amps set up the half-supply rails.

The two batteries could occupy the vacant real estate in the middle of the PC board. (You’d obviously need to fit these in position on the PC board, but that shouldn’t be difficult, given the amount of earth track in this area).

A couple of riders though: the mixer draws about 20mA without the headphone amplifier being used, so even new alkaline 9V batteries are only likely to give you a few hours operation at best. If you use the headphone amp, expect even less. But that period might be long enough for your application. And to use an 18V supply, you would need to change the 16V Zener to a 22V type. You would also probably want to fit a small power on/off switch.

Construction

Another of the major features of this design, one that we haven’t mentioned earlier, is the fact there is no wiring to be done! Everything – including the input/output sockets and control pots – is mounted on the single PC board. This makes building this mixer very easy.

This PC board is coded 704, measures 198 × 156mm and fits neatly inside a standard low-profile ABS instrument case measuring 225 × 165 × 40mm. The printed circuit board is available from the EPE PCB Service – see page 70.

As can be seen from the photos, all but one of the control pots are mounted along the front of the board, the exception being the headphone volume control pot (VR9). There simply wasn’t enough room for it on the front, so it was mounted adjacent to headphone jack (CON6) on the rear panel.

Note that the board has been designed to suit standard low-cost switched 6.35mm jack sockets for CON1 to CON6, but the board will also accept the unswitched stereo type.

As can be seen from the photos, all but one of the control pots are mounted along the front of the board, the exception being the headphone volume control pot (VR9). There simply wasn’t enough room for it on the front, so it was mounted adjacent to headphone jack (CON6) on the rear panel.

Note that the board has been designed to suit standard low-cost switched 6.35mm jack sockets for CON1 to CON6, but the board will also accept the unswitched stereo type. The reason we use switched stereo sockets is that unused inputs are shorted to ‘earth’, thus minimising noise.

Fig.7 shows the parts layout on the PC board. Begin construction by carefully inspecting the PC board for etching defects, then start the assembly by fitting the six wire links.

Follow these with the resistors. You will have to decide how you wish to configure each input and then choose resistors Rma, Rnb, Rin, Rz, Rzh and Rf from the table on the circuit diagram accordingly. We’ve shown the resistor values using a digital multimeter, as some colours can be difficult to decipher.

The non-polarised capacitors can go in next. Again, the feedback capacitors (Cf1 to Cf4) will have to be selected from the circuit diagram inset table. The polarised electrolytics can now be fitted, taking care to ensure they go in with the correct polarity.

Next, fit the sockets for the five ICs, making sure you orientate them with their ‘notched’ ends as indicated in Fig.7. Follow these with diodes D1 and D2, Zener diode...
ZD1 and transistors Q1 and Q2, again making sure they have the correct orientation.

Potentiometers VR1 to VR9 can now be fitted. Before doing so, cut each pot’s spindle to a length of 10mm using a small hacksaw and then use a small file to remove any burrs. This step will not be necessary if you use ‘metric’ pots with 10mm long splined shafts and matching splined knobs.

Note that the three 100kΩ linear units (usually marked B100K) must be fitted in the VR5, VR6 and VR7 positions along the front of the board. The five 10kΩ log pots (probably marked A10K) go in positions VR1 to VR4 and VR8, while the remaining 50kΩ log pot (marked A50K) is fitted as VR9 at the rear.

It’s just a matter of pushing each pot as far down as it will go onto the board and soldering its pins. Once they’re all in, scrape or file away some of the plating at the top of each of the VR1 to VR8 pot bodies and

Fig. 5 shows total harmonic distortion versus frequency at an output of 2V RMS. The measurement bandwidth is 22Hz to 80kHz.

Fig. 6 shows total harmonic distortion versus output level at a frequency of 1kHz. The measurement bandwidth is 22Hz to 22kHz. The rising value at lower signal levels is solely due to the residual noise at around –92dB with respect to 2V. Since the residual noise is fixed, it results in higher THD values as the signal level is reduced. In reality, the harmonic distortion is less than 0.003% at 1kHz, for all signal levels up to 2V RMS.
solder them together using a 170mm length of tinned copper wire. A second length of tinned copper wire is then used to connect VR3’s body to an adjacent earth point on the PC board – see Fig.7. This step earths the pot bodies to prevent hand capacitance effects as the controls are adjusted.

The seven 6.35mm jack sockets CON1 to CON7 can now be fitted along the rear in much the same way, except there is no earth wire to be soldered on.

Once the sockets have all been fitted, the next step is to attach the rear panel to them (and to VR9). This simply involves passing the threaded ferrules through their matching panel holes and then fitting the washers and nuts. Don’t tighten the nuts fully yet though – just leave them ‘finger tight’ for the time being.

The front panel is fitted in exactly the same way, this time over the threaded ferrules of VR1 to VR8. Again, leave the pot nuts finger tight – they’re not fully tightened until the assembly is fitted into the case.
Once this has been done, you’re now ready to slide the completed board/panel assembly down into the lower half of the case, with the panel ends mating with the front and rear case slots. That done, the PC board can be fastened to the integral standoffs on the base of the case using nine of the small self-tapping screws provided.

The connector and pot mounting nuts can now all be carefully tightened with a small spanner. Don’t tighten them too forcefully though, otherwise you’ll strip their threads. Just nip them up tight enough to ensure they don’t loosen with use. That done, you can fit the control knobs to the pot spindles.

The ‘power on’ LED mounts so its front is flush with the front panel – a tiny dob of super glue is enough to hold it in place. The LED leads will probably not be long enough to reach down to their respective holes on the PC board, so use some resistor lead cut-offs to lengthen them.

Here’s the matching completed PC board photo, shown very close to full size (again, this early prototype has some minor component placement differences). This is ready to ‘drop into’ the ABS case.
If there is any danger of shorting the LED leads to the potentiometer earthing wire, you can slip some short lengths of insulation over the leads.

There’s now just one more step to complete the construction and that’s to plug the five ICs into their sockets. Be sure to fit the LM358 into the IC5 position and take care to ensure that they are correctly orientated (IC1 and IC2 face in one direction, while IC3, IC4 and IC5 face in the opposite direction).

Checking it out

There are no circuit adjustments to be made, but you should give it a quick visual check-out to make sure everything is in the right place and you haven’t, for example, put any of the ICs, other semiconductors or electrolytic capacitors in back-to-front.

If it all checks out, you should make a simple current check before pronouncing it ready for use. This is easy to do – you actually do it by measuring voltage!

First, turn control pots VR1 to VR4, VR8 and VR9 fully anti-clockwise and set VR5 to VR7 to the centre of their ranges (ie, at the top).

That done, connect a 12V DC power supply to the mixer’s power socket. Make sure the power supply plug’s centre pin is positive, otherwise the 10Ω resistor will let its smoke out and the mixer will definitely not work.

Now turn on the power supply and make sure the front panel LED comes on. That’s a pretty good clue that everything is working properly. But it’s not foolproof!

Set your multimeter to its lowest voltage range, and connect it across the 10Ω resistor at the DC input socket on the PC board. It should read somewhere between 200mV and 300mV (200mV across the 10Ω resistor means that the mixer is drawing 20mA).

If so, you can be reasonably confident your mixer is working properly. However, if the reading is higher than 300mV, switch off immediately because this indicates that there’s some kind of error. At least you can be assured that it isn’t a wiring error because there is no wiring!

So what is wrong?

There are quite a few fault possibilities – you may have connected the DC power lead with reversed polarity, fitted one of the ICs, transistors, diodes or electrolytic capacitors the wrong way round, or accidentally shorted adjacent tracks or pads on the PC board with solder. (Kit suppliers tell us that 99% of problems are due to poor soldering.)

In that case, it’s a matter of going over your work and carefully checking everything until you find the problem.

As we mentioned earlier, if you have reversed the power supply polarity, the odds are that the 10Ω resistor at the input (ie, between the power input socket and the Zener diode) will have said ‘too much’ and given up the ghost.

Assuming that the voltage across the 10Ω resistor is correct (at 200-300mV), switch the multimeter to a suitable DC voltage range (eg, 0V to 20V) and use it to check the voltage at various key points in the circuit. The easiest way to do this is to connect the meter’s negative lead to the wire earthing at the pot bodies and then use the positive lead to probe the key voltages. Remember that you have many identical stages to compare voltages.

First, check the voltage at the rear centre pin of CON7 – it should read 12V, or whatever your battery or power supply is delivering. That done, check that pin 8 of either IC4 or IC3 is about 1V lower.
You should also find this voltage at pin 8 of IC1 and IC2 as well. Now check the voltage at pin 8 of IC5. This will be slightly lower again – something like 11.8V or so, if you’re using a 12V source.

If everything seems OK so far, check the voltages at pin 7 of IC5 and at pin 7 of IC3. In both cases, you should get a reading of about 5.5V, because these pins are the outputs of the ‘half supply rail’ splitters. If these voltages are correct as well, your mixer is almost certainly working correctly.

It’s just about finished!

The last check is to wind down the headphone volume pot to minimum, connect a set of headphones and then slowly increase the level to maximum. Depending on the headphone sensitivity, at maximum you will probably hear some hiss or noise, but not much else.

Plug in a suitable signal source (taking into account what components you have selected for the various inputs) and make sure that the input level pot for that source varies the level from zero to maximum.

Check all four inputs in a similar way with other audio sources and also make sure that there is an output at the output socket by connecting it to an amplifier.

All that remains is to fit the top half of the case and fasten everything together using the four countersink machine screws supplied. Your mixer is now complete and ready for use.

Reproduced by arrangement with SILICON CHIP magazine 2009.

www.siliconchip.com.au

Capacitor Codes

<table>
<thead>
<tr>
<th>Value</th>
<th>µF code</th>
<th>EIA Code</th>
<th>IEC Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>270nF</td>
<td>0.27µF</td>
<td>274</td>
<td>270n</td>
</tr>
<tr>
<td>100nF</td>
<td>0.1µF</td>
<td>104</td>
<td>100n</td>
</tr>
<tr>
<td>22nF</td>
<td>0.22µF</td>
<td>223</td>
<td>22n</td>
</tr>
<tr>
<td>10nF</td>
<td>0.1µF</td>
<td>103</td>
<td>10n</td>
</tr>
<tr>
<td>2.2nF</td>
<td>0.0022µF</td>
<td>222</td>
<td>2n2</td>
</tr>
<tr>
<td>1.5nF</td>
<td>0.0015µF</td>
<td>152</td>
<td>1n5</td>
</tr>
<tr>
<td>68pF</td>
<td>NA</td>
<td>68</td>
<td>68p</td>
</tr>
<tr>
<td>39pF</td>
<td>NA</td>
<td>39</td>
<td>39p</td>
</tr>
<tr>
<td>22pF</td>
<td>NA</td>
<td>22</td>
<td>22p</td>
</tr>
<tr>
<td>4.7pF</td>
<td>NA</td>
<td>4.7</td>
<td>4p7</td>
</tr>
</tbody>
</table>

Resistor Colour Codes

<table>
<thead>
<tr>
<th>No.</th>
<th>Value</th>
<th>4-Band Code (1%)</th>
<th>5-Band Code (1%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>330kΩ</td>
<td>orange orange yellow brown</td>
<td>orange orange black orange brown</td>
</tr>
<tr>
<td>4</td>
<td>100kΩ</td>
<td>brown black yellow brown</td>
<td>brown black black brown</td>
</tr>
<tr>
<td>7</td>
<td>47kΩ</td>
<td>yellow violet orange brown</td>
<td>yellow violet black red brown</td>
</tr>
<tr>
<td>8</td>
<td>10kΩ</td>
<td>brown black orange brown</td>
<td>brown black red red brown</td>
</tr>
<tr>
<td>2</td>
<td>6.8kΩ</td>
<td>blue grey red brown</td>
<td>blue grey black brown brown</td>
</tr>
<tr>
<td>1</td>
<td>4.7kΩ</td>
<td>yellow violet red brown</td>
<td>yellow violet black brown brown</td>
</tr>
<tr>
<td>4</td>
<td>1.2kΩ</td>
<td>brown red red brown</td>
<td>brown red black brown brown</td>
</tr>
<tr>
<td>4</td>
<td>1kΩ</td>
<td>brown red black brown</td>
<td>brown black black brown brown</td>
</tr>
<tr>
<td>2</td>
<td>470Ω</td>
<td>yellow violet brown brown</td>
<td>yellow violet black black brown</td>
</tr>
<tr>
<td>1</td>
<td>100Ω</td>
<td>brown black brown brown</td>
<td>brown black black black brown</td>
</tr>
<tr>
<td>2</td>
<td>68Ω</td>
<td>blue grey black brown</td>
<td>blue grey black gold brown</td>
</tr>
<tr>
<td>3</td>
<td>33Ω</td>
<td>orange orange brown brown</td>
<td>orange orange black gold brown</td>
</tr>
<tr>
<td>1</td>
<td>10Ω</td>
<td>brown black black brown</td>
<td>brown black black gold brown</td>
</tr>
</tbody>
</table>

This inside view from the back shows the input and output sockets, headphones volume control, DC input plus the internals of the front panel.

www.Ferysteryer.eu

Standard and custom transformers
ARTICLES on restoration and repair, history, circuit techniques, personalities, reminiscences and just plain nostalgia - you’ll find them all. Plus features on museums and private collections and a full-colour photo-feature in every issue.

IT’S MOSTLY about valves, of course, but ‘solid-state’ - whether of the coherer and spark-gap variety or early transistors - also has a place.

FROM THE DAYS of Maxwell, Hertz, Lodge and Marconi to what was the state-of-the-art just a few short years ago . . .

There is also a selection of free readers’ For Sale and Wanted advertisements in every issue.

The leading magazine for vintage radio enthusiasts

Radio Bygones covers it all!

THE MAGAZINE is published six times a year, and is only available by postal subscription. It is not available at newsagents.

TO TAKE OUT a subscription, or to order a sample copy, please contact us:

RADIO BYGONES, Wimborne Publishing Ltd,
Sequoia House, 398a Ringwood Road, Ferndown, Dorset BH22 9AU.
Tel: 01202 873872. Fax: 01202 874562. Web sites: www.radiobygones.com

EPE is available from any UK newsagent (and many others around the World). If a newsagent does not normally stock the magazine you can order a copy for delivery, or ‘shop save’ for you to collect. All issues are on sale-or-return from our distributor. However, you may not be able to find copies of EPE in some WHSmith stores that have previously carried them on their shelves. This is because WHSmith want us as publishers to pay for shelf space in stores only selling one or two copies a month (around 12% of WHSmith stores) – something we do not feel will be cost effective. We would have to increase the cover price of all WHSmith copies by about 50 pence to recover this charge, which is unrealistic.

If you have problems finding the magazine please order copies from your local newsagent or take out a subscription. Subscriptions are actually a cheaper way to buy your copies (see page 21) – even cheaper is the Online issue which costs around £13 per year (see our website for details www.epemag.com).

We do apologise for any inconvenience caused, please contact the Editorial office with any queries or comments on this. Tel: 01202 873872 Email: enquiries@wimborne.co.uk.

Now also available to BUY ONLINE
www.radiobygones.com
Log on, pay by credit card and download the magazine to your PC
ONLY $9.99 (US Dollars)
FOR 6 ISSUES
A free issue is available
Top Kits.

- **ICEbreaker** PIC16F877 in - circuit emulator - Kit 906...£34.99
- **1K/50V Insulation Tester** Inc. drilled case - Kit 846...£32.95
- **Pipe Descaler** - High Power - Kit 880...£22.95

All Prices Include VAT, Add £3.00 P&P per order, or £7.99 for next day. Cheqs. P.O. & most major cards accepted. Mail Order Only.

Visit our Shop, Call or Buy online at:

www.cricklewoodelectronics.com

Established 1981

1000’s OF PRICES REDUCED!

Alternatively phone us on 020 8452 0161 with your requirements.

Frustrated with your supplier? Visit our component packed website for a vast range of parts - old and new, many unavailable elsewhere! www.cricklewoodelectronics.com

Visit our Shop, Call or Buy online at:

www.cricklewoodelectronics.com

PLEASE CONTACT

Stewart Kearn on 01202 873872 or email stewart.kearn@wimborne.co.uk
A £5 2-Channel Vibration Sensor

Want to make a vibration sensor for just a few pounds? All you need is an old cassette deck and a couple of loudspeakers!

This 2-Channel vibration sensor costs almost nothing to make, but is sensitive enough to detect a cat walking past on a wooden floor!

To make it, you’ll need a discarded (but still working) cassette deck that has VU meters (these can be either analogue or digital) plus a couple of loudspeakers, which can be easily salvaged from an old stereo TV. If you can’t score that lot for under £5.00, you’re not really trying.

High-gain preamplifiers

The unit takes advantage of the fact that a cassette deck uses two high-gain preamplifier stages that work with very small signals. Normally, these signals are read off the tape by the tape heads, but what we do here is feed in new signals that are derived from coils of wire moving in a magnetic field. And since loudspeakers have very strong magnets, coils with lots of windings and very small internal clearances, they make ideal sensors for our vibration detector.

If the speaker basket (or frame) is firmly attached (face down) to the ground and a vibration occurs, then the basket and the cone will tend to move at different rates. For example, if there is a sudden movement upwards, the inertia of the cone means that it gets left behind for a moment. As a result, the magnet will move in relation to the coil (which is attached to the cone) and a small voltage will be generated.

This voltage is amplified and displayed on the cassette deck’s VU meters. The greater the needle deflection, the greater the amount of vertical vibration that has occurred.

Building it

At its simplest, the vibration detector will take only a few minutes to make. First, make sure that the power cord is disconnected from the mains supply and then take the cover off the cassette deck. Now trace the leads (they’ll be shielded) that connect the PC board to the tape heads. There will be six conductors in all—a common, play and record signal feed for each head.

Cut these wires and feed them out of the case. That done, replace the case lid, power-up the deck, press the ‘Play’ button and then connect a speaker across the wires for one channel, trying various combinations until you find a pair which causes a VU meter to strongly react to any speaker movement.

Now do the same for the other channel. You may need to extend these leads and in our case, we used the cables that came with the deck. While we were at it, we also stripped the cassette deck of surplus parts. For example, the complete tape mechanism was removed. Why? Well, the DC motor, drive belts and springs can find a use in another project, as can the tape counter. There’s no need to leave them inside the ‘unit’.

Of course, if you take this approach, you’ll need to activate the same switches that pressing the ‘Play’ button normally does. For example, if a single switch is closed when ‘Play’ is pressed, the wires leading to that switch will need to be connected together. On the other hand, you may find that when the cassette mechanism is removed, the unit is effectively always in ‘Play’ mode.

Note too that different speakers will give different sensitivities. We
Whenever you throw away an old TV (or VCR or washing machine or dishwasher or printer) do you always think that surely there must be some good salvageable components inside? Well, this column is for you! (And it’s also for people without a lot of dough.) Each month we’ll use bits and pieces sourced from discards, sometimes in mini-projects and other times as an ideas smorgasbord.

And you can contribute as well. If you have a use for specific parts which can easily be salvaged from goods commonly being thrown away, we’d love to hear from you. Perhaps you use the pressure switch from a washing machine to control a pump. Or maybe you salvage the high-quality bearings from VCR heads. Or perhaps you’ve found how the guts of a cassette player can be easily turned into a metal detector. (Well, we made the last one up but you get the idea . . .)

If you have some practical ideas, write in and tell us!

Rat It Before You Chuck It!

We chose to remove the internal bits and pieces that were no longer needed – the cassette mechanism, tape transport buttons, access door and so on. This allows these parts to be used in other projects and gives a much lighter unit.

The loudspeakers detect vibration and generate a small voltage as the magnet moves past the voice-coil in each unit. The larger the speakers, the more sensitive the instrument.

I tried a variety and found that the larger the speaker, the more sensitive the unit became.

The speakers shown here (100mm diameter units salvaged from a stereo TV) were used in the author’s unit and give a noticeable reading when anyone walks anywhere in the house.

As I type this, the unit is on my desk; with each normal force keystroke, the display meters are reading just under full-scale!

New faceplate

To make the unit look less like a cassette deck and more like a classy vibration detector, you can make a new faceplate. If the original faceplate is removable (most are), take it off and scan it into your PC. You can then use image manipulation software to construct the new visuals, putting on whatever labels you want.

That done, print it out at full-size on heavy stock, gloss paper and affix it to the original faceplate. The label can then be protected using clear contact adhesive film or a couple of strips of broad adhesive tape.

Another option is to replace the scale behind the VU meters. You can make the scale read anything you like, but in the case of the unit shown here, we elected to keep the original scales.

Changing the sensitivity

If the sensitivity of the unit is too great, simply reduce the size of the speaker. Adding weights to the cone also alters the response.

When exploring the use of different speakers, be aware that a typical house is full of background vibrations. The compressor in the fridge can cause sufficient vibration to swamp other signals, while a PC cooling fan can also cause clearly visible room vibration.

So, to be able to watch earth vibrations caused by (say) visitors walking up to your front door, you’ll need to remotely mount the speaker sensor away from this house-borne noise – but note that the sensitivity will be reduced if the cable is too long. Screwing the sensors to the floor, however, will improve sensitivity.

Logging the output

Finally, if you want to feed the output signal into a logging system or drive an external display, line-level output voltages will be available on the normal RCA phono outputs at the rear of the cassette deck.
THE two previous Interface articles considered the use of RS232C handshake lines as a means of controlling user add-ons. The RS232C serial port can be a standard type or it can be provided by a USB-to-serial converter.

Once installed properly and integrated into the Windows operating system, a USB-to-serial converter is used in the same way as a normal serial port, and it is treated in exactly the same way when writing the control software. As explained in the previous Interface articles, two handshake outputs (DTR and RTS) are under direct software control when using the SerialPort component of Visual Basic 2008.

Unfortunately, no other lines can be controlled directly, and there is no easy way of controlling the Transmitted Data output line on a simple true/false basis. Direct control of this line might be possible using more roundabout methods, but it does not appear to be a feature of the SerialPort component.

There is an even bigger omission in that it is not possible to directly read any of the input lines either. This is a pity, as it would provide a quick and easy means of providing basic information from add-on devices. Instead, all information has to enter the port as normal asynchronous serial data. Since hardware handshaking is not normally required, due to the relatively slow data rates involved, the handshake inputs are therefore superfluous.

Supply difficulties

One problem in using a serial port with user add-ons is that there is no supply output of any kind. When using a USB-to-serial converter there is a +5V supply output on the USB port, but this is not available from the serial port.

It is likely that there is a fair amount of unused supply current available from the USB port, but it could be difficult to find a neat way of accessing it. In fact, it would almost certainly be easier to use a second USB port to provide power for the main circuit. Other options are to use a battery supply, or a battery eliminator.

Another possibility is to use the handshake outputs as power sources. Of course, this is only a practical proposition if they are not being used for other purposes, which they will probably not be if the port is only being used to read data, or the transmitted data is being sent in asynchronous form via the Transmitted Data output. It will not be possible if the handshake outputs are being used to send synchronous data using the method outlined in the previous Interface article.

Of course, the amount of current that can be drawn from an RS232C handshake output is not very great. The nominal output potentials are ±12V, but the actual voltage under no loading varies enormously. A typical PC serial port provides unloaded output potentials that are slightly higher than these nominal levels, while a USB-to-serial converter is likely to fall a couple of volts short of them.

Presumably, the USB converters have voltage doubler circuits that give nominal output levels of ±10V from the 5V supply of the USB port. Many laptop PCs have unloaded output potentials of around ±5V, which is two volts higher than the bare minimum needed to conform to the RS232C standard, but it makes them of little use as supply outputs.

Current limiting on all outputs is a requirement of the RS232C standard, and this is done to prevent any damage if two outputs should be connected together by accident. This is unfortunate in the current context, as it severely limits the maximum supply current that can be drawn from each handshake output.

Short circuiting a handshake output to ground is unlikely to produce a current flow of much more than about 10 milliams, and in some cases the short-circuit current is a bit less than this. The output current is usually limited by a series resistor rather than some form of semiconductor limiting circuit, and the practical consequence of this is that the output voltage starts to fall as soon as you start to draw any current.

Balanced view

Because of the series resistor, it is usually necessary to add a voltage regulator in order to use a handshake line as a power source. One possible exception is where it is necessary to have dual balanced supplies in order to power an analogue signal processing circuit based on operational amplifiers. With this type of circuit it is not normally necessary for the supply lines to be well stabilised, noise-free, or accurately balanced. Operational amplifiers and the circuits in which they operate are normally designed to be largely oblivious to any irregularities in the supply lines.

On the face of it, no circuitry is needed other than the usual supply decoupling capacitors. In practice, this is fine, provided the two handshake outputs are set to the correct states prior to the add-on being connected to the serial port.

Fig.2. A simple circuit that provides dual balanced supplies from the two handshake outputs of an RS232C port. The DTR and RTS lines must be set to true and false respectively.

Fig.1. Connection details for a PC 9-pin serial port. A 9-pin female D connector is needed to make connections to the port.
Since it is likely that the add-on will often be connected to the computer at switch-on, and the correct starting levels for the two output lines are unlikely to be correct by default, it is advisable to include protection diodes (see Fig.2) to ensure that the circuit cannot be fed with supplies of the wrong polarity. The voltage drop of about 0.6V or so through each diode is unwelcome, but is unlikely to be of any great significance in practice. The voltage drop could be minimised by using Schottky diodes instead of an ordinary silicon type. Each output voltage would then be reduced by about 0.2V.

The supply voltages obtained are something that is dependent on the particular RS232C port in use, and the current consumption of the circuit. Using a circuit based on two or three ordinary operational amplifiers, it is likely that the actual supply potentials would only be about half their nominal levels of ±12V.

This might be sufficient, but where possible it is probably best to use low current consumption operational amplifiers, such as the TL061CP. Four of these will typically consume less than one milliamp and place minimal loading on the supply lines. Typical supply potentials of around ±8V to ±10V could then be achieved.

Drop-out generation

It is possible to obtain stable 5V supplies of either polarity, or both, but the maximum output current will still be quite low even at this reduced output voltage. Also, it is necessary to use something other than ‘bog standard’ voltage regulators in order to obtain a worthwhile output current. All that is needed in order to obtain a regulated 5V supply is a low-power regulator chip added at each handshake output. In the example of Fig.3, the two handshake outputs are fed to separate regulator chips, with IC1 providing a positive supply, while IC2 provides a negative one. Of course, as with all the supply circuits featured here, the two handshake lines must be set to the appropriate output levels in order to get the circuit to function properly.

Ordinary regulator chips will not provide particularly good results in this application, with the supply probably sagging below 5V if more than a milliamp or two of output current is drawn. Clearly, the limitations of the power sources prevent very much more than this from being obtained, but the maximum output current is still less than one would probably expect.

One reason for the apparent shortfall is that the regulator chip itself requires a small but significant supply current. The actual current consumed is quite low, at around four milliamps, but the available output current is reduced by this amount.

The other cause of the problem is the drop-out voltage of the regulator, which is the minimum input voltage needed in order to maintain the output at 5V. For a small 5V regulator this potential is normally about 7V to 8V. The regulator ceases to function properly when the handshake line is pulled down to this level, and not when it reaches 5V. This reduces the maximum available output current by a significant amount.

The solution to the problem is to use a modern regulator chip that has reduced current consumption and a low drop-out voltage. In component catalogues these are usually referred to simply as LDO (low drop-out) regulators.

As an example of one of these chips, the LE50CZ positive voltage regulator has a dropout potential that is typically just 0.2V higher than the output voltage, together with a typical current consumption of just 0.5mA. Using a modern regulator chip such as this, it should be possible to obtain a properly regulated output potential with output currents of up to about 7mA or 8mA with most RS232C ports.

Doubling up

While an output current of this order is still very low, it is actually sufficient to power many modern circuits. However, it is possible to obtain higher output currents provided only a single supply is required. The basic technique is to drive the voltage regulator from two handshake outputs, as in Fig.4. In this case, the two outputs must both be set at +12V (true).

The two diodes (D1 and D2) form a simple mixer that enables the two outputs to drive the regulator chip, but prevents one line from driving any output current into the other one. The mixing process requires a series resistor in each handshake output line, but there is no need to include these in the circuit. The built-in current limiting of each handshake line effectively provides this resistance.

Using two handshake lines, Schottky diodes, and a good LDO regulator it should be possible to obtain something in the region of 12mA to 15mA from most serial ports. This is still fairly low, but it is sufficient to drive many modern circuits. After all, there are plenty of modern logic devices and analogue circuits that have minute power consumptions.

Driving a few LED indicator lights should be no problem, since it is now possible to obtain devices that require a supply current of only one or two milliamps for effective operation. Being realistic about things, it would not be possible to accommodate higher current devices such as most relays, filament bulbs, and the like.

There is a third output on a serial port in the form of the Transmitted Data output (pin 3). This can be used as a supply output if it is not being used to output data, but as explained previously, there is no simple way of directly controlling the output level of this line. It normally goes to −12V under standby conditions, so it can be used to provide a negative supply. Unfortunately, it cannot be used to provide a positive supply, or to boost the other two lines and provide an augmented +5V supply with output currents of up to around 20mA or so.

Everyday Practical Electronics, April 2009
The circuit of Fig.1 shows a simple Wind-Water Speed Indicator. The ‘star attraction’ is motor M1, which is a ‘garden variety’ quartz clock motor, as found in any quartz clock on a supermarket shelf. This has a miniature stepper motor, which creates one complete AC waveform with each revolution.

Note that this means that this motor is ideal for counting revolutions. But that is not all. A quartz clock motor (apart from its spinning magnet) can easily be completely waterproofed in epoxy resin, which means that it will also turn underwater, to measure water speed. Further, by fixing a suitable axle to the motor’s magnet (with a propeller), it will spin with almost no friction at all. Consequently, unlike most electric motors, it is able to turn at the slightest puff of wind or movement of water. It is, of course, also a fairly cheap motor.

The electronics are based on CMOS hex inverter IC1, which is used principally in its analogue mode. IC1a is DC coupled to IC1b, which is AC coupled to IC1c via capacitor C2, with the input of IC1c being DC biased via preset potentiometer VR1. Capacitor C2 must be non-polarised (two 470nF non-polarised capacitors may be wired in parallel if desired). Preset VR1 must be a multiturn component, in the interests of precision adjustment. IC1c is DC coupled to IC1d.

With the circuit having a very high gain throughout, IC1d provides a binary output which is ideal for plugging into a 12V counter circuit. Resistor R1 is used as the ballast resistor limiting the current through LED D1. As shown, D1 will indicate as little as one revolution per second, and less. LED, D1 should be an ultrabright device.

The circuit should ideally be powered off a 12V regulated power supply since its current consumption is relatively high (about 20mA), and a regulator will guarantee stability. The circuit is adjusted by means of preset VR1. This is turned carefully until D1 just fades and extinguishes. The circuit is then ‘ready to go’.

Thomas Scarborough, Cape Town, South Africa
Normally a car’s alternator is used to generate AC, which is rectified to DC, and then used to power various items in the car and to charge the battery. But, with a little ingenuity, you can use it as half of a servo pair to produce remote motion in a distant place. The circuit details are shown in Fig.2.

First, you have to use a pair of identical alternators. Start off by removing the four bolts from the corners of each alternator. It is best to work on one alternator at a time. After the bolts are removed, gently pull it apart. It will be in two halves, one will be the stator section, and the other will be the rotor. There will also be a regulator that controls the DC current in the rotor field; remove it completely. Next remove the three-phase bridge rectifier.

Run the field and rotor wires externally. The same with the stator wires. Remember, connect L1 to L1, L2 to L2, L3 to L3. You will need at least a 4- or 5-wire cable, capable of carrying the current of the fields and rotors.

After this is completed you will have to put it back together – but this can be tricky. The two brushes must be set on the slip-rings again. In most cases, a simple piece of stiff wire can be used. It first must go through the hole in the back of the alternator frame and through the two brush holders, one on each side. Push down on the brushes, and slide the wire through the back frame over the top of the brushes and into the hole on the end. If this is done correctly you will see the wire sticking through the back of the alternator over the top of the brushes and into the end hole. When successful, put the rotor back in.

Before you push it together, align up the bolt holes. You may have to rotate it back and forth until it is lined up. Once this is done drop the bolts in and tighten it up. Do this for both alternators. Now wire up.

You will have to find some place to put the transformer and AC current controller. This can be in a small box, also providing access to AC power. Use a heatsink for transistors TR1 and TR2. Do not forget to remove the stiff wire from the back of the alternators after you put it back together again.

Using old alternators that have been converted into servos is far cheaper than getting a servo pair ready-made. By scrounging used alternators at your local junk yard, you may get them for almost nothing!

Craig Kendrick Sellen, Carbondale PA, USA
Two circuits are needed for this month’s project, comprising a transmitter that generates pulses of ultrasonic sound waves and a separate receiver that processes received ultrasonic pulses to switch a relay on and off.

Project 12: Ultrasonic Transmitter

The Ultrasonic Transmitter circuit shown in Fig. 7.1 generates ultrasonic sound waves at a frequency of 40kHz. The key component is a 555 timer, IC1, which is wired as an astable to produce an output frequency of 40kHz. This stream of electrical signals drives the ultrasonic transmitter transducer TX1.

Potentiometer VR1, used as a variable resistor, enables you to make fine adjustment to the frequency when setting up the control system to ensure that TX1 is resonating at its optimum natural frequency, thereby ensuring maximum range. This adjustment is described in the ‘synchronising’ section at the end of the receiver section.

Breadboard

The Protobloc component layout for the Ultrasonic Transmitter is shown in Fig. 7.1. Connections to S1 and TX1 and LS1 are also shown in Fig. 7.2, which requires wires to be soldered to their terminals for insertion into the breadboard.

When soldering the leads to the transducer connecting pins, be as quick as possible, as it does not take kindly to excessive heat. Note that...
Component Info

IC1, type 555 timer IC
Viewed from the top, an indented dot and a ‘half-moon’ shape at one end indicates pin one. The pins are numbered anti-clockwise ending at pin 8 opposite pin 1.

TX1, 40kHz ultrasonic transmitter transducer
One pin is connected to the case and this must be connected to the 0V supply. Make sure it is the transmitter device and not the receiver. A ‘T’ will be printed on it.

VR1, potentiometer
This is a preset type that can be inserted directly into the Protobloc and its value adjusted with a small screwdriver.

S1, pushswitch
Push-to-make, release-to-break

Components needed...

Ultrasonic Transmitter

Integrated circuit, IC1: type 555 timer
Ultrasonic transducer, TX1: 40kHz transmitter. (Usually only sold as a ‘matched pair’, i.e. transmitter and receiver).
Potentiometer, VR1: 10kΩ miniature preset type
Capacitors, C1: value 1nF polystyrene
Resistors, R1 and R2: values 2.2kΩ (R1); 12kΩ (R2). Both 0.25W 5% carbon film.
Pushswitch, S1: push-to-make, release-to-break type
Battery, B1: 9V and connecting leads
Protobloc and wire links

Notes
- The component values listed should be used to ensure that the circuit can be tuned to generate 40kHz sound waves. The author used an oscilloscope to check that the circuit was driving the ultrasonic transmitter at 40kHz.
- However, if an oscilloscope is not available, you can fine tune the system by trial and error as described below, once the receiver is assembled. More information later.
- A brief press of the pushswitch generates a short burst of ultrasonic sound for transmission to the receiver.
Project 13: Ultrasonic Receiver

The circuit shown in Fig.7.3 is designed to receive and process the 40kHz pulse of sound waves generated when the transmitter’s pushswitch is pressed. On the first push the relay is energised, and de-energised on the next push, enabling an electrical device to be switched on and off via the relay contacts. The Receiver circuit comprises the following building blocks:

- **Integrated circuits IC1 and IC2**, which together amplify the ultrasonic sound waves received by sensor RX1 from the transmitter. Just like the Bat Detector project (Part 6), two coupled amplifiers are used to boost the voltage gain and ensure remote control over a useful range of around 25 metres.

- The amplified 40kHz pulses are fed to the base (B) of NPN transistor TR1 via capacitor C3. When a burst of ultrasonic waves is received, the voltage at the collector (C) terminal of TR1 suddenly falls as current flows through resistor R2.

- The sharp fall in voltage is transferred to the trigger pin 2 of IC3, which is a 555 timer (IC3) and a 4027 CMOS dual JK master/slave flip-flop (IC4) connected as a monostable circuit. Once triggered, it produces a short pulse from its output terminal, each successive pulse ‘toggling’ the output (pin 15) between logic high and logic low.

![Fig.7.3. Ultrasonic Receiver circuit diagram](image)

Components needed...

Ultrasonic Receiver

- **Integrated circuits, IC1 to IC4**: type LM386 low power audio amplifier (IC1, IC2); type 555 timer (IC3) and a 4027 CMOS dual JK master/slave flip-flop (IC4)
- **Transistors, TR1 and TR2**: both type BC108 or similar in a TO18 style package
- **Ultrasonic transducer, RX1**: 40kHz receiver. (Usually only sold as a ‘matched pair’ with transmitter).
- **Light emitting diode, LED1**: red, green or yellow – not blue
- **Diode, D1 and D2**: both type 1N4148 signal diode
- **Relay, RLA**: low voltage 6V type, single-pole changeover contacts
- **Capacitors, C1 to C5**: values 10μF 16V radial elect. (C1, C3); 100nF polyester (C2); 10μF 16V radial elect. (C4); 100μF 16V axial elect. (C5)
- **Resistors, R1 to R5**: values 2.2MΩ (R1), 4.7kΩ (R2), 10kΩ (R3), 2.2kΩ (R4) and 220Ω (R5). All 0.25W 5% carbon film
- **Switch, S1 (On/Off)**: single-pole, single-throw (SPST)
- **Battery, B1**: 9V and connecting leads
- **Protobloc and wire links**
The final stage is the relay driver using NPN transistor TR2. When a logic high is produced at pin 15 of IC4, the transistor switches on, energising relay RLA1 and turning on the optional LED1. The next burst of 40kHz sound waves sets the output of IC4 to logic low, switching off the transistor and demergerising the relay and LED1.

Breadboard

The Protobloc component layout for the Receiver is shown in Fig. 7.4. The electrolytic capacitors must be inserted on the board with their positive (+) leads positioned as indicated.

Transducer RX1 has one pin connected to its case and this pin must be connected to 0V. These pins require short lengths of 0.6mm insulated wire to be soldered to them so that they can be inserted into the Protobloc.

When soldering the leads to the transducer pins, be as quick as possible, as it does not take kindly to excessive heat.

Component Info

IC1, IC2, type LM386 audio amp
IC3, type 555 timer IC

Viewed from above, an indented dot and ‘half-moon’ shape at one end indicates pin one. Once pin 1 has been identified, pins are numbered 1 to 8 going anticlockwise, ending up at pin 8 opposite pin 1.

IC4, type 4027 JK flip-flop

PIN 1

Once pin 1 has been identified, pins are numbered 1 to 16 going anticlockwise.

Notes

- Never use the relay to control power from the AC mains supply. If you want to use it for controlling mains-operated devices you must seek the help of a qualified electrician.
- Do not omit capacitor C5, as it helps to stabilise the power supply voltage to the circuit.

Synchronising the system

The transmitter needs adjusting so that it generates ultrasound at a frequency of 40kHz. This is easy if you have an oscilloscope or frequency counter handy. If you do not have one, proceed as follows.

Make sure the transmitter is connected to the 9V battery and its sensor is pointing towards the receiver placed about a metre away and also connected to its 9V battery. LED1 should be on or off depending on whether the output of IC4 is high (on) or low (off) when powering up the circuit. Now it’s a matter of trial and error!

Press and release pushswitch S1 on the transmitter while watching LED1 on the receiver. Make small adjustments to preset VR1 on the transmitter until repeatedly pressing and releasing S1 causes LED1 to go off and on. Gradually increase the distance between the transmitter and receiver to 20 metres and continue to make fine adjustments to VR1. If the receiver is to be used to switch on and off an electrical device, a relay needs to be connected in parallel with LED1 and R5, as shown, and its switching contacts used to control the device in a separate circuit.

Next Month: Motion Detector and Moisture Monitor Mk.2.
PIC-Based Ultrasonic Tape Measure
You've got it taped if you PIC this ultrasonic distance measuring calculator.

EPE Mind PICkler
Want seven ways to relax? Try our PIC-controlled mind machine!

PIC MIDI Sustain Pedal
Add sustain and glissando to your MIDI line-up with this inexpensive PIC-controlled effects unit.

PIC-based MIDI Handbells
Ring out thy bells with merry tolling – plus a MIDI PIC-up, of course!

EPE Mood PICker
Oh for a good night's sleep! Insomniacs rejoice – your wakeful nights could soon be over with this mini-micro under the pillow!

PIC Micro-Probe
A hardware tool to help debug your PIC software.

PIC Video Cleaner
Improving video viewing on poorly maintained TVs and VCRs.

PIC Graphics LCD Scope
A PIC and graphics LCD signal monitor for your workshop.

PIC to Printer Interface
How to use dot-matrix printers as data loggers with PIC micro-controllers.

PIC Polywhatsit
A novel compendium of musical effects to delight the creative musician.

PIC Magick Musick
Conjure music from thin air at the mere untouching gesture of a fingertip.

PIC Mini-Enigma
Share encrypted messages with your friends — true spymaster entertainment.

PIC Virus Zapper
Can disease be cured electronically? Investigate this controversial subject for yourself.

PIC Controlled Intruder Alarm
A sophisticated multi-zone intruder detection system that offers a variety of monitoring facilities.

PIC Big-Digit Display
Control the giant ex-British Rail platform clock 7-segment digits that are now available on the surplus market.

PIC Freezer Alarm
How to prevent your food from defrosting unexpectedly.

PIC World Clock
Graphically displays world map, calendar, clock and global time-zone data.

PICAXE Projects
A 3-part series using PICAXE devices – PIC micro-controllers that do not need specialist knowledge or programming equipment.

PIC-based Tuning Fork and Metronome
Thrill everyone by at last getting your instrument properly tuned!

Versatile PIC Flasher
An attractive display to enhance your Christmas decorations or your child’s ceiling.
EPE PIC RESOURCES CD-ROM V2

Version 2 includes the EPE PIC Tutorial V2 series of Supplements (EPE April, May, June 2003)

The CD-ROM contains the following Tutorial-related software and texts:

- EPE PIC Tutorial V2 complete series of articles plus demonstration software, J ohn Becker, April, May, June '03
- PIC Toolkit Mk3 (TK3 hardware construction details), J ohn Becker, Oct '01
- PIC Toolkit TK3 for Windows (software details), J ohn Becker, Nov '01

Plus these useful texts to help you get the most out of your PIC programming:

- How to Use Intelligent LCDs, J ulyan Ilett, Feb/Mar '97
- PIC16F87x Microcontrollers (Review), J ohn Becker, April '99
- PIC16F87x Mini Tutorial, J ohn Becker, Oct '99
- Using PICs and Keypads, J ohn Becker, Jan '01
- How to Use Graphics LCDs with PICs, J ohn Becker, Feb '01
- PIC16F87x Extended Memory (how to use it), J ohn Becker, J uly '01
- PIC to Printer Interfacing (dot-matrix), J ohn Becker, J uly '01
- PIC Magick Musick (use of 40kHz transducers), J ohn Becker, J an '02
- Programming PIC Interrupts, M alcolm Wiles, Mar/Apr '02
- Using the PIC’s P CLATH Command, J ohn Waller, J uly '02
- EPE StyloPIC (precision tuning musical notes), J ohn Becker, J uly '02
- Using Square Roots with PICs, P etter Hemsley, Aug '02
- Using TK3 with Windows XP and 2000, M ark J ones, O ct '02
- PIC Macros and Computed GOTOs, M alcolm Wiles, J an '03
- Asynchronous Serial Communications (RS-232), J ohn Waller, unpublished
- Using I2C Facilities in the PIC16F877, J ohn Waller, unpublished
- Using SerialEEPROMs, G ary Moulton, unpublished
- Additional text for EPE PIC Tutorial V2, J ohn Becker, unpublished

NOTE: The PDF files on this CD-ROM are suitable to use on any PC with a CD-ROM drive. They require Adobe Acrobat Reader – included on the CD-ROM

BECOME A PIC WIZARD WITH THE HELP OF EPE!
Selecting op amps

Device needs

To select an op amp for a particular design you need to know what the circuit and hence what the op amp needs to achieve. This will give you a minimum specification for the device, or help you identify which of the many op amp characteristics are most important.

For example, if your application is an audio amplifier, then it would be sensible to use a low noise op amp, but offsets may not be so important. On the other hand, if you were amplifying the signal from a temperature sensor then the offset (DC accuracy) and its temperature stability may be very important.

For some applications, the choice of op amp will not be very critical (these applications often suit ‘general purpose’ op amps). However, in other cases the choice of op amp can make the difference between a circuit functioning properly or not.

To find a possible replacement or alternative device look at the headline characteristics or ‘features’ on the datasheet or manufacturer’s website, and match or better the relevant ones with the substitute device. Also, make sure that electrical ratings such as supply voltages are compatible in the substitute.

It is possible that not every feature was important when the device was originally chosen – a look at the circuit may help narrow this down. For example, in the case of the Mains Monitor (which is mains powered) the ‘micropower’ capabilities of the LMC6462 are probably less important than its ‘rail-to-rail’ input and output capabilities.

Manufacturer’s prefix

The clue to the manufacturer is in the first few letters of an IC’s code – known as the manufacturer’s prefix. There are a number of sites on the internet which list IC prefixes and link these to the manufacturers that use them. One example is wikibooks.org/wiki/Practical_Electronics/Manufacturers_Prefix

Some manufacturers no longer exist, or have been taken over by other companies, and some prefixes are used by multiple manufacturers, but such lists give you a good starting point for a search.

Table 1: Manufacturers op amp application grouping

- **General-Purpose** - suitable for a wide range of applications requiring moderate amplifier performance
- **Low Noise** - guaranteed very low noise for applications such as sensitive measurement and signal processing where noise from the op amp must be within known bounds
- **Low-Power/Micropower** - suitable for use in systems, such as mobile equipment, where power consumption is critical
- **Wideband/High Speed** - suitable for applications such as pulse circuits and video where accurate reproduction of complex high frequency signals is required
- **High-power/High Current** - op amps with high current output stages capable of driving low impedance loads
- **Low Drift/High Precision** - amplifiers with minimal offset voltage, and where accuracy is preserved over a wide temperature range
- **Low Bias/High Impedance** - FET input op amps with very low input bias currents for use in buffer amplifiers or circuits with large external resistors

Fig. 1. The op amp schematic symbol does not tell you anything about its characteristics

EPE Chatzones contributor nielsejner recently posted the following question about op amps:

Dealing with logic ICs seems to be easy, they have a circuit symbol that tells how they act.

When it comes to op amps I am less experienced and have difficulties comparing one to another if I need to substitute. From my view they all look alike – a triangle (see Fig.1) – and then I have to look into several datasheets to find a replacement.

Is there somewhere on the internet where they are listed in groups, categories or in a way so that it is easy to find a replacement?

For John Becker’s Mains Monitor of Aug ’08, I am looking for an LM6462, which is totally unknown on the internet. But then the text says it is a dual rail-to-rail op amp, so would a TS912 do?

Datasheet googling

At first I was surprised that Niels ejner had claimed that the LM6462 is ‘totally unknown on the internet’, and it seemed that Google provided plenty of hits when searching for ‘LM6462 datasheet’. However, it quickly became evident that these results were not very useful and it soon became clear that the reason was that the correct name for the device is LMC6462.

The ‘C’ seems to have been dropped from the correct name for the device is LMC6462. Soon became clear that the reason was that these results were not very useful and it

Table: Manufacturer’s prefix

<table>
<thead>
<tr>
<th>Manufacturer’s prefix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General-Purpose</td>
<td>Suitable for a wide range of applications requiring moderate amplifier performance</td>
</tr>
<tr>
<td>Low Noise</td>
<td>Guaranteed very low noise for applications such as sensitive measurement and signal processing where noise from the op amp must be within known bounds</td>
</tr>
<tr>
<td>Low-Power/Micropower</td>
<td>Suitable for use in systems, such as mobile equipment, where power consumption is critical</td>
</tr>
<tr>
<td>Wideband/High Speed</td>
<td>Suitable for applications such as pulse circuits and video where accurate reproduction of complex high frequency signals is required</td>
</tr>
<tr>
<td>High-power/High Current</td>
<td>Op amps with high current output stages capable of driving low impedance loads</td>
</tr>
<tr>
<td>Low Drift/High Precision</td>
<td>Amplifiers with minimal offset voltage, and where accuracy is preserved over a wide temperature range</td>
</tr>
<tr>
<td>Low Bias/High Impedance</td>
<td>FET input op amps with very low input bias currents for use in buffer amplifiers or circuits with large external resistors</td>
</tr>
</tbody>
</table>

Fig. 1. The op amp schematic symbol does not tell you anything about its characteristics

EPE Chatzones contributor nielsejner recently posted the following question about op amps:

Dealing with logic ICs seems to be easy, they have a circuit symbol that tells how they act.

When it comes to op amps I am less experienced and have difficulties comparing one to another if I need to substitute. From my view they all look alike – a triangle (see Fig.1) – and then I have to look into several datasheets to find a replacement.

Is there somewhere on the internet where they are listed in groups, categories or in a way so that it is easy to find a replacement?

For John Becker’s Mains Monitor of Aug ’08, I am looking for an LM6462, which is totally unknown on the internet. But then the text says it is a dual rail-to-rail op amp, so would a TS912 do?

Datasheet googling

At first I was surprised that Niels ejner had claimed that the LM6462 is ‘totally unknown on the internet’, and it seemed that Google provided plenty of hits when searching for ‘LM6462 datasheet’. However, it quickly became evident that these results were not very useful and it soon became clear that the reason was that the correct name for the device is LMC6462.

The ‘C’ seems to have been dropped from the correct name for the device is LMC6462. Soon became clear that the reason was that these results were not very useful and it soon became clear that the reason was that the correct name for the device is LMC6462.

The C seems to have been dropped from the correct name for the device is LMC6462. Soon became clear that the reason was that these results were not very useful and it soon became clear that the reason was that the correct name for the device is LMC6462.

The C seems to have been dropped from the correct name for the device is LMC6462. Soon became clear that the reason was that these results were not very useful and it soon became clear that the reason was that the correct name for the device is LMC6462.
Op amp selection

Something that helps when selecting op amps is that manufacturers often group their op amps into types suited to different kinds of application and these can narrow down your search. Typical descriptions are outlined in Table 1.

Some op amps may belong to more than one of these categories, and different manufacturers may use different terminology.

Interactive tools

Manufacturers and distributors often provide interactive selection tools on their websites. These allow you to define the values of the op amp parameters you require to narrow down the list of possible devices. Fig. 2 shows an example of such selection system. This is a screenshot of National Semiconductor’s ‘Parametric Catalogue and Search’ (www.national.com/cat/).

In this case, we have deselected all the options in ‘Input Output Type’ apart from rail-to-rail input and output. We have also set C = 5.00 for ‘Supply Max (Volts)’ as the op amp in the Mains Monitor has a 5V supply. All other parameters are in the default settings. The op amps meeting these requirements (97 out of 240) are listed on the web page (as shown in Fig.2). Note that the LMC6462 is in the list, as would be expected.

The specifications given on op amp data sheets can be divided into electrical ratings (maximum voltages etc) and characteristics (gain, slew rate etc). Some of the key parameters are discussed below.

Electrical ratings

Maximum and minimum power supply voltage (or supply voltage range): This ranges from less than 1V for minimum values up to several tens of volts for maximum values.

Make sure that your op amp matches the supply voltage you are using. Exceeding maximum supply voltages can cause permanent damage to ICs. Below the minimum the device simply will not operate properly or will have massively degraded performance.

Maximum differential input voltage: Typically, this is equal to the supply voltage or is a largish value such as ±40V. In a few cases it may be much lower, less than ±1V, for example.

You will need to take note of this if your application causes large differential inputs to occur, in many applications the differential input voltage is often very low due to the high gain of the op amp (if the differential input wasn’t small the output would be at one of the rails).

Power dissipation: The product of supply current and supply voltage. Power dissipation will increase as the power supply voltage is increased and if higher output currents are demanded from the op amp.

For special low power (micropower) op amps the minimal amount of power consumed in typical operation is often quoted as the selling point.

Supply current used and maximum supply current: The current into the supply terminals under specified conditions. As with power dissipation, you need to distinguish between figures for typical, maximum and quiescent (no signal) conditions. Supply current is important in low power applications (eg, battery powered circuits).

Characteristics

Large signal gain (A) open loop voltage gain: This typically ranges from tens of thousands to millions. The gain specified is for low frequency operation and op amp gain is deliberately made to fall as frequency increases to prevent instability.

Gain may be specified as a number, eg 100,000, as a ratio of voltages, eg 100V/mV, or in decibels, eg 100dB.

The precise value of the gain for individual op amps of a given type does not usually matter. This is because op amps are often used with negative feedback in circuits, where the gain of the circuit depends on the external components and not on the gain of the op amp, as long as the gain is very large.

Common mode input voltage range: In many circuits the small differential signal applied to the op amp will be biased around half the supply voltage range, which would be 0V for a split supply – this is easy for the op amp to deal with. More difficult to handle is a small differential signal on top of a large voltage common to both inputs, particularly if this is close to, or at, one of the supply voltages.

Not all op amps can work with input signals like this, but those that can are described as ‘rail-to-rail input’, some even allow the common mode voltage to exceed the supply range by a small amount.

Unity gain bandwidth (fu) or gain bandwidth product (GBW): The range of frequencies for which open-loop gain is greater than one. Typical values for general purpose devices are in the range of tens of kilohertz to a few megahertz, but may be higher – into the gigahertz range for special high frequency/high speed devices.

Common mode rejection ratio (CMRR): The ability to reject signals common to both inputs – the op amp is a differential amplifier, so it should ignore signals which are the same on both inputs. Signals which are the same on both inputs are called common-mode signals and ideally should not affect the output, but in practice do to some extent.

CMRR affects gain accuracy in some configurations and determines the ability of the op amp to ignore non-common mode signals. CMRR is measured in dB, 80dB to 120dB is typical, but lower and higher values occur.

Fig.2. Interactive online op amp selection from National Semiconductor (www.national.com/cat/)
Maximum peak-to-peak output swing: The maximum peak-to-peak output voltage that can be obtained without clipping the waveform. For many devices this is very close to the power supply voltages (referred to as ‘rail-to-rail output’). At high frequencies, the op amp can still produce these voltages, but distortion occurs as it cannot change the output fast enough (see slew rate).

Slew rate: The maximum rate of change of output (closed loop). Slew rates are often quoted in volts per microsecond. For example, a value of 2V/µs would mean that the time that the op amp’s output took to change from 0V to 5V due to a step change at the inputs would be 2.5µs.

Typical slew rates for general-purpose devices are from a few hundred millivolts to a few volts per microsecond, but much faster devices are available. A fast device with a slew rate of 3000V/µs could change its output from 0V to 5V in 1.7ns.

Supply voltage rejection ratio: This is the ability to prevent changes in supply voltage from causing changes in the output voltage.

Changes in the supply current due to circuit activity cause changes in supply voltage, which in turn may affect the output voltage. This is measured in decibels and is defined in a similar way to CMRR.

Input resistance/impedance: Common-mode input impedance is the effective impedance from either input terminal to ground and is ideally infinite. Differential input impedance is the apparent impedance between the inputs (also ideally infinite).

The input impedances will have both capacitive and resistive components. FET input op amps have particularly high input resistance, eg 10¹² ohms.

Input offset voltage: Ideally, with a differential input of zero the op amp’s output should also be zero, but in real op amps there will typically be a non-zero output.

The offset voltage is defined as the DC voltage, which must be supplied between the inputs to force the quiescent (zero input signal) open-loop (no feedback resistors) output voltage to zero. The offset is typically small, but will be amplified by the circuit and may cause significant problems.

Temperature coefficient of input offset voltage: Specifies how input offset voltage changes with temperature. As we noted above, offset changes with temperature and this parameter tells you by how much.

Input bias current: Bipolar op amps require bias (base) currents for the transistors connected to their inputs, and op amps with FET inputs have leakage currents at the inputs. The input bias current tells you how large these currents are and is defined as the average current into the two inputs with the output at zero volts.

This can vary greatly for different types of op amp, from femtoamps (10⁻¹⁵A) to tens of microamps, with bipolar op amps having larger input bias currents than FET input op amps.

Input current offset: The difference between the bias currents into the two inputs with the output at zero volts. Ideally, these currents will be equal, but in practice they are not, so the offset will be non-zero.

The input currents have to flow through the external circuitry and if different will cause offsets even if the impedances connected to the two inputs are equal.

Temperature coefficient of input offset current: Specifies how input offset current changes with temperature.

Input referred voltage noise: Voltage noise is defined as the voltage fluctuations at the input of an otherwise noise-free amplifier with shorted inputs. This is usually specified in terms of voltage noise density in nV/√Hz. The noise figure is ‘input referred’ so there is no need to take the amplifier’s gain into account.

Noise is potentially a problem in all electronic circuits, but is particularly important in applications such as microphone preamps, strain gauges, and most RF/wireless front-ends.

Input referred current noise: Current noise is the current fluctuations at the input of an otherwise noise-free amplifier with open inputs. Like voltage noise it is specified as noise density, typically in pA/√Hz.
Atmos Star Pack
Atlas DCA and Atlas LCR in Premium Carry Case

Atlas DCA - Model DCA55
Semiconductor Analyser
Identifies type and pinout. Connect any way round. Measures gain, junction characteristics and more. Now with premium strong probes!

Atlas LCR - Model LCR40
Passive Component Analyser
Automatic component identification (inductor, capacitor or resistor). Auto frequency selection. Measures main component value and other parameters too such as the DC resistance of inductors automatically...

Atlas ESR - Model ESR60
Special Offer AND Reduced VAT!
Measures capacitance and ESR! ESR from 0.01 ohms to 20 ohms. Battery included + Gold plated croc clips

LED Torch - Great Gift!
Special Offer AND Reduced VAT!
Uniros Aluminium 6 LED Torch
150mm long
2 AA Batteries (included)
Fabric Wrist Strap
Sealed retail pack

Atlas DCA
Special Offer AND Reduced VAT!
New probes!

Atlas LCR
Better than 25% VAT Reduction!
See description in main offer

Uniros Aluminium 6 LED Torch
Great Gift!
Capacitance from 1uF to 22,000uF
ESR from 0.01 ohms to 20 ohms
Battery included + Gold plated croc clips

Special Offer AND Reduced VAT!
Better than VAT Reduction!
½% VAT Reduction!
Special Offer AND Reduced VAT!

Special Offer AND Reduced VAT!
Special Offer AND Reduced VAT!
Special Offer AND Reduced VAT!

Peak Electronics Design Ltd, West Road House, West Road, Buxton, Derbyshire, SK17 6HF
tel. 01298 70012 www.peakelec.co.uk sales@peakelec.co.uk

Please add £2.00 p&p per order. Prices include UK VAT. See website for overseas prices. Special Offer prices for limited period or while stocks last.

No Compromise Oscilloscope

Other oscilloscopes in this price range force you to compromise on one of the key specifications: sampling rate, memory depth or bandwidth.
The Picoscope 5000 series is a no compromise PC oscilloscope at a price every engineer can afford.

www.picotech.com/scope502
01480 396395

1G/s sampling rate
250MHz bandwidth
128M sample buffer memory
12.5MS/s 12 bit AWG built in

PicoScope 5203
32M buffer £1195
PicoScope 5204
128M buffer £1795
Video from a PIC

I n last month’s article we concluded a subject that was close to the author’s heart—embedded Ethernet. This month, we look at another of his pet subjects, generating video from a PIC, in a format suitable for driving a standard TV.

Now, you might think that this is about hooking a PIC processor up to a complex video controller IC and a large SRAM IC, but in fact, we are going to look at generating video from an absolutely minimal system—a single PIC processor and a few passive components that can be built in an evening on stripboard.

The goal of the next two articles is to create a simple electronic and software system that can be easily adapted to uses of your own, without requiring extreme skill in programming or a detailed knowledge of video technology. This means we need to develop a simple video library that can vary greatly and be as simple or complicated as you wish. Having a video generation library made available to you means you can relax and experiment with different applications and ideas.

Frame buffer

To achieve a clear separation of video generation and application software we will use an old standard design concept, the frame buffer. The frame buffer is nothing more than an area of RAM that is used to store the data representing the image that you would like to see displayed on the screen. One section of the program continually reads this data and outputs it to the screen; another part of the program is responsible for filling or changing the contents of the frame buffer.

The frame buffer provides an interface between the two parts of the program—other than that, the two need to know nothing about each other. This makes our life much simpler, since the video generation software can be developed first and completely independently of any application that uses it.

Also, the development approach to the two is very different: video generation requires a knowledge of complex video waveforms, and very accurate signal generation, but is otherwise quite simple; potential applications will be far less time critical, can vary greatly and be as simple or complicated as you wish. Having a video library made available to you means you can relax and experiment with different applications and ideas.

So, beyond the novelty value, what would we actually use this for? Some of the obvious examples are classic old arcade games like Pong, or perhaps Tetris. With additional minor circuitry you could use it to overlay information onto an existing video signal, announcing important messages while you are watching your favourite TV show. You might also consider experimenting with more complex video signals such as Teletext—more on that in a later article. We have even seen examples of a PIC with an RS232 interface fitted which allows the television to become a simple dumb terminal.

Video generation

As we have mentioned, video generation from a PIC is not a new idea; it was first demonstrated on a simple PIC processor in the 1990s, and the link to the details on the Internet is listed at the end of this article. All of the examples that can be found on the Internet share common characteristics: they are very clever, complex, timing critical applications. The authors have invested considerable effort in avoiding this, in squeezing the maximum performance out of their chosen processor to achieve the results.

Changing the application to your own applications would be very difficult. An excellent book by Lucio di Jasio, titled Exploring the PIC32, gives a wonderful example of a video generation library that is isolated from the application via a frame buffer, but that solution uses a complex PIC processor that is only available in a fine pitched surface mount device. Our objective is a solution on a simple, easy-to-solder processor, but with a simple, easy-to-use video library. So we must ‘roll our own’.

This is going to be an unusual series of articles. Unlike previous ones, the outcome of this series is not necessarily going to be success. Video generation offers some challenging problems to overcome, and the outcome will only really be known when we try it out for real. That’s not something to be disheartened by, however. This is one of those projects where the journey is likely to be as entertaining as the final solution!

So let’s make a start by examining how video signals are generated.

Video signals

Video broadcast signals conform to one of several incompatible standards, the main ones being PAL, SECAM or NTSC. NTSC video generation, the American standard, has been widely covered on the Internet and in published media, so the author will look at PAL. The fact that he lives in the UK where PAL is the standard has a certain influence on the decision too.

PAL (phase alternating line) is really a standard for how colour is encoded into the broadcast signal, but most definitions cover all aspects of the video signal. There are a number of sub-standards within AL;
once again, due to the location of the author, we will look at the UK standard PAL I.

Despite the differing standards, the software that will be presented in next month’s article can be altered to work with all of them, with minor modification. That is left as an exercise to the reader, unless anyone would like to supply the author with a suitable television set, and return postage!

PAL standard

The PAL standard includes the definition of how colour is included in the video signal. It became clear quite early on in our investigation that generating colour signals in PAL would be just too complicated for a simple PIC, and so we will ignore colour completely. Doing so means that our images will be black and white only, but that’s enough of a challenge for now. We can address colour when we look at teletext generation in a later article.

The PAL standard is designed to draw 625 lines on the screen, with an update rate of 50 times a second, matching the frequency of the UK AC mains power supply. Each ‘screen full’ of lines is called a frame. To reduce the bandwidth of the broadcast signal (ie, to enable more television channels to fit within a given frequency range) only half of the 625 lines are drawn for each pass of the frame, with alternate pass of lines being interlaced with the previous ones (see Fig.1). This technique relies on the persistence of vision inherent in our optic nerves to ‘average out’ the images, resulting in what appears to be a continuously updated 625-line display, when in fact the screen is being updated 25 times a second. The more you study video standards, the more you come to appreciate how smart the inventors were.

625 lines drawn 25 times per second means that each displayed line takes 64µs. That’s the first important parameter that our software will need to cope with.

Remember that video standards were set in the days when cathode ray tubes were the only means of displaying a picture. The magnetic fields generated in coils around the tube deflected an electron beam to sweep out the picture; these magnetic fields had a certain amount of ‘inertia’ and could not instantaneously move from the end of a line back to the beginning. Therefore, the video signal for each line included a ‘fly back’ period to allow the electronics to set up the appropriate magnetic field, and that can be seen in the video standard.

Video lines and frames

In Fig.2 is shown the video signal for a single displayed line. Only 52µs of the 64µs period is available for picture content; the rest (sync pulse, front porch and back porch) allow for the electronics within the television to reposition the electron beam. Notice in Fig.2 that the video signal has a range of only 1V, with the sync pulse being between 0V and 300mV, and the video data itself lies between 300mV and 1000mV. If we are only interested in generating a black and white image, we only need to generate two voltages: 300mV and 1000mV. That’s another point to remember for our hardware and software design.

Not only did the video standard have to take into account the time required for the electron beam to return back to the start of the next line, it also had to account for the time required at the end of the display for the electron beam to return back to the top left of the display, and recognise the difference between the alternating frames. This was handled by changing the format of some of the display lines at the beginning and end of the 625-line set to provide ‘markers’ for the television, and to allow the circuits to settle back to normal levels.

Once again, it is clear that the designers of the video standard anticipated the limitations of the electronic circuits that would be used to render the video signal. Fig.3 shows how individual lines differ, depending on where they are in the transmission of a frame.

In each sweep of the display, rendered 25 times a second, a number of 64µs time slots are used to provide image synchronisation rather than to actually display any data. These time slots do not conform to the standard line format – they contain no video data, and in some cases include additional sync pulses. This forms another requirement for our system: although the data for a screen consists of 625 lines, some of these are for synchronisation and will require special handling in our software.

Looking closely at Fig.3, it is possible to see where the distinguishing parts of a display’s frame are, in the subtlety of the post-equalisation pulses. In common with many other implementations, we are going to make a simplification: we will not create alternating, interlaced lines. This will result in a small gap appearing in each line displayed, but for now at least, this is considered an acceptable compromise. We can always enhance the video driver at a later date to handle full interlacing.

From Fig.3 it is also clear that 25 out of the 625 lines of data drawn to the display do not contain any visible data; this is referred to as the ‘blanking period’ and amounts to 1.6ms. In addition to this, there are a number of display lines that are not visible on the screen, which are now used for transmitting Teletext or caption information. Many computer games rely on this period to update the frame buffer memory, so that partially updated images are not shown. This is unlikely to be an issue for us, but we should include in our design some means of indicating to the application that the blanking period is active.

Next month

This is a highly simplified, software engineer’s view of the PAL video system. We are glossing over the fine detail – but hopefully not too much! – and we shall find out next month, when we try to turn this into a practical solution, if we have simplified too much. If any of you video experts out there would like to comment or make suggestions, feel free to let us know.

Next month, we will look at the practicalities of realising a video interface, and hopefully present a video library that you can use yourself. The library will be presented in ‘C’ using the free Microchip C30 compiler, but you will be able to write your own applications in assembler if you wish.

For those of you interested in trying out the video experiment, we will be using the PIC24HJ32GP302 28-pin DIL processor, with an 8MHz crystal oscillator. The remainder of the circuit will be a few resistors and capacitors. The circuit operates at 3.3V from an external regulated power supply.

References

Video:
www.retroleum.co.uk/PALTvtimingandvoltages.html
www.stereoscopic.org/standard/fs3dstd04.pdf
Rickard’s PIC Video:
EPE IS PLEASED TO BE ABLE TO OFFER YOU THESE

ELECTRONICS CD-ROMS

ELECTRONICS PROJECTS

Electronic Projects is split into two main sections: Building Electronic Projects contains comprehensive information about the components, tools and techniques used in developing projects from initial concept through to final circuit board production. Extensive use is made of video presentations showing soldering and construction techniques. The second section contains a set of ten projects for students to build, ranging from simple sensor circuits through to power amplifiers. A shareware version of Matrix’s CADPACK, schematic capture, circuit simulation and p.c.b. design software is included.

The projects on the CD-ROM are: Logic Probe; Light, Heat and moisture Sensor; N ESS S Timer; Egg Timer; Dice Machine; Bike Alarm; Stereo Mixer; Power Amplifier; Sound Activated Switch; Reaction Tester. Full parts lists, schematics and p.c.b. layouts are included on the CD-ROM.

ELECTRONIC CIRCUITS & COMPONENTS V2.0

Electronics Circuits & Components V2.0 provides an introduction to the principles and application of the most common types of electronic components and shows how they are used to form complete circuits. The virtual laboratories, worked examples and pre-designed circuits allow students to learn, experiment and check their understanding. Version 2 has been considerably expanded and almost every area follows a review of major syllabuses (GCSE, GNVQ, A level and HNC). It also contains both European and American circuit symbols. Sections include: Fundamentals: units and multiples, electric circuits, electronic circuits, Passive Components: resistors, capacitors, inductors, transformers, Semiconductors: diodes, transistors, op amps, logic gates. Passive Circuits. Active Circuits. The CD-ROM includes a host of virtual laboratories, animations, diagrams, photographs and text as well as a SPICE electronic circuit simulator with over 50 pre-designed circuits. Sections on the CD-ROM include: Fundamentals - Analogue Signals (5 sections), Transistors (4 sections), Waveshaping Circuits (6 sections), Op Amps (6 sections), Oscillators - Passive Filters (10 sections), Phase Shifting Networks (4 sections), Active Filters (6 sections), Oscillators - 6 sections from Positive Feedback to Crystal Oscillators. Systems - 12 sections from Audio Pre-Amplifiers to 8-Bit ADC plus a gallery showing representative p.c.b. photos.

ANALOGUE ELECTRONICS

Analogue Electronics is a complete learning resource for this most difficult branch of electronics. The CD-ROM includes a host of virtual laboratories, animations, diagrams, photographs and text as well as a SPICE electronic circuit simulator with over 50 pre-designed circuits. Sections on the CD-ROM include: Fundamentals - Analogue Signals (5 sections), Transistors (4 sections), Waveshaping Circuits (6 sections), Op Amps (6 sections), Oscillators - Passive Filters (10 sections), Phase Shifting Networks (4 sections), Active Filters (6 sections), Oscillators - 6 sections from Positive Feedback to Crystal Oscillators. Systems - 12 sections from Audio Pre-Amplifiers to 8-Bit ADC plus a gallery showing representative p.c.b. photos.

DIGITAL ELECTRONICS V2.0

Digital Electronics builds on the knowledge of logic gates covered in Electronic Circuits & Components (above), and takes users through the subject of digital electronics up to the operation and architecture of microprocessors. The virtual laboratories allow students to operate many circuits on screen. Covers binary and hexadecimal numbering systems, ASCII, basic logic gates, monostable and bistable - including JK and D-type flip-flops. Multiple gate circuits, equivalent logic functions and specialised logic functions. Introduces sequential logic, including clocks and clock circuit. Counters, binary coded decimal and shift registers. A/D and D/A converters, traffic light controllers, memories and microprocessors - architecture, bus systems and their arithmetic logic units. Sections on Boolean Logic include: Revision which provides underpinning knowledge required for those who need to design filters. Filter Basics which is a course in terminology and filter characterisation, important classes of filter, filter order, filter impedance and impedance matching, and effects of different filter types. Advanced Theory which covers the use of filter tables, mathematics behind filter design, and an explanation of the design of active filters. Passive Filter Design which includes an expert system and filter synthesis tool for the design of low-pass, high-pass, band-pass, and band-stop Bessel, Butterworth and Chebyshev filters, Active Filter Design which includes an expert system and filter synthesis tool for the design of low-pass, high-pass, band-pass, and band-stop Bessel, Butterworth and Chebyshev op.amp filters.

ANALOGUE FILTERS

Analogue Filters is a complete course in designing active and passive filters that makes use of highly interactive virtual laboratories and simulations to explain how filters are designed. It is split into five chapters: Revision which provides underpinning knowledge required for those who need to design filters. Filter Basics which is a course in terminology and filter characterisation, important classes of filter, filter order, filter impedance and impedance matching, and effects of different filter types. Advanced Theory which covers the use of filter tables, mathematics behind filter design, and an explanation of the design of active filters. Passive Filter Design which includes an expert system and filter synthesis tool for the design of low-pass, high-pass, band-pass, and band-stop Bessel, Butterworth and Chebyshev filters, Active Filter Design which includes an expert system and filter synthesis tool for the design of low-pass, high-pass, band-pass, and band-stop Bessel, Butterworth and Chebyshev op.amp filters.

CASE STUDY OF THE MILFORD INSTRUMENTS SPIDER

Robotics and Mechatronics is designed to enable hobbyists/students with little previous experience of electronics to design and build electromechanical systems. The CD-ROM deals with all aspects of robotics from the control systems used, the transducers available, motors/actuators and the circuits to drive them. Case study material (including the NASA Mars Rover, the Milford Spider and the Furby) is used to show how practical robotic systems are designed. The result is a highly stimulating resource that will make learning, and building robotics and mechatronic systems easier. The institutional versions now also include several types of assessment for supervisors, including worksheets, multiple choice tests, fault finding exercises and examination questions.

ROBOTICS & MECHATRONICS

Passive Filter Design which includes an expert system and filter synthesis tool for the design of low-pass, high-pass, band-pass, and band-stop Bessel, Butterworth and Chebyshev filters, Active Filter Design which includes an expert system and filter synthesis tool for the design of low-pass, high-pass, band-pass, and band-stop Bessel, Butterworth and Chebyshev op.amp filters.

PRICES

Prices for each of the CD-ROMs above are:
(Order form on third page)

Hobbyist/Student .. £44 inc VAT
Institutional (Schools/HE/FE/Industry) £249 plus VAT
Institutional 10 user (Network Licence) £499 plus VAT
Site licence .. £499 plus VAT

Prices are correct at time of going to press. (UK and EU customers add VAT at 15% to ‘plus VAT’ prices)
PICmicro TUTORIALS AND PROGRAMMING

HARDWARE

VERSION 3 PICmicro MCU development board

Suitable for use with the three software packages listed below.

This flexible development board allows students to learn both how to program PIC microcontrollers as well as program a range of 8, 18, 28 and 40-pin devices from the 12, 16 and 18 series PIC micro ranges. For experienced programmers all programming software is included in the PPP utility that comes with the development board. For those who want to learn, choose one or all of the packages below to use with the development board:
- Makes it easier to develop PIC micro projects
- Supports low cost Flash-programmable PIC micro devices
- Fully featured integrated displays – 16 individual I.E.D.s, quad 7-segment display and alphanumeric I.C.D display
- Supports PIC micro controllers with A/D converters
- Fully protected expansion bus for project work
- USB programmable
- Can be powered by USB (no power supply required)

£155 including VAT and postage, supplied with USB cable and programming software

SPECIAL OFFER

£40 OFF Buy the Development Board together with any Hobbyist/Student or Institutional versions of the software CD-ROMs listed below and take £40 off the total (including VAT) price.

SOFTWARE

ASSEMBLY FOR PICmicro V3

(Formerly PICtutor)

Assembly for PICmicro microcontrollers V3.0 (previously known as PICtutor) by J. John Becker contains a complete course in programming the PIC16F84 PICmicro microcontroller from Arizona Microchip. It starts with fundamental concepts and extends up to complex programs including watchdog timers, interrupts and sleep modes.

The CD makes use of the latest simulation techniques which provide a superb tool for learning: the Virtual PICmicro microcontroller. This is a simulation tool that allows users to write and execute MPASM assembler code for the PIC16F84 microcontroller on-screen. Using this you can actually see what happens inside the PICmicro microcontroller as each instruction is executed which enhances understanding.

- Comprehensive instruction through 45 tutorial sections
- Includes Vlab, a Virtual PICmicro microcontroller: a fully functioning simulator
- Tests, exercises and projects covering a wide range of PICmicro MCU applications
- Includes MPLAB software
- Compatible with most PICmicro microcontrollers
- Can be powered by USB (no power supply required)

Minimum system requirements for these items: Pentium PC running Windows 98, NT, 2000, ME, XP, CD-ROM drive, 64MB RAM, 10MB hard disk space. Flowcode will run on XP or later operating systems.

£40 OFF

FLOWCODE FOR PICmicro V3

Flowcode is a very high level language programming system for PICmicro microcontrollers based on flowcharts. Flowcode allows you to design and simulate complex systems in a matter of minutes. A powerful language that uses macros to facilitate the control of devices like 7-segment displays, motor controllers and I.C.D.s. The use of macros allows you to control these devices without getting bogged down in understanding the programming.

Flowcode produces MPASM code which is compatible with virtually all PICmicro programmers. When used in conjunction with the Version 3 development board this provides a seamless solution that allows you to program chips in minutes.

- Requires no programming experience
- Allows complex PICmicro applications to be designed quickly
- Uses international standard flow chart symbols
- Full on-screen simulation allows debugging and speeds up the development process
- Facilitates learning via a full suite of demonstration tutorials

Minimum system requirements for these items: Pentium PC running Windows 98, NT, 2000, ME, XP, CD-ROM drive, 64MB RAM, 10MB hard disk space. Flowcode will run on XP or later operating systems.

£155 including VAT and postage, supplied with USB cable and programming software

For version V4:

C’ FOR 16 Series PICmicro Version 4

The C. C for PICmicro microcontrollers CD-ROM is designed for students and professionals who need to learn how to program embedded microcontrollers in C. The CD contains a course as well as all the software tools needed to create Hex code for a wide range of PICmicro devices, including a full C compiler for a wide range of PICmicro devices.

Although the course focuses on the use of the PICmicro microcontrollers, this CD-ROM will provide a good grounding in C programming for any microcontroller.

- Complete course in C as well as C programming for PICmicro microcontrollers
- Highly interactive course
- Virtual C PICmicro improves understanding
- Includes a C compiler for a wide range of PICmicro devices
- Includes full Integrated Development Environment
- Includes MPLAB software
- Compatible with most PICmicro programmers
- Includes a compiler for all the PICmicro devices.

Minimum system requirements for these items: Pentium PC running Windows 98, NT, 2000, ME, XP, CD-ROM drive, 64MB RAM, 10MB hard disk space. Flowcode will run on XP or later operating systems.

SPECIAL OFFER

£40 OFF Buy the Development Board together with any Hobbyist/Student or Institutional versions of the software CD-ROMs listed below and take £40 off the total (including VAT) price.

Prices for each of the CD-ROMs above are:
(Order form on next page)

Hobbyist/Student
Institutional (Schools/HE/FE/Industry)
Site licence
Flowcode 10 user (Network Licence)
Flowcode 50 user (Network Licence)

£44 inc VAT
£99 plus VAT
£300 plus VAT
£350 plus VAT
£699 plus VAT

(UK and EU customers add VAT at 15% to ‘plus VAT’ prices)

Everyday Practical Electronics, April 2009 63
Everyday Practical Electronics, April 2009

SPECIAL PACKAGE OFFER
TINA Pro V7 (Basic) + Flowcode V3 (Hobbyist/Student)

TINA Analogue, Digital, Symbolic, RF, MCU and Mixed-Mode Circuit Simulation, Testing and PCB Design

TINA Design Suite is a powerful yet affordable software package for analysing, designing and real time testing, analogue, digital, MCU, and mixed electronic circuits and their PCB layouts. You can also analyse RF, communication, optoelectronic circuits, test and debug microcontroller applications.

Enter any circuit (up to 100 nodes) within minutes with TINA’s easy-to-use schematic editor. Enhance your schematics by adding text and graphics. Choose components from the large library containing more than 10,000 manufacturer models. Analyse your circuit through more than 10 different analysis modes or with 10 high tech virtual instruments. Present your results in TINA’s sophisticated diagram windows, on virtual instruments, or in the live interactive mode where you can even edit your circuit during operation.

Customise presentations using TINA’s advanced drawing tools to control text, fonts, axes, line width, colour and layout. You can create, and print documents directly inside TINA or cut and paste your results into your favourite word-processing or DTP package.

TINA includes the following Virtual Instruments: Oscilloscope, Function Generator, Multimeter, Signal Analyser/Bole Plotter, Network Analyser, Spectrum Analyser, Logic Analyser, Digital Signal Generator, XY Recorder.

Flowcode V3 (Hobbyist/Student) - For details on Flowcode, see the previous page.

This offer gives you two separate CD-ROMs in DVD style cases – the software will need registering (FREE) with Designsoft (TINA) and Flowcode. Contents are given within the packages.

Get TINA + Flowcode for a total of just £50, including VAT and postage.

PROJECT DESIGN WITH CROCODILE TECHNOLOGY
An Interactive Guide to Circuit Design

An interactive CD-ROM to guide you through the process of circuit design. Choose from an extensive range of input, process and output modules, including CMOS Logic, Op-Amps, PIC/PICAXE, Remote Control Modules (IR and Radio), Transistors, Thyristors, Relays and much more.

Click Data for a complete guide to the pin layouts of i.c.s, transistors etc. Click More for detailed background information with many animated diagrams.

Nearly all the circuits can be instantly simulated in Crocodile Technology® (not included on the CD-ROM) and you can customise the designs as required.

WHAT’S INCLUDED
- Light Modules, Temperature Modules, Sound Modules, Moisture Modules, Switch Modules, Astables including 555, Remote Control (IR & Radio), Transistor Amplifiers, Thyristor, Relay, Op-Amp Modules, Logic Modules, 555 Timer, PIC/PICAXE, Output Devices, Transistor Drivers, Relay Motor Direction & Speed Control, F Segment Displays, Data sections with pinouts etc... Example Projects, Full Search Facility, Further Background Information and Animated Diagrams.

Runs in Microsoft Internet Explorer

*All circuits can be viewed, but can only be simulated if your computer has Crocodile Technology version 4.0 or later. A free trial version of Crocodile Technology can be downloaded from: www.crocodile-clips.com

Animated diagrams run without Crocodile Technology.

Single User £39.00 inc. VAT.

Multiple Educational Users (under 500 students) £59.00 plus VAT. Over 500 students £79.00 plus VAT.

(All and EU customers add VAT at 15% to "plus VAT" prices)

ORDERING

Please send me: CD-ROM ORDER FORM

- Electronic Projects
- Electronic Circuits & Components V2.0
- Analogue Electronics
- Digital Electronics V2.0
- Analogue Filters
- Electronics CAD Pack
- Robotics & Mechatronics
- Assembly for PICMicro V4
- 'C' for 16 Series PICMicro V4
- Flowcode V3 for PICMicro
- Digital Works 3.0

- PICMicro Development Board V3 (hardware)

- TINA Pro V7 Basic + Flowcode V3 Hobbyist/Student
- Electronic Components Photos; Version 1.1
- Project Design – Single User
- Project Design – Multiple User (under 500 students)
- Project Design – Multiple User (over 500 students)

- Version required: Hobbyist/Student
- Institutional
- Institutional/Professional 10 user
- Site licence

Full name: ___________________________
Address: ___________________________
Post code: ___________________________Tel: No. ___________________________
Signature: ___________________________

- I enclose cheque/PO in £ sterling payable to WIMBORNE PUBLISHING LTD for £ __________
- Please charge my Visa/Mastercard/Maestro: E __________

Valid From: ___________________________Card expiry date: ___________________________

Card No: ___________________________Maestro Issue No. ___________________________
Card Security Code: ___________________________ (The last 3 digits on or just under the signature strip)

Counter project

Digital Works Version 3.0 is a graphical design tool that enables you to construct digital logic circuits and analyze their behaviour. It is so simple to use that it will take you less than 10 minutes to make your first digital design. It is so powerful that you will never outgrow its capability. Software for simulating digital logic circuits • Create your own macros – highly scalable • Create your own circuits, components, and i.c.s • Easy-to-use digital interface • Animation brings circuits to life • Vast library of logic macros and 74 series i.c.s with data sheets • Powerful tool for designing and learning.

Hobbyist/Student £44 inc. VAT.

Institutional £99 plus VAT.

Institutional 10 user £249 plus VAT.

Site Licence £999 plus VAT.

DIGITAL WORKS 3.0

A high quality selection of over 200 jpeg images of electronic components. This selection of high resolution photos can be used to enhance projects and presentations or to help with training and educational material. They are royalty free for use in commercial or personal printed projects, and can also be used royalty free in books, catalogues, magazine articles as well as worldwide web pages (subject to restrictions – see licence for full details).

Now contains InfiniView image software for Windows, with quick-start notes included.

Price £19.95 inc. VAT

ORDERING ALL PRICES INCLUDE UK POSTAGE

Student/Single User/Standard Version price includes postage to most countries in the world. EU residents outside the UK add £5 for airmail postage per order.

Institutional, Multiple User and Deluxe Versions – overseas readers add £5 to the basic price of each order for airmail postage (do not add VAT unless you live in an EU (European Union) country, then add 15% VAT or provide your official VAT registration number).

Send your order to:
Direct Book Service
Wimborne Publishing Ltd
Sequoia House, 398a Ringwood Road
Ferndown, Dorset BH22 9AU
To order by phone ring
01202 873872. Fax: 01202 874562

Goods are normally sent within seven days
E-mail: orders@wimborne.co.uk
Online shop: www.epemag.com

www.epemag.com

Over 150 pages Over 600 images

Please send me: CD-ROM ORDER FORM

- Electronic Projects
- Electronic Circuits & Components V2.0
- Analogue Electronics
- Digital Electronics V2.0
- Analogue Filters
- Electronics CAD Pack
- Robotics & Mechatronics
- Assembly for PICMicro V4
- 'C' for 16 Series PICMicro V4
- Flowcode V3 for PICMicro
- Digital Works 3.0

- PICMicro Development Board V3 (hardware)

- TINA Pro V7 Basic + Flowcode V3 Hobbyist/Student
- Electronic Components Photos; Version 1.1
- Project Design – Single User
- Project Design – Multiple User (under 500 students)
- Project Design – Multiple User (over 500 students)

- Version required: Hobbyist/Student
- Institutional
- Institutional/Professional 10 user
- Site licence

Full name: ___________________________
Address: ___________________________
Post code: ___________________________Tel: No. ___________________________
Signature: ___________________________

- I enclose cheque/PO in £ sterling payable to WIMBORNE PUBLISHING LTD for £ __________
- Please charge my Visa/Mastercard/Maestro: E __________

Valid From: ___________________________Card expiry date: ___________________________

Card No: ___________________________Maestro Issue No. ___________________________
Card Security Code: ___________________________ (The last 3 digits on or just under the signature strip)
Dear EPE

I always read Recycle it with great interest, and as a regular SCR (skip content recycler) I relate closely to the spirit of the articles.

Your pressure switch article (March ’09) highlighted a useful item, often discarded, but generally in good order with a multitude of potential uses. My point about these pressure switches is that I have found they are not particularly reliable for long-term monitoring of water levels.

If you think about how they work in a typical washing machine or dishwasher, effectively they are ‘reset’ after every wash. This happens because the water level falls below the level of the sensing tube, the water drains out and the diaphragms and switches return to their neutral settings.

At the start of a new wash, the water is pushed up the pipe, pressurising the air and operating the switches.

If the switches are left in a pressurised state for long periods, then creep can occur due to leaks, however small, in the pipe or diaphragms. This will relieve the internal air pressure and can lead to false switching. Also, if it is used in turbulent water with lots of air bubbles, then any air entering the tube may affect the switch points.

Craig Taylor, by email

An excellent point Craig – recycling is fun, cheap and a small step away from needless pollution, but it is always important to check that devices are being used safely and sensibly.

Dear EPE

Many thanks for the great Microchip PICkit2 offer (Feb ’09). It arrived a couple of days after ordering. At first, it seemed a slightly confusing loading procedure – but all is now working OK.

Since the start of my adventure into PICs and assembler programming I have gone from a simple parallel port programmer running on a DOS–486 to a David Tait homebrew set up using FPP and on to a Velleman programmer kit with MPLAB. EPE articles have been a great source of ideas, information and interest – so, thanks again.

Is there any chance of getting Microchip to ‘special offer’ the little 44-pin 16F887 demo board, it makes a great piggyback controller for stripboard projects.

Les Clarke, by email

Many thanks Les, and I’m pleased to hear that our latest offer arrived promptly and is up and running, it was a very popular offer. We will check with Microchip to see if they can do an offer on the 16F887 demo board.

EasyPC/Class A amp project

Dear EPE

Like John Becker, I still have a DOS version of EasyPC but, unlike John, I can’t seem to get it to work as a window in XP (despite tinkering with the various EMS and XMS settings). Could John find a minute to pass his settings on? I couldn’t find any reference to these in the Chat Zone.

The authors of the Class A amp recommend tinning the conductors before putting them into the terminal blocks. I used to do this and also some manufacturers used to tin the mains cable strands in the days when you had to fit your own 13A plug.

However, I found that these connections could go slack due to creep of the solder over time. I therefore discontinued this practice and even used to cut off the tinned ends of pre-tinned wires when making up 13A plugs.

Dave Reeves, Sutton Coldfield

John tells me that in fact he doesn’t run EasyPC fully successfully under XP, so for now he doesn’t have any reliable settings to pass on.

It’s an interesting point about tinned leads – we’d welcome further insight on this effect, especially as it could be a safety issue when used with the mains.

Dear EPE

I read with interest Mark Nelson’s TechnoTalk article (Dec ’08) on using a schematic editor to create (using freeware), a working stripboard layout. I have tried this out to a degree, but believe there may be a better alternative.

First, after creating a netlist file from my Altium (Protel) schematic editor, I had lots of difficulty importing the netlist into Velleman editor (one of the software packages mentioned), as it only accepts numeric pin designators, not letters. Difficult, therefore, for example in Protel, are either ‘K’ or ‘A’ – not 1 or 2.

The compiler alerts the user to where the problem is by giving you the line number. Since the lines of the output are not numbered, this makes life a bit difficult when trying to locate and edit that piece of code (netlist). Also, in general, the software prefers all through-hole components to surface mount ones, and if your project has a lot of ICs, then you are going to be placing a lot of ‘X’s, which is the software mark for cutting a track.

Nowadays, there are many good evaluation boards (some populated, some not) on the market. They are typically competitively priced and expertly made by component manufactures such as Microchip or Analog Devices. Often, these boards can be easily connected to other ‘daughter boards’. Microchip’s PICDEM 2 PLUS board I have found extremely useful for linking a differential sensor board to another I purchased from National Semiconductor.

As a consequence, before anyone goes down the path of populating a working stripboard project, created from the netlist, created from their schematic editor, I suggest they first search for a complimentary evaluation board, preferably with a working ‘prototype’, area attached.

Peter Barrett MIE Aust, by email

Thank you Peter – does anyone else have experience of using a schematic editor to create a working stripboard layout?

Drop us a line!
Have you anything interesting to say?

Matt Pulzer addresses some of the general points readers have raised.

Have you anything interesting to say? Drop us a line!

All letters quoted here have previously been replied to directly.
Surfing The Internet

Net Work

Alan Winstanley

This month’s Net Work continues on the theme of mobile Internet applications. We hope that readers visit the EPE Online website (www.epemag.com) where more bonus articles and updates, screenshots and a list of this month’s clickable links are provided. In the March online update you can read about the new RF remote control for the truly brilliant PURE Evoke Flow wifi radio, more details of Easy WiFi Radar, plus some details of BT’s I-Plate broadband accelerator. Did the I-Plate work for me? Check EPE Online to find out!

Previously, I described my practical experiences of using mobile Internet based on my HTC Windows smartphone. I can now monitor POP3 incoming emails by either using wifi or GPRS, and I can send emails through AuthSMTP, my preferred outbound email supplier. (All relevant hyperlinks are available in my EPE Online Net Work monthly blog.)

Always prepared

Looking at my motley collection of IT hardware gathered over the years, experience has taught me the value of not taking technology entirely for granted. I usually work on the basis that one day, something somewhere in my system will break down at the worst possible time and proceed to drop me in deep, deep trouble. Given that much of Britain’s communications infrastructure seems to be on a knife-edge (my telephone exchange building is actually a small wooden hut near a village duck pond), it is amazing that Internet technology works at all, but somehow it does – most of the time.

As a result of some very bitter lessons learnt in the past, I try, as a policy, to implement multiple layers of backups, not only to protect data (using backup external drives, a Netgear RAID network drive, the odd DVD backup and a ‘last gasp’ online backup in the shape of Carbonite) but also backing up communications and hardware, trying to cover contingencies as far as possible. I live by a digital version of the Scout Movement’s maxim: ‘be prepared’.

As far as Internet access goes, I have had my fair share of disasters. Some years ago a truck delivering to a neighbour’s house managed to slice through our overhead phone lines, taking my broadband with it. The temporary workaround was to use a Nokia mobile phone as a painfully slow modem, hooked to a laptop. But this would not have been possible unless I had purchased a suitable USB modem cable from my local Maplin store – and installed and tested it first. The local electricity board subsequently decided to raise the height of the telegraph poles (brilliant!) which resulted in more Internet down-time.

Even today, though, I still retain a legacy Nokia mobile phone with a tiny Belkin thumbnail-sized dongle from a supermarket soon overcame that problem. Admittedly after much hair-pulling, I am still not clear how I managed to pair the two devices together, nor am I sure that I could repeat the exercise, but I configured a virtual COM port that enabled my laptop to reach out onto the Internet through my mobile phone. The dongle’s flickering blue LED assured that business kept moving, and I felt quite smug that my dainty Bluetooth dongle had got one over those railway workers and their shovels.

Going off the rails

Apart from good old copper wires, fibre optics and microwave links are used to transmit data around our shores. Optical fibres can be strung alongside high voltage overhead power lines, in a good example of lateral thinking. They are also, as I recently found, routed alongside railway lines that carve their way across our country. There I was, studiously dealing with emails and generally surfi ng around when the broadband connection suddenly went dead. The telephone line still worked, so the outage was something of an enigma.

Regular Net Work readers will know by now that some basic tests can be run to help isolate such a problem. I usually try a Tracert from the DOS prompt (Start/Run/cmd/tracert), tracing www.ebay.co.uk because it’s quick to type. If the DNS lookup fails then either the computer network is disconnected or the network is down. Can other websites be accessed in the browser? Can emails still be sent or received? Then try powering down the router for a few minutes, and reboot the PC at the same time. Wiggle the Ethernet connectors to ensure they are still mated. It is very surprising how often a simple check solves the problem.

In the case of my broadband outage, I had no such luck and the ADSL connection was resolutely not responding. A quick phone call to my small, independent ADSL supplier revealed the cause, namely that railway workers who were maintaining the tracks somewhere near Sheffield had sliced through a fibre optic. Not satisfied with their endeavours, they did the same 100 metres further up the line, so the entire length of optical fibre would need replacing which would take a day. A week or so later, and I am not kidding, they did exactly the same thing again, this time near Leicester.

The result was several days without any broadband connection, but this time I had a weapon in my arsenal in the shape of my mobile phone. Since I had no ADSL, my wifi router was redundant, but I could still check email directly using the phone’s GPRS tariff. This was more than adequate to keep email-related aspects ticking along.

As a challenge, I then spent a few hours grappling with the mysteries of Bluetooth, as I decided to try hooking the phone to my laptop wirelessly. My Sony Vaio does not have Bluetooth, but a tiny Belkin thumbnail-sized dongle from a supermarket soon overcame that problem. Admittedly after much hair-pulling, I am still not clear how I managed to pair the two devices together, nor am I sure that I could repeat the exercise, but I configured a virtual COM port that enabled my laptop to reach out onto the Internet through my mobile phone. The dongle’s flickering blue LED assured that business kept moving, and I felt quite smug that my dainty Bluetooth dongle had got one over those railway workers and their shovels.

EPE Online Library

Hopefully, regular readers are now finding their way around our all-new website, which is your first port of call for downloading monthly files, PIC source codes and more besides. The EPE issue month and year are key to locating files, as they are sorted in date order. If you have any difficulties in locating files, especially older ones, the best way of asking for help is via the online Contact Us form and we will update the site and/or email any files to you directly.

As we have previously stated, this site runs best in Internet Explorer 7 or Firefox, and users of IE6 or earlier should really upgrade straight away. Without exception, all IE6 users in difficulty confirmed that any problems disappeared as soon as they upgraded. It is also worth ensuring that your version of Adobe Flash Player is up to date, as the website launches a small flash-based animation on each page. One user confirmed an improvement in performance once he fetched the current version of Flash Player.

On my bonus Net Work blog, at EPE Online (www.epemag.com), I’ll offer a few more practical pointers about using a mobile phone to obtain Internet access, and I’ll update you on my Grand Linux Trial. In next month’s Net Work, I’ll be trying to fix a Registry bug on my PC and investigating the murky world of so-called Windows ‘Registry Cleaners’ sourced from online suppliers.

Do email and let us know what topics you would like to see covered in future Net Work columns. You can email me at alan@epemag.demon.co.uk.
Mike Tooley
A broad-based introduction to electronics - find out how circuits work and what goes on inside them. Plus 15 easy-to-build projects. The 152 pages of text comes with a free CD-ROM containing the whole Teach-In in EPE format, interactive quizzes to test your knowledge, TINA circuit simulation software (a limited version - plus a special offer to TINA Trialers), plus Flowcode (a limited version) a high level programming system for PIC microcontrollers based on flowcharts.

This in-depth coverage of everything from Electric Current through to Microprocessors and Microcontrollers and each part includes demonstration circuits to build on breadboards or to simulate on your PC.

In addition to the Teach-In series, the book includes 15 CMOS-based simple projects from the Back-To-Basics series by Bart Trepak, these are: Fridge/Freezer Alarm, Water Level Detector, Burglar Alarm, Scarerow, Digital Lock, Doorchime, Electronic Dice, Kitchen Timer, Room Thermometer, Daily Reminder, Whistle Switch, Parking Light Switch, Noughts and Crosses, Enigma and a Weather Van. There is also a MWL2 Radio project in the Teach-In series.

152 pages + CD-ROM
Order code ET1 £8.50

The AMATEUR SCIENTIST 3-0 C:

The complete collection of The Amateur Scientist articles from Scientific American magazine. Originally published in the science projects from a renowned source of winning projects. All projects are rated for cost, difficulty and possible hazards.

Plus over 1,000 pages of helpful science techniques that never appeared in Scientific American.

Equipment: Science projects; Astronomy; Earth Science; Biology; Physics; Chemistry; Weather . . . and much more! The most complete resource ever assembled for hobbyists, and professionals looking for novel solutions to research problems.

Includes extensive Science Software Library with even more science tools.

Suitable for Mac, Windows, Unix or UNIX. 32MB RAM minimum, Netscape 4.0 or higher or Internet Explorer 4.0 or above. Over 1,000 projects

CD-ROM
Order code ASICD-ROM £19.95

PROJECT CONSTRUCTION

IC 55S PROJECTS E. A. Page
Every so often a device appears that is so useful that one wonders why life went on without it. The 55S is such a device. Included in this book are over 70 circuit diagrams and descriptions covering basic and general circuits, motor car and railway signals, alarms and navigation equipment on warships.

The 55S timer is a low cost, functional device that is often used in industrial projects. This book explains how to construct some simple and inexpensive but extremely useful, pieces of test equipment.

91 pages
Order code BP36 £4.49

POWER SUPPLY PROJECTS R. Penfold
This book offers a number of power supply designs, including simple variable types and variable voltage stabilised designs, the latter being primarily intended for use as bench power supplies for the electronics workshop. The designs provided are all low voltage types for semiconductor circuits. The information in this book should also help the reader to design his own power supplies. Includes cassette PSU, Ni-Cad charger, voltage step-up circuit and a simple inverter.

91 pages
Order code BP76 £5.49

HOW TO USE OSCILLOSCOPES AND OTHER TESTING EQUIPMENT R. A. Penfold
This book explains the basic function of an oscilloscope, gives a detailed explanation of all the standard controls, and provides advice on buying. A separate chapter deals with using an oscilloscope for finding fault locations on linear and logic circuits, plenty of example waveforms to help illustrate the control functions and the affects of various fault conditions. The book also covers the other pieces of equipment as well, including signal generators, logic probes, logic pulsers and crystal calibrators.

104 pages
Order code BP267 £5.49

THE INTERNET FOR THE OLDER GENERATION Jim Gatensby
Especially written for the over 50s. Uses only clear and straightforward language and assumes no knowledge of computers. This concise book tells the story, and shows the reader how to construct and use 25 internet and window ariel signals that the author has proven to be sure performers.

50 pages
Order code BP136 £2.25

AN INTRODUCTION TO RADIO WAVE PROPAGATION J.G. Lee
Radio wave propagation is one of the more important discoveries made in the early 20th century. Although technology lagged behind early experimenters pursued this newly discovered phenomenon, understanding the physics of propagation, they were discovering more about our Universe and its workings.

This book has been written with the average electronic hobbyist in mind and will provide clear, simple explanations of the propagation phenomena which both experience in their pursuit of communications enjoyment.

116 pages
Order code BP293 £4.45

ELECTRONIC PROJECT BUILDING FOR BEGINNERS R. A. Penfold
This book is for complete beginners to electronic project building. It provides a complete introduction to the practical side of electronics, including the following topics:

- Component identification, and buying the right parts
- Resistor colour codes, capacitor value markings, etc
- Buying the right tools for the job
- Soldering: making easy work of the hard wiring
- Reading circuit diagrams
- Building stripboard circuits
- Simple printed circuit boards
- Making simple circuits
- Motor car and model railway circuits
- Alarms and noise makers as well as a section on 556, 558 and 559 timer circuits

This book describes in detail how to construct some simple and inexpensive but extremely useful, pieces of test equipment. Stripboard layouts are provided for all designs, together with wiring diagrams where appropriate, plus notes on construction and use.

104 pages
Order code BP348 £4.49

COMPUTING FOR THE OLDER GENERATION Jim Gatensby
Especially written for the over 50s, using plain English and covering the needs of the hobbyist in mind. Technical language and mathematics have been avoided, and the general principles of computing are explained in clear, simple language, with many examples and exercises. The book covers amongst other things:

- Choosing and setting up a personal computer
- The operation and key functions of the computer
- The operation and uses of the software
- The operation of the operating system
- Finding your way around the operating system
- Choosing and installing software
- Choosing and using the printer
- Making use of the Internet
- Making use of e-mail
- Using the Internet for entertainment
- Working through a database
- Using the Internet to find useful information
- Writing letters, leaflets, invitations, etc., and other word processing ideas
- Making use of the Internet for entertainment
- Understanding your computer and its main components
- Setting up the shack; Which aerials to use; Methods of accommodation where outdoor aerials are prohibited, or a lack of garden space etc. prevents aerials from being erected. This does not mean you have to forgo shortwave-listening, for even a 20-kilometre length of wire stretched out along the skirting board of a room can produce acceptable results. However, with some additional effort and experimentation one may well be able to improve performance further.

This concise book tells the story, and shows the reader how to construct and use 25 indoor and window aerials that the author has proven to be sure performers.

72 pages
Order code BP278 £4.00

SETTING UP AN AMATEUR RADIO STATION I. E. Noll
The aim of this book is to give guidance on the decisions which have to be made when setting up any amateur radio or short wave listening station. Often the experience which is needed is learned by one's mistakes, however, this can be expensive. To help prevent this, this book can cover many aspects of setting up and running an efficient station. It then proceeds to the steps that need to be taken in gaining a full transmitting licence.

Topics covered include: The equipment that is needed; Setting up the shack; Which ariel to use; Methods of construction; Preparing the licence.

86 pages
Order code BP100 £4.45

EXPERIMENTAL ANTENNA TOPICS H. C. Wright
Although nearly a century has passed since Marconi’s first demonstration or radio communication, there is still room for experimentation to be carried out in the field of antenna design and behaviour.

The aim of the experimenter will be to make a measurement or confirm a principle, and this can be done with relatively fragile, short-life apparatus. Because of this, devices described in this book make liberal use of cardboard, cooking foil, plastic bottles, cat food tins, etc.

Although primarily a practical book with text closely supported by diagrams, some formulae which can be used by straightforward substitution and some simple graphs have also been included.

50 pages
Order code BP136 £2.25

DIRECT BOOK SERVICE

The books listed have been selected by Everyday Practical Electronics editorial staff as being of special interest to everyone involved in electronics and computing. They are supplied by mail order direct to your door. Full ordering details are given on the last book page.

FOR A FURTHER SELECTION OF BOOKS AND CDROMS SEE THE SHOP ON OUR UK WEBSITE www.epemag.co.uk

All prices include UK postage.
THEORY AND REFERENCE

BEBOB TO THE BOOLEAN BOOGIE
Second Edition
Clive (call me Max) Maxfield
and Alvin Brown
This follow-on to Bebop to the Boolean Boogie includes a multimedia extravaganza of information about how computers work. It picks up where 'Bebop I' left off, guiding you through the fascinating world of software. There will be quite a few chuckles, if not belly laughs, along the way. In addition to over 200 megabytes of mega-cool multimedia, the CD-ROM contains a virtual computer, simulating the motherboard and standard computer peripherals in an extremely realistic manner. In addition to a wealth of technical information, myriad nuggets of trivia, and hundreds of carefully drawn illustrations, the CD-ROM contains a set of lab experiments for the virtual microcomputer that let you recreate the experiences of early computer pioneers. If you're the slightest bit interested in the inner workings of computers, then don't dare to miss this!
Over 800 pages in Adobe Acrobat format
CD-ROM Order code BEB1 CD-ROM £21.95

INTERFACING PIC MICROCONTROLLERS
Martin Bates
An essential guide to PIC interfacing techniques, using circuit simulation to aid learning.
Interfacing PIC Microcontrollers provides a thorough introduction to interfacing techniques for students, hobbyists and engineers looking to take their knowledge of PIC application development to the next level. Each chapter ends with suggestions for further applications, based on the examples given, and numerous line drawings illustrate application of the hardware.
Step-by-step examples in assembly language are used to illustrate a comprehensive set of interfaces, and these can be run interactively on circuit simulation software, used to aid understanding without the need to build real hardware.
A companion website includes all examples in the text which can be downloaded together with a free version of Proteus I5 IIS Lite.
296 pages
Order code NE48 £24.99

GETTING THE MOST FROM YOUR MULTIMETER
Clive (Max) Maxfield
This book is primarily aimed at beginners and those of limited experience of electronics. Chapter 1 covers the basics of analogue and digital multimeters, discussing the relative merits and the limitations of the two types. In Chapter 2 various methods of component checking are described, including tests for transistors, thyristors, resistors, capacitors and diodes. Circuit testing is covered in Chapter 3, with subjects such as voltage, current and continuity checks being discussed.
In the main little or no previous knowledge or experience is assumed. Using these simple component and circuit testing techniques the reader should be able to confidently tackle servicing of most electronic projects.
96 pages
Order code PC106 £5.95

OPERATIONAL AMPLIFIER USER'S HANDBOOK
R. A. Penfold
The first part of this book covers standard operational amplifier based "building blocks" (integrator, precision rectifier, function generator, amplifiers, etc.), and considers the ways in which modern devices can be used to give superior performance in each case. The second part deals with various applications, such as oversampling filters, both single and multibit, the evolution of audio preamplifiers, noise RIAA preamplifier, audio power amplifiers, d.c. power controllers, opto-isolator audio and video millivolt meter, temperature monitor, low distortion audio signalgenerator, simple video fader, and many more.
130 pages
Order code BP239 £15.45

PRACTICAL ELECTRONICS HANDBOOK – FIFTH EDITION
Ian Sinclair
Practical and comprehensive collection of circuits, rules of thumb and design data for professional engineers, students and enthusiasts, and therefore enough background to allow the understanding and development of a range of basic circuits.
440 pages
Order code NE21 £24.99

MUSIC, AUDIO AND VIDEO

QUICK GUIDE TO DIGITAL AUDIO RECORDING
Ian Waugh
Contents: What computer system you need • Sound and digital audio essentials • What to look for in a sound card • What effects to use • The art of mixing • How to burn your music to CD • How to post your songs on the Web
All modern music recordings use digital audio technology. Now everyone with a computer can produce CD-quality recordings and this book shows you how. Written in a clear and straightforward style, it explains what digital audio recording is, how to use it, the equipment you need, what sort of software is available and how to achieve professional results.
Computer-based recording is the future of music and this book shows how you can join the revolution now.
208 pages
Order code PC121 £7.95

QUICK GUIDE TO MP3 AND DIGITAL MUSIC
Ian Waugh
Music lovers are familiar with the latest digital music format, have taken the music industry by storm. What are they? Where do you get them? How do you use them? Will they turn record companies into a panic? Will they make music easier to them? How do you use them? Why have they thrown record companies into a panic? How to create your own MP3s; How to record your own this book contains a collection of electronic projects specially designed for video enthusiasts. All the projects are simply constructed, and most are suitable for the newcomer to project construction, as they are assembled on stripboard. There are faders, wipers and effects units which will add style and originality to your video recordings, an audio mixer and noise reducer to enhance your soundtracks and a basic computer-controlled interface. Also, there's a useful selection on basic video production techniques to get you started.
Complete with explanations of how the circuit works, shopping lists of components, advice on construction, and guidance on setting up and using the projects, this invaluable book will save you a small fortune.
Circuits include: video enhancer, improved video enhancer, video fader, horizontal wiper, improved video wiper, negative video unit, fade to grey unit, black and white keyer, vertical wiper, audio mixer, stereo headphone amplifier, dynamic noise reducer, audio mixers, fader, pushbutton fader, computer control interface, 12 volt mains power supply.
124 pages
Order code PC115 £5.45

THE PROJECTS-covered in this book include:
Four channel audio mixer, Four channel stereo mixer, Dynamic noise Inhibit, Automatic audio levels, Video faders, Video mixers, Video wipers, Video crispener, Mains power supply unit.
109 pages
Order code BP356 £5.45

ALL PRICES INCLUDE
UK POST & PACKING

Everyday Practical Electronics, April 2009
FAULT FINDING, CIRCUITS AND DESIGN

PIC BASIC PROJECTS – 30 PROJECTS USING PIC16F84 AND PIC16F873
Dogan Ibrahim

Covering the PIC16F84 and PIC16F873, this latest edition, previously entitled PIC BASIC Programming and Projects, provides an easy-to-use book for developing applications with PICBASIC. Numerous simple projects give clear and concrete examples of how PICBASIC can be used to develop electronics applications, while larger and more advanced projects describe program operation in detail and give useful insights into developing more involved microcontroller applications.

Packaged with simple and advanced projects which show how to programme a variety of interesting electronic applications using PICBASIC. (Covers the PIC16F873 and PIC16F84, and the popular PIC16F84 and PIC16F877 models. The CDROM includes program source files, HEX code, data sheets of devices, sensors and schematics of the circuits used in the book.

358 pages

Order code NE44 £21.99

HOW ELECTRONIC THINGS WORK – AND WHAT TO DO WHEN THEY DON’T
Robert Goodman

You never again have to be flummoxed, flustered or taken for a ride by a piece of electronics equipment. With this fully illustrated, simple-to-use guide, you will get a grasp on the workings of the electronic world that surrounds you - and even learn to make your own repairs.

You don’t need any technical experience. This book gives you: Clear explanations of how things work, written in everyday language. Easy-to-follow, illustrated instructions on using test equipment to diagnose problems. Guidelines to help you decide for or against professional repair. Tips on protecting your expensive equipment from lightning and other electrical damage, lubrication and maintenance

Order code MGH3 £21.99

PRACTICAL OSCILLATOR CIRCUITS
A. Flind

Extensive coverage is given to circuits using capacitors and resistors to control frequency. Designs using CMOS, bipolar and analog devices are described in detail with a special chapter on “waveform generator” i.e. a waveform generator is also included. Various circuits using inductors and capacitors are covered, with emphasis on stable low frequency generation. Some of these are amazingly simple, but are still very useful signal sources.

Crystal oscillators have their own chapter. Many of the circuits shown use readily available special i.c.s for simplicity and reliability, and offer several output frequencies. Several complete constructional details are given for an audio sawtooth generator.

133 pages

Order code BP393 £5.49

PIC IN PRACTICE (2nd Edition)
David W. Smith

A graded course based around the practical use of the PIC microcontroller through project work. Principles are introduced gradually, through hands-on experience, enabling students to develop their understanding at their own pace. The book can be used at a variety of levels.

Contents: Introduction to the PIC microcontroller; Programming the 16F84 microcontroller; Introductory projects; Headers, porting code - which micro?; Using inputs; Keypad scanning; Program examples; The 16C54 microcontroller; Alphanumeric displays; Analogue to digital conversion; Radio transmitters and receivers; EEPROM data memory; Interrupts; The 12 series 8-bit microcontroller; The 16F87X microcontroller; The 16F62X microcontroller; Projects; Instruction set, files and registers; Appendices; Index.

308 pages

Order code NE39 £19.99

PRACTICAL ELECTRONIC FAULT FINDING AND TROUBLESHOOTING
Robin Pain

To be a real fault finder, you must be able to get a feel for what is going on in the circuit you are examining. In this book Robin Pain explains the basic techniques needed to be a fault finder.

Simple circuit examples are used to illustrate principles and concepts fundamental to the process of fault finding. This is not a book of theory, it is a book of practical tips, hints and rules of thumb, all of which will equip the reader to tackle any job. You may be an engineer or technician in search of information and guidance, a student, a hobbyist building a project from a magazine, or simply a keen self taught amateur who is interested in electronic fault finding but finds books on the subject too mathematical or specialised.

The fundamental principles of analogue and digital fault finding are described (although, of course, there is no such thing as a “digital fault” - all faults are by nature analogue). This book is written entirely for the fault finder using only the basic fault-finding equipment: a digital multimeter and an oscilloscope. The treatment is non-mathematical (apart from Ohm’s law) and all jargon is strictly avoided.

To be a real fault finder, you must be able to get a feel for what is going on in the circuit you are examining. In this book Robin Pain explains the basic techniques needed to be a fault finder.

TROUBLESHOOTING

Index.

Projects; Instruction set, files and registers; Appendices; Index.

274 pages

Order code NE22 £33.99

BUILDING VALVE AMPLIFIERS
Morgan Jones

A unique hands-on guide for anyone working with valve tube in USA audio equipment - as an electronics experimenter, audiophile or audio engineer.

Particular attention has been paid to answering questions commonly asked by newcomers to the world of the vacuum tube, whether audio enthusiasts tackling their first build, or more experienced amplifier designers considering the economics of using valves in place of transistors. The book is reinforced by numerous clear illustrations throughout.

368 pages

Order code NE20 £23.99

A BEGINNERS GUIDE TO CMOS DIGITAL ICs
R. A. Pentolf

Getting started with logic circuits can be difficult, since many of the fundamental concepts of digital design tend to seem rather abstract, and remote from obviously useful applications. This book covers the basic theory of digital electronics and the use of CMOS integrated circuits, but does not lose sight of the fact that digital electronics has numerous “real world” applications.

The topics covered in this book include: the basic concepts of logic circuits; the functions of gates, inverters and other logic “building blocks”; CMOS logic i.c.; characteristics, and their advantages in practical circuit design; oscillators and modulators (sinusens); flipflops, binary dividers and binary counters; decade counters and display drivers.

119 pages

Order code BP33 £5.45

AUDIO AMPS

A BEGINNERS GUIDE TO CMOS DIGITAL ICs
R. A. Pentolf

Getting started with logic circuits can be difficult, since many of the fundamental concepts of digital design tend to seem rather abstract, and remote from obviously useful applications. This book covers the basic theory of digital electronics and the use of CMOS integrated circuits, but does not lose sight of the fact that digital electronics has numerous “real world” applications.

The topics covered in this book include: the basic concepts of logic circuits; the functions of gates, inverters and other logic “building blocks”; CMOS logic i.c.; characteristics, and their advantages in practical circuit design; oscillators and modulators (sinusens); flipflops, binary dividers and binary counters; decade counters and display drivers.

119 pages

Order code BP33 £5.45

A BEGINNERS GUIDE TO CMOS DIGITAL ICs
R. A. Pentolf

Getting started with logic circuits can be difficult, since many of the fundamental concepts of digital design tend to seem rather abstract, and remote from obviously useful applications. This book covers the basic theory of digital electronics and the use of CMOS integrated circuits, but does not lose sight of the fact that digital electronics has numerous “real world” applications.

The topics covered in this book include: the basic concepts of logic circuits; the functions of gates, inverters and other logic “building blocks”; CMOS logic i.c.; characteristics, and their advantages in practical circuit design; oscillators and modulators (sinusens); flipflops, binary dividers and binary counters; decade counters and display drivers.

119 pages

Order code BP33 £5.45

A BEGINNERS GUIDE TO CMOS DIGITAL ICs
R. A. Pentolf

Getting started with logic circuits can be difficult, since many of the fundamental concepts of digital design tend to seem rather abstract, and remote from obviously useful applications. This book covers the basic theory of digital electronics and the use of CMOS integrated circuits, but does not lose sight of the fact that digital electronics has numerous “real world” applications.

The topics covered in this book include: the basic concepts of logic circuits; the functions of gates, inverters and other logic “building blocks”; CMOS logic i.c.; characteristics, and their advantages in practical circuit design; oscillators and modulators (sinusens); flipflops, binary dividers and binary counters; decade counters and display drivers.

119 pages

Order code BP33 £5.45

A BEGINNERS GUIDE TO CMOS DIGITAL ICs
R. A. Pentolf

Getting started with logic circuits can be difficult, since many of the fundamental concepts of digital design tend to seem rather abstract, and remote from obviously useful applications. This book covers the basic theory of digital electronics and the use of CMOS integrated circuits, but does not lose sight of the fact that digital electronics has numerous “real world” applications.

The topics covered in this book include: the basic concepts of logic circuits; the functions of gates, inverters and other logic “building blocks”; CMOS logic i.c.; characteristics, and their advantages in practical circuit design; oscillators and modulators (sinusens); flipflops, binary dividers and binary counters; decade counters and display drivers.

119 pages

Order code BP33 £5.45
PCB SERVICE

Printed circuit boards for most recent EPE constructional projects are available from the PCB Service, see list. These are fabricated in glass fibre, and are fully drilled and roller tinned. Double-sided boards are NOT plated through hole and will require Vias' and some components soldering to both sides. All prices include VAT and postage and packing. Add £1 per board for airmail outside of Europe. Remittances should be sent to The PCB Service, Everyday Practical Electronics, Wimborne Publishing Ltd., Sequoia House, 398a Ringwood Road, Ferndown, Dorset BH22 9AU. Tel: 01202 878378; Fax 01202 874652; Email: orders@epemag.wimborne.co.uk. On-line Shop: www.epemag.com. Cheques should be crossed and made payable to Everyday Practical Electronics (Payment in £ sterling only).

NOTE: While 95% of our boards are held in stock and are dispatched within seven days of receipt of order, please allow a maximum of 28 days. Boards can only be supplied on a payment with order basis.

Please check price and availability in the latest issue. A large number of older boards are listed on, and can be ordered from, our website. Boards can only be supplied on a payment with order basis.

EPE SOFTWARE

All software programs for EPE Projects marked with a star, and others previously published can be downloaded free from the Library on our website, accessible via our home page at: www.epemag.com.

PCB MASTERS

PCB masters for boards published from the March '06 issue onwards can also be downloaded from our website (www.epemag.com); go to the ‘Library’ section.

EPE PRINTED CIRCUIT BOARD SERVICE

Order Code Project Quantity Price

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tel. No.</td>
<td></td>
</tr>
</tbody>
</table>

I enclose payment of £ (cheque/PD in £ sterling only) to:

Everyday Practical Electronics

Card No. ..
If you want your advertisements to be seen by the largest readership at the most economical price our classified page offers excellent value. The rate for semi-display space is £10 (+VAT) per centimetre high, with a minimum height of 2.5cm. All semi-display adverts have a width of 5.5cm. The prepaid rate for classified adverts is 40p (+VAT) per word (minimum 12 words).

All cheques, postal orders, etc., to be made payable to Everyday Practical Electronics. VAT must be added. Advertisements, together with remittance, should be sent to Everyday Practical Electronics Advertisements, Sequoia House, 398a Ringwood Road, Ferndown, Dorset BH22 9AU. Phone: 01202 873872. Fax: 01202 874562. Email: epeads@wimborne.co.uk. For rates and information on display and classified advertising please contact our Advertisement Manager, Stewart Kearn as above.

CLASSIFIED ADVERTISEMENTS

Everyday Practical Electronics reaches more UK readers than any other UK monthly hobby electronics magazine, our sales figures prove it. We have been the leading monthly magazine in this market for the last twenty-three years.

BTEC ELECTRONICS TECHNICIAN TRAINING

NATIONAL ELECTRONICS VCE ADVANCED ICT
HNC AND HND ELECTRONICS FOUNDATION DEGREES
NVQ ENGINEERING AND IT DESIGN AND TECHNOLOGY

LONDON ELECTRONICS COLLEGE
20 PENYWERN ROAD
EARLS COURT, LONDON SW5 9SU
TEL: (020) 7373 8721
www.lec.org.uk

Versatile Programmable PIC
On Screen Display System
Display text over any composite video signal

- Fully programmable I/O for sensor interfaces
- PIC 16F84A micro
- User definable fonts
- Example code for MSP, cash register, 1-wire
- GPS data display

WWW.PIC-OSD.COM

The British Amateur Electronics Club
Archive Website. Archiving extracts for 1966-2002. Currently have interesting and useful selected articles from 19 Newsletters.
Also a section about built electronics projects with schematics and photos. Plus useful info., downloads and links.
"NO ADVERTS!"
Website Address: http://baec.tripod.com

www.partridgeelectronics.co.uk
Special End of Season Bargains.

BOWOOD ELECTRONICS LTD
Suppliers of Electronic Components
Place a secure order on our website or call our sales line
All major credit cards accepted
Web: www.bowood-electronics.co.uk
Unit 10, Bothyrope Business Park, Dock Walk, Chesterfield, Derbyshire S40 2QR. Sales: 01246 200222
Send 60p stamp for catalogue

N.R. BARDWELL Ltd – est 1948
Electronic Component Supplies
LEDs, Semis, IC’s, Resistors, Caps, etc.
1000’s bargains at our secure site:
www.bardwells.co.uk
288, Abbeydale Rd. Sheffield. S7 1FL
0845 166 2329 (local rate)

Miscellaneous

VALVES AND ALLIED COMPONENTS IN STOCK. Phone for free list. Valves, books and magazines wanted. Geoff Davies (Radio), tel. 01788 574774.

1 RPM MAINS MOTORS 240V 4W.
Body 50mm diameter × 25mm with lugs. Shaft 7mm diameter. £9.85 including postage. C. Brittain, 12 Marina Drive, Wolverton, MK12 5DW. 07986 824998

ONLY £8.50
INCLUDING P&P FROM OUR DIRECT BOOK SERVICE

ELECTRONICS TEACH-IN
BY MIKE TOOLEY
plus FREE CD-ROM

A broad-based introduction to electronics – find out how circuits work and what goes on inside them. Plus 15 easy-to-build projects. The 152 page A4 book comes with a free CD-ROM containing the whole Teach-In 2006 series (originally published in EPE) in PDF form, interactive quizzes to test your knowledge, TINA circuit simulation software (a limited version – plus a specially written TINA Tutorial), together with simulations of the circuits in the Teach-In series, plus Flowcode (a limited version) a high level programming system for PIC microcontrollers based on flowcharts.

See our Direct Book Service – pages 67 to 69
20,000,000 Items on line NOW !
New items added daily

Established for over 25 years, UK company Display Electronics prides itself on offering a massive range of electronic and associated electro-mechanical equipment and parts to the Hobbyist, Educational and Industrial user. Many current and obsolete hard to get parts are available from our vast stocks, which include:

- 6,000,000 Semiconductors
- 5,000 Power Supplies
- 25,000 Electric Motors
- 10,000 Connectors
- 100,000 Relays & Contactors
- 2000 Rack Cabinets & Accessories
- 4000 Items of Test Equipment
- 5000 Hard Disk Drives

www.distel.co.uk
Display Electronics
29 / 35 Osborne Road
Thornom Heath
Surrey UK CR7 8PD
Telephone [44] 020 8653 3333
Fax [44] 020 8653 8888

Rechargeable Batteries With Solder Tags

NIMH NICAD

AA 2000mAh£2.82
C 4Ah£4.70
D 9Ah£7.60
PP3 150mAh£4.95

Instrument case with edge connector and screw terminals

Size 112mm x 52mm x 105mm tall

This box consists of a cream base with a PCB slot, a cover plate to protect your circuit, a black lid with a 12 way edge connector and 12 screw terminals built in (8mm pitch) and 2 screws to hold the lid on. The cream bases have minor marks from dust and handling price £2.00 + VAT(£2.35) for a sample or £4.00 + VAT(£5.70) for a box of 44.

866 battery pack originally intended to be used with an orbitel mobile telephone it contains 10 1.6Ah sub C batteries (42 x 22 dia. the size usually used in cordless screwdrivers etc.) the pack is new and unused and can be broken open quite easily £7.46 + VAT = £8.77

Please add £1.66 + VAT = £1.95 postage & packing per order

JPG Electronics
Shaws Row, Old Road, Chesterfield, S40 2RB.
Tel 01246 211202 Fax 01246 550959
www.JPEGelectronics.com
Mastercard/Visa/Switch
Callers welcome 9.30 a.m. to 5.30 p.m. Monday to Saturday

Europe’s Largest Surplus Store

NEXT MONTH

INFRARED AUDIO HEADPHONE LINK FOR TV
Do you like to watch the telly late at night, but are worried about disturbing others? Do you have trouble understanding what’s said on the TV? Do you need the volume cranked up till it’s too loud for everyone else? Do you have a hearing aid?
If you said yes to any of other these questions, here is the answer to your problems: an infrared transmitter and receiver to let you listen to the TV via headphones. That way, you can listen however and whenever – as loud and as late as you like - without disturbing anyone.

MICROSTEPPING 4-PHASE UNIPOLAR STEPPING MOTOR DRIVER
Stepping motors have revolutionised the precise positioning of a huge range of machine components – from printers to robots.
In this fascinating article we show you how to get the most from stepping motors using a technique called 'microstepping'.

SUPER-ACCURATE GPS-BASED FREQUENCY REFERENCE
In the April issue, we introduced the circuit for our GPS-Based Frequency Reference and described how it works. Next month, we show you how to build and adjust this high precision instrument.

RECYCLE IT!
Our next Recycle It! is a master class in forward thinking – how to get the most from all those junked VCRs. You’ll be amazed at the high quality items that can be picked up for nothing.

MAY ’09 ISSUE ON SALE 9 APRIL

ADVERTISERS INDEX

BETA LAYOUT Cover (ii)
CRICKLEWOOD 41
DISPLAY ELECTRONICS 72
ESR ELECTRONIC COMPONENTS 6, Cover (iii)
FERSTER 39
J AYCAR ELECTRONICS 4/5
J P ELECTRONICS 72
LABCENTER Cover (iv)
LASER BUSINESS SYSTEMS 41
MAGENTA ELECTRONICS 41
NURVE NETWORKS LLC 47
PEAK ELECTRONIC DESIGN 57
PICO TECHNOLOGY 57
QUASAR ELECTRONICS 2/3
SHERWOOD ELECTRONICS 41
STEWARD OF READING 56

ADVERTISEMENT OFFICES:
Sequoia House, 398a Ringwood Road, Ferndown, Dorset BH22 9AU
PHONE: 01202 873872 Fax: 01202 874562
EMAIL: epeads@wimborne.co.uk

For Editorial address and phone numbers see page 7

Printed in England by Apple Web Offset Ltd., Warrington, WA1 4RW. Distributed by Seymour, 86 Newman St., London W1T 3EX. Subscriptions INLAND: £19.95 (6 months); £37.90 (12 months); £70.50 (2 years). OVER SEAS: standard air service, £23.00 (6 months); £44.00 (12 months); £83.00 (2 years). E xpress airmail, £32.00 (6 months); £62.00 (12 months); £119.00 (2 years). Payments payable to “Everyday Practical Electronics”, Subs Dept, Wimborne Publishing Ltd. Email: subs@epemag.wimborne.co.uk. EVERYDAY PRACTICAL ELECTRONICS is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

Published on approximately the second Thursday of each month by Wimborne Publishing Ltd., Sequoia House, 398a Ringwood Road, Ferndown, Dorset BH22 9AU. Printed in England by Apple Web Offset Ltd., Warrington, WA1 4RW. Distributed by Seymour, 86 Newman St., London W1T 3EX. Subscriptions INLAND: £19.95 (6 months); £37.90 (12 months); £70.50 (2 years). OVER SEAS: standard air service, £23.00 (6 months); £44.00 (12 months); £83.00 (2 years). E xpress airmail, £32.00 (6 months); £62.00 (12 months); £119.00 (2 years). Payments payable to “Everyday Practical Electronics”, Subs Dept, Wimborne Publishing Ltd. Email: subs@epemag.wimborne.co.uk. EVERYDAY PRACTICAL ELECTRONICS is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

Published on approximately the second Thursday of each month by Wimborne Publishing Ltd., Sequoia House, 398a Ringwood Road, Ferndown, Dorset BH22 9AU. Printed in England by Apple Web Offset Ltd., Warrington, WA1 4RW. Distributed by Seymour, 86 Newman St., London W1T 3EX. Subscriptions INLAND: £19.95 (6 months); £37.90 (12 months); £70.50 (2 years). OVER SEAS: standard air service, £23.00 (6 months); £44.00 (12 months); £83.00 (2 years). E xpress airmail, £32.00 (6 months); £62.00 (12 months); £119.00 (2 years). Payments payable to “Everyday Practical Electronics”, Subs Dept, Wimborne Publishing Ltd. Email: subs@epemag.wimborne.co.uk. EVERYDAY PRACTICAL ELECTRONICS is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

Published on approximately the second Thursday of each month by Wimborne Publishing Ltd., Sequoia House, 398a Ringwood Road, Ferndown, Dorset BH22 9AU. Printed in England by Apple Web Offset Ltd., Warrington, WA1 4RW. Distributed by Seymour, 86 Newman St., London W1T 3EX. Subscriptions INLAND: £19.95 (6 months); £37.90 (12 months); £70.50 (2 years). OVER SEAS: standard air service, £23.00 (6 months); £44.00 (12 months); £83.00 (2 years). E xpress airmail, £32.00 (6 months); £62.00 (12 months); £119.00 (2 years). Payments payable to “Everyday Practical Electronics”, Subs Dept, Wimborne Publishing Ltd. Email: subs@epemag.wimborne.co.uk. EVERYDAY PRACTICAL ELECTRONICS is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover, and that it shall not be lent, resold, hired out or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.
Velleman PICprog2006™ software is easy to use programming crocontrollers, onboard circuit protection, protection against incorrect power supply overload & short-circuit protected.

Audio Amplifier

- K8060 Kit £14.18
- VM100 Assembled £38.54

PIC Programmer

- Suitable for a wide range of Microchip® PIC™ microcontrollers, onboard configurable 40-pin, 24F128 socket, Microcontroller selection using patch jumper, easy to use programming PICprog2006™ software included, SUBD connector set included. £44.88

USB Interface Board

- With 5 digital input & 8 digital output channels. In addition, there are two analogue inputs & two analogue outputs with 8-bit resolution. All communication routines are contained in a Dynamic Link Library (DLL). You may write custom Windows (95SE, Me, XP) applications in Visual Basic - C Builder or any other 32-bit Windows application development tool that supports calls to a DLL. £25.65

USB Interface Board

- With 32 inputs/output including analogue & digital + 1PWM output. Connection to the computer is galvanically optically isolated, so that damage to the computer is not possible thus providing a high level of secure implementation. Supplied with test software & examples. £66.48

High Power LED Driver

- Power up to 1W or 2W high-power LEDs (not incl.) Delivers accurate constant current required by most high-power LEDs, built-in rectifier for easy connection to AC source, compact size, short-circuit protected, no heat sink required. £8.56

Remote Control by Telephone

- Turn up to three devices on or off over the telephone. It is also possible to check the condition of a switch (open or closed). A major advantage of this circuit lies in the fact that audio signals are used to tell whether a specific output has been turned on or off. Operation is protected by a user defined code, which is simply keyed in from the telephone key pad. £3.82

USB DMX Interface

- Control DMX mixers using a PC and USB interface, test software and "DMX Light Player" software is included, a DLL is provided to write your own software. Stand-alone test function that outputs all 512 channels at a time, with adjustable levels. £35.55

Remote Control Transmitter

- For use with the K8071/VM1049 two-channel RF receivers. Generates unique 32-bit code more than 1,000,000,000 unique codes can easily be changed for safety purposes, choose continuous or 'burst' transmission LED indicator. £15.22

Remote Control Receiver

- Two relay contact outputs for use with K8059 and VM1018 two channel RF transmitter modules. Suitable for any application. £17.19

Tel: 0191 2514363

Fax: 0191 2522296

sales@esr.co.uk

www.esr.co.uk

£5.50 greater than 1kg or >£30

UK Carriage £2.50 (less than 1kg)

Full spec on our web site:

Two channel USB PC Oscilloscope

- A digital storage oscilloscope uses the power of your PC to visualise electrical signals. Its high sensitive display resolution, down to 0.15 µV, combined with a high bandwidth and a sampling frequency of up to 1 Giga Herz is giving this unit all the power you need. £33.64

USB PC Function Generator

- A digital function generator which can be connected with a PC via USB. Standard signal waves like sine, triangle and rectangle are available, other sine waves can be easily created. The signal waves are created in the PC and produced by the function generator via DOS (Direct Digital Wave Synthesis). £22.08

ESR Electronic Components Ltd.

Cullercoats Station Road

Tyne & Wear NE30 4PQ

Prices Exclude VAT @15%

UK Carriage £2.50 (less than 1kg)

£2.50 greater than 1kg or >£30

Charges / Postal orders payable to ESR Electronic Components Ltd

PLEASE ADD CARRIAGE & VAT TO ALL ORDERS.
PROTEUS DESIGN SUITE Features:

- Easy to use, standard Windows interface.
- Publication quality schematics.
- Fully configurable bill of materials.
- Large component libraries for both simulation and PCB layout.
- Mixed mode SPICE circuit simulation.
- Co-simulation of PIC, AVR, 8051 and ARM7 microcontroller firmware.
- Integrates with MP-LAB and AVR Studio.
- Automatic component placement and gateswap optimization.
- Highly configurable design rules.
- Interactive design rule checking.
- Polygonal and split power planes.
- World class shape based autorouter.
- Automatic mitre/unmitre commands.
- Industry standard CADCAM & ODB++ output.
- Integrated 3D Viewer with 3DS and DXF export.

All levels of the Proteus Design Suite now include a world class fully integrated shape based autorouter at no additional cost - prices start from just £150 exc. VAT & delivery.

Visit our website or phone 01756 753440 for more details