
a WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

NEW YORK, JULY 17, 1886.

TRANSFORMATION OF PHYSICAL FORCES.
One of our readers communicates to us an arrangement of the Bunsen battery by means of which he performs a very curious experiment on the transformation of physical forces. The annexed figure shows the general arrangement. The pile is constructed as follows : The zinc, instead of being tubular and surrounding the porous cup, is a solid cylinder, and is suspended beneath a bell glass, which is itself fixed to a wooden cover that hermetically closes the vessel through the intermedium of wax or cement. The bell glass is closed by a rubber stopper provided with two tubulures. One of these latter gives passage to the copper rod which supports the zinc, and which serves as an electrode, while the other is provided with a tube and cock that gives exit to the hydrogen gas formed. The cock, when opened or closed, opens or closes the circuit. In effect, in the first case, the hydrogen escapes, and, in the second, having no exit, it accumulates in the bell and expels the liquid. The pile then ceases to work, as the zinc is no longer immersed. The carbon and the purous cup containing the acid are arranged alongside of the bell in the usual manner.
The experiment that this pile permits of performing is as follows: The metallic conductors fixed to the two poles are connected with a small electric motor, which operates as soon as a contact is established. The disengaged hydrogen is led by means of a rubber tube beneath the boiler of a small steam engine, and, when lighted, soon boils the water and sets the engine running.
We thus have at the same time a generator of heat and electricity. This is a pretty lecture experiment, and we recommend it to physicists.-La Nature.

ESTRADE'S HIGH SPEED LOCOMOTIVE.

Our collaborator Mr. Audra has already described* Mr. Estrade's conception of a type of railway rolling
stock of a speed such as has never as yet been at-|already arisen. It is to be wished that some experi tained. Such conception is at length a reality, and ments shall soon be performed, either upon the lines there may now be seen in the shops of Messrs. J. Bou- of our large companies or upon those of the State. let \& Co., of Paris, the locomotive and its tender en- They will be deeply interesting and instructive. It tirely mounted and ready to operate. It is impossible does not appear doubtful that it will be possi r ble to reach the high speeds of from 72 to 78 miles, for which this locomo tive has been constructed. The equal size of the loco motive wheels, and of those of the cars, will, doubtless, in a great measure diminish the resistances of friction, and permit of gaining in speed.
It must be noted that the fore axle of the locomotive, although coupled with the others, is provided with hinged grease boxes. On properly slowing up, then, it does not seem that it will be impossible to turn curves of the usual radius
'This granted, we can appre ciate what peculiar services will be rendered by rolling stock of this kind in the India mail service and on the great rectilinear lines of Russia, Asia, and the New World, and everywhere, in fact, where it is desirable to cross with exceeding rapidity great desert
TRANSFORMATION OF PHYSICAL FORCES. of this beautiful engine, with its six driving wheels, spaces between centers of population. Were it from of one diameter in common of $81 / 4$ feet, mounted upon but this standpoint, Mr. Estrade's rolling stock would three coupled axles.
The inventor's idea, it will be remembered, consists in generalizing the use of wheels of large diameter, in the extension, to high speeds, of the coupling of the axles of the motor, and in the adoption of a new and well studied style of double suspension.
follows: Tota The principal dimensions are as follows: Total length. 33 feet; width between longitudinals, 4 feet; diameter of the wheels, $81 / 4$ feet; weight of engine, empty, 38 tons ; weight of engine, loaded, 42 tons.
We shall not now return to a theoretic discussion of the qualities of this engine. Mr. Estrade has peremptorily answered this with faith and generosity by hav ing built, as carefully as possible, and of true size, the one-tenth size model that he had deposited in the galleries of the Conservatoire des Arts et Metiers, and con cerning which quite a number of controversies have
merit being taken into serious consideration; and it is very desirable that the experiment shall be performed in France, since it is a question of a French idea, all the expenses attending the carrying out of which have been liberally defrayed by one of our compatriots. These experiments will give us new hints, and will permit of passing a definite opinion very opportunely the moment when Mr. Crampton, the eminent effective engine to which he has effective engine to which he has
given his name, is proposing a new model with three axles, of which two are to be coupled, and which are to carry wheels $63 / 4$ feet in diameter.
In Mr. Estrade's materiel, the Westinghouse brake has gained a new success, since it has been selected after a study of all the devices capable of braking these high speed trains.-Le Genie Civil.

ESTRADE'S HIGH SPEED LOCOMOTIVE LA PARISIENNE.

§rimutitic gmmican.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
No. 361 BROADWAY, NEW YORK.

o. D. MUNN.
 A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, postage included.....
One copy, six months, postage included.

 MUNN \& CO., 361 Broadway, corner of Franklin Street, New
The Scientific American Supplement

\qquad
Scientific American Export Edition.

NEW YORK, SATURDAY, JULY 17, 1886.
Contents.
(Illustrated articles are marked with an asterisk.)

TABLE OF CONTENTS OF
SCIENTIFIC AMERICAN SUPPLEMENT

has been effected, it seems unjust for the government to retain the amounts so received. A large surplus exists to-day in the Treasury of the United States to the credit of the Patent Office. Much of it has been derived from the sources described. The repayment of as many inventors as could be found would not, we are convinced, seriously deplete this idle amount. For the future, if the revenues were somewhat reduced, it would be only equitable and just to submit to such rewould be only equitable and just to submit to such re-
duction. The government should in no sense be a money maker, and should receive no fees that it is not justly entitled to.

PROGRESS OF SILK CULTURE IN THIS COUNTRY.

From the Sixth Annual Report of the Women's Silk Culture Association of the United States, it appears that while the present outlook for the industry is not as bright as it might be, there is still much to encourfor for itself an important place among the industrial
enterprises of America. The number of those engaged in the culture of silk cocoons in the agricultural districts is on the increase, and there has been an improvement in both the quantity and quality of the product. The methods of converting the cocoons into commercial raw silk have also been improved, and the prices are somewhat higher than formerly. That there is an immense field for the silk culturist in this country, if only the industry can once be established upon house statistics. Not infrequently the monthly imports of silk and silk goods amount to as much as five million dollars. Or perhaps it is even better appre-

RECENTLY PROPOSED PATENT LEGISLATION.

In many cases, improperly drawn specifications, with drawings not acceptable under the Patent Office rules, have been forwarded to the Commissioner of Patents, accompanied by the preliminary fee of fifteen dollars. Of such applications, some have gone no farther, the necessary alterations and amendments not having been made. In other cases, inventors, ignorant of the laws relating to patents, have sent to the Commissioner a simple statement to the effect that they proposed to take out a patent for certain inventions, and with this statement have forwarded the preliminary fee of fifteen dollars. Again, it often happens that the final fee of twenty dollars is paid in, and the application abandoned after such payment. Sometimes the entire fee of thirty-five dollars is sent in advance with the application, which is subsequently abandoned. Hitherto, and at present, in such cases the amount received in excess by the Commissioner cannot by law be returned. Much injustice is apparent in these transactions. Money is received by the government, and retained by it, for which no equivalent is given. There are now many thousands of dollars in the Treasury received fromr these sources. It seems clear that it is a case for legal relief.
On the 22d of March of the present year, Mr. Ormsby B. Thomas introduced a bill designed to remedy the evil. In general terms, it authorized the Commissioner of Patents to refund these fees where possible, and in all cases to make efforts to do so by writing to the applicants, The bill was twice read, and referred (H. R. bill No. 9,474) on the who reported a substitute the purpose of authorizing and directing the Commissioner of Patents to notify the class of applicants in question that their fees are subject to their order. It classifies the fees, 1st, as those sent to the Patent Office with applications which have never been completed or placed in conditior for examination, and have become abandoned by lapse of time; 2 d , as final fees of twenty dollars paid on applications which have never been patented, and which have become abandoned.
In all such cases, the Commissioner of Patents is ordered to mail to the last known post office address of the person entitled thereto, informing him of his right to the sum in question, and stating that the amount will be forwarded to him on his written request for it. When the request is received, the Commissioner is directed to return the money, under such rules as may be required to efficiently and safely carry out the provisions of the proposed law. In order to prevent any further accumulation of fees paid by mistake, the Commissioner is authorized to refund them, for the fu-
ture, as soon as received, drawing upon the current ture, as soon as rece
receipts of the office.
The provisions of the bill above summarized seem enimently just ones. The fees of thirty-five dollars received by the Patent Office are intended to pay for the cost of searching for novelty, for clerical expenses, printing, lithographing, and the like. There was never any idea of making them a source of profit or of general revenue to the government. Under equitable management, the amounts received by the office should be spent upon forwarding its business, and expediting the issuing of patents. When, therefore, through error or otherwise, fees are paid for which no return is given in the way of a search for novelty, and other work in olved in the completion the completion of the application, or for hich, as in the case of final fees, no issuing of a patent
m Technology.

Prof. R. H. Thurston, Director of Sibley College, Cornell University, in his lecture before the graduat ing class of the Rose Polytechnic Institute, at Terre Haute, Ind., took for his subject the nation's great problem, the possibility of progress without revolution and without those periods of darkness and distress which have heretofore been its recording milestones. The solution of this problem he finds in education, the careful, moral cultivation of the people at large. There are, it is said, two distinct systems of education, the old or gymnastic, and the new or technical ; but a deeper interpretation of the intellectual life shows no such distinction. However better adapted the new education may be to our present wants, it has at its foundation the elements of the old. The technical education, which is now beginning to receive proper recog nition in our systems of culture, is simply the supple ment to our older, incomplete academic training. In the ideal education, the citizen is fitted for the successful pursuit of every desirable object in life.
The education at school and college is no longer regarded as a finality, but simply as a means to an end, and that end is the student's life work and culture. Some years ago, in tracing the history of the development of the modern steam engine, Prof. Thurston divided its growth into three periods-speculation, application in several distinct forms, and, finally, a period of refinement.
In the growth of our educational systems, we have eached this third stage, the period of refinement, in
assembly. A decided preference is shown for the various kinds of dress goods made out of silk.
A recent feature in the work of the Association has been its management of the Government Experimental Station in silk culture. A filature, or silk reeling station, was established in Philadelphia, and a line of shafting was introduced, with arrangements for six reels. Early in June, 1885, three American reels were put into operation. A market was soon found for all the reeled silk produced, and also for all the waste, so that the undertaking may be said to rest on a business footing. The small quantity of cocoons produced, and the lack of experience in their culture, coupled with the high price of expert reelers, have been serious drawbacks to the financial success of the enterprise. But these are accidental circumstances, and will be dispelled, it is believed, by the results of the next two or three years. It is pleasant to record the fact that the three reels made in Philadelphia are pronounced by experts to be superior to any of those imported, not excepting the improved forms brought from the very home of the industry, Southern France.
There is one aspect of silk culture which, in addition to its intrinsic commercial importance, makes it worthy of particular attention. And this is the employment it affords to women and children whose homes are in the country.

PROF. PICKERING'S EARLY EXPERIMENTS IN TELEGRAPHING SOUND.

In 1870, Prof. E. C. Pickering, then of the Massachusetts Institute of Technology, illustrated to an audience the transmission of sound by electricity in an experiment which the present telephone controversy makes particularly interesting.
His first receiver consisted of a powerful electromagnet attached to the bottom of a wooden box, the cover of which was replaced by a tin plate, having a soft iron armature attached to its center. The armature approached the magnet, but was not in contact. The transmitter was a sonometer, around the wire of which a short wire was wound, dipping into mercury. An electric current was passed through both wires, the mercury, and the magnet. When the main wire of the sonometer was made to vibrate, the current at each vibration was broken at the surface of the mercury. When the circuit was made, the magnet drew the plate down; and when broken, the elasticity of the plate drew it back. A loud sound was thus produced, the pitch of which could be varied by changing the length or tension of the wire of the sonometer. This experiment was shown to the American Association for the Advancement of Science, at its annual meeting, and was repeated in the course of several lectures. On again repeating this experiment in 1879 , when the subject of the transmission of sound by means of electricity had assumed commercial importance, it was found that ordinary conversation could be heard as readily as musical notes.
From this it will be seen that as far back as 1870 a receiver was devised which consisted of a flexible iron diaphragm supported at its sides, and replacing the armature of an electro-magnet-a receiver, in fact, which differed in no way from that now in use. In 1879, the possibility of its use as a telephone was also demonstrated, and though "intended originally for a discontinuous current, it was equally suitable for a continuous one. The apparatus used in these early experiments is now in the possession of the Institute of

THE NATION'S GREAT PROBLEM.

 undation the elements of the old. The technical edu he ideal education, the citizen is fitted for the success ome years ago, in tracing the history of the developwhich, the elements of the complete system being pres-ent, it remains for us to select and arrange them to form a symmetrical whole of maximum efficiency, and adapted as perfectly as possible to the purposes which the experience and wisdom of the world have found essential. But the subject of technical education is so large that it has become necessary to specialize, and we have accordingly the manual training school, the trade school, and the school of engineering, in which the use of tools, their application in the arts, and finally the principles of design are respectively taught. By training each citizen to the greatest efficiency in his chosen work, it becomes possible to make our progress not only rapid, but, what is of infinitely more importance, continuous.

How to Cool a Cellar.

A great mistake is sometimes made in ventilatiag cellars and milk houses. The object of ventilation is to keep the cellars cool and dry, but this object often fails of being accomplished by a common mistake, and instead the cellar is made both warm and damp. A cool place should never be ventilated, unless the air admitted is cooler than the air within, or is at least as cool as that, or a very little warmer. The warmer the air, the more moisture it holds in suspension. Necessarily, the cooler the air, the more this moisture is condensed and precipitated. When a cool cellar is aired on a warm day, the entering air being in motion appears cool, but as it fills the cellar the cooler air with which it becomes mixed chills it, the moisture is condensed, and dew is deposited on the cold walls, and may often be seen running down them in streams. Then the cellar is damp, and soon becomes mouldy. To avoid this, the windows should only be opened at night, and late-the last thing be fore retiring. There is no need to fear that the night air is unhealthful-it is as pure as the air of midday, and is really drier. The cool air enters the apartment during the night, and circulates through it. The windows should be closed before sunrise in the n orning, and kept closed and shaded through the day. If the air of the cellar is damp, it may be thoroughly dried by placing in it a peck of fresh lime in an open box. A peck of lime will absorb about seven pounds or more than three quarts of water, and in this way a cellar or milk room may soon be dried, even in the hottest weather.

Natural Gas at Findlay, Ohio.

At a recent meeting of the Ohio Gas Light Association, Springfield, O., Mr. E. B. Philipp, of Findlay, O., read a paper on the above subject, from which we take the following :
Somewhat more than a year ago our company (the Findlay Gas Light Company), which had supplied the city with coal gas for a period of ten years, was driven into the natural gas field on account of the formation of an opposition company. The result of the latter's test well, and the knowledge of the fact that its managers had secured a franchise, led us at once to drill for natural gas. A good flow was secured, and without any investigation as to its quality or nature, either by chemical analysis or through photometrical tests, we turned it into our holders and furnished it, in its crude natural condition, to our consumers.
The chemical analysis (kindly made for us by Mr. E. McMillin, of Columbus) is as follows :

Constituents.	Per cent.
Ammonia	0.0
Sulph. hydrogen.	$0 \cdot 88$
Carbonic acid	0.88
Bisulphide carbon.	$0 \cdot 00$
Illuminants.	$0 \cdot 50$
Oxygen..	$0 \cdot 00$
Carbonic oxide	$2 \cdot 0$
Marsh gas (proba	95%

By passing the gas through lime-filled purifying boxes, and removing the carbonic acid and sulphureted hydrogen, we obtain a candle power of $13 \cdot 77$, a gain over best Argand showing on crude gas of $1 \cdot 20$ candles.
The best general lighting results are obtained when using burners rated to consume from 8 to 9 cubic feet per hour. At that rate of burning it gives a good and satisfactory light, excelling, in a number of instances, some qualities of coal gas. With this data before us, we may claim to have a fair quality of gas, above legal Ohio standard, which we furnish to our consumers at a very low price. Discarding the use of meters, we sell it by the tip or burner, charging from 15 to 30 cents per tip per month, according to the number of hours used.
This price is for flat flame and Argands. For regenerative burner consumption we charge more. At this price, estimating the average yearly number of burning hours at 1,400 , with a consumption of 8 feet per hour, at an average cost of 20 cents permonth, or $\$ 2.40$ per year, we receive between 20 and 24 cents per thousand for our gas.

The present price of natural gas, as sold in Findlay, is lower than in any other town in the country, and by
reason of the contention at the beginning. We furnish an ordinary house with fuel and lights for $\$ 30$ or $\$ 35$ per year ; and hotels get fuel and light for about $\$ 240$ per year. For our street lamps we receive $\$ 6$ a year The average price of gas to stoves, during the seven cold months, is from $\$ 1.50$ to $\$ 2.50$ per month. Occasional fires, or those lighted in upper rooms, such as bath and bed rooms, etc., are supplied for $\$ 1$ per month In summer we charge $\$ 1$ per month for gas supplied to a cooking stove. For ordinary burners we get 15 to 30 cents per tip per month, according to size and number of hours used. For regenerative burners we get $\$ 1$ per month.
A few facts of direct comparison between natural gas, as to relative cost, may be of interest from a financial standpoint: A dry goods store, where the coal gas bills formerly amounted to between $\$ 400$ and $\$ 500$ per year, is now lighted with natural gas at a cost of $\$ 144$ per year. A saloon and restaurant, where the yearly coal gas charges were from $\$ 300$ to $\$ 400$, now pays $\$ 120$ per annum for the natural gas. A private residence, where the coal gas bills formerly footed up to $\$ 30$ or $\$ 35$ per annum, is now lighted at a cost not to exceed $\$ 7$ or $\$ 8$ per annum.
In making these comparisons, it must be borne in mind, as no meters are used, that from 50 to 100 per cent more gas is now consumed than was the case when coal gas was used-the latter, of course, having been sold by the thousand cubic feet. On account of the non-registration plan the gas is used very lavishly, and without any regard for economy. Storerooms, where every economy was exercised in the use of coal gas, the absolute wants and requirements of business, are now a blaze of light. Private residences, which formerly had only a burner here and there, are now a blaze of light from cellar to garret. The street lamps, formerly lighted with 4 and 5 foot burners, are now lit up as if the town were illuminated for some special occasion. These facts and figures are practically of use in the solution of the problem as to the likelihood of natural gas becoming a competitor of coal gas as an illuminant.
One decided improvement in our present system might well be made. That is in the way of purification by lime, which process would remove the excess of carbonic acid and sulphureted hydrogen, thus increasing the illuminating power, and doing away with the sulphurous odors evolved in burning, and also materially helping the steadiness of the flame. This step of purification, however, while it would certainly benefit the gas as stated, is not now practical with us, on account of the size of our city. The consumer is unwilling to pay a cent more for it, should it be delivered to him in a purified state.
It has a tendency, however, to deposit a sort of white precipitate on the ceilings and walls of small rooms. It can be easily wiped off with a dry cloth.
One trouble with natural gas arises from the exces sive temperature to which the rooms are heated. It is no unusual thing to experience a temperature of 75° or 80° in rooms lavishly illuminated and heated by natu ral gas. The people living in such warm rooms are liable to take cold when they go out into the open air ; and the use of natural gas as a fuel may, for that reason, have a tendency to cause ill health. Physician have paid much attention to this matter of sulphurous impurity in the air respired in apartments lighted by natural gas, but, as far as I know, they have not found it to be dangerous.

An Improved Electric Battery.

It is claimed for the electric battery invented by Mr. Upward, London, that it does away with nearly all the difficulties which have hitherto accompanied the employment of batteries, and has practically limited their use to purposes such as telegraph work, which requires but little energy. The constant addition of corrosive fluids, the amalgamation of the zinc, the rejection of spent liquids, and the clearing of porous pots, are alike avoided, and the only operations which are required in the battery itself are the addition of a little water from time to time, and the renewal of the zincs when they have wasted away. There is no local action, and the cells may be left for months without attention, and started again without any loss in the interval. The electromotive force is high, $2 \cdot 1$ volts, and is maintained constant, as there is no depolarizing fluid to become diluted and lose its power.
These advantages are due, says Engineering, to the use of a gas as the agent to convert one of the solid elements of the battery into a salt. The method by which this result is attained will be best understood by a description of the battery. The three elements are zinc, carbon, and chlorine. The zinc is contained in an inner porous pot, and is surrounded by a solution of chloride of zinc. The carbon is placed in the outer pot, and is partly in the form of hard plates, and part ly in fragments. The latter are packed in to fill the a size that the interstices between them afford ampl passage for the chlorine gas, which is admitted near the bottom of the cell, and overflows near the top by a
pipe leading to the next cell. The accumulation of liquid in the outer pot is prevented by an outlet near the bottom. A number of these cells are coupled to gether to form a battery, just in the usual way, with the addition that the outer cells, which are sealed at the top, are joined by pipes so that the gas can flow from the first to the second, and the second to the third, and so on to the last. As soon as the circuit is closed, the chloride of zinc solution in the porous pot is decomposed, molecule by molecule, the zinc passing through the earthenware jar to combine with the gas on the outer side, and the chlorine taking up another atom of zinc from the plate. There is sufficient percolation of water through the porous partition to wash the chloride of zinc out of the carbon and carry it away through the drip-cock at the bottom of the jar. This cock has a light water seal, to prevent the escape of chlorine or the admission of air.
The affinity existing between zinc and chlorine is sufficient to insure the circulation of the latter through the cells, and as each atom of chlorine disappear another flows in from the reservoir to take its place. But as the gas is seldom perfectly pure, and may contain air or other admixture, it follows that in time an accumulation of this foreign matter takes place in the last cell, and if not removed, would stop its action, and eventually produce the same result in each of the preceding cells. This difficulty has been got over by Mr Upward by an ingenious arrangement of an aspirator which comes into play whenever the electromotive force of the last cell falls a little, and continues in action until it has drawn out all the inert gas. The water tap of the aspirator, which is of the ordinary kind used in laboratories, is controlled by an electro-magnet, to which the current is admitted by a contrivance resembling a relay. This relay is worked by a current from the last cell, and makes the connec tion to the magnet as soon as the electromotive force falls sensibly.
It detracts from the great convenience of the new battery, that chlorine gas is not an article of commerce, and is scarcely likely to be. It must be produced on the premises where it is to be used, and its manufacture entails some little trouble, and, if not carefully conducted, may prove a nuisance.
The apparatusdevised by Mr. Upward for the genera tion of the gas has been specially designed to avoid these inconveniences, and renders the operation as simple as it can be made. It consists of a short vertical cylinder or retort placed in a sand bath heated by a gas jet. Into this cylinder there is placed oxide of manganese, and then it is closed by a cover which dips into a water seal. Acid is run on to the manganese from a reservoir, and the gas evolved is led by a pipe to a holder constructed of earthenware pipes. As the gas is much heavier than air, it displaces the latter, and consequently there is no necessity for the use of a bell or of any moving parts in the holder. When the charge of manganese is spent, water is turned into the retort, and the liquid and gaseous contents are washed out into the drains. The lid is then raised, and the manganese, which is contained in an earthen ware tray, is removed and replaced by a fresh quan tity.
It is evident that this will be a cheap battery to work. There are no expensive materials used, such as nitric acid or bichromate of potash, and there is no waste from local action. What the exact expense is we are unable to say, and can only give the following figures, which are supplied by Mr. Upward, as a rough approximation. Chlorine gas costs from $1 / 2 \mathrm{~d}$. to 1 d . per cubic ft., and the consumption of it in a battery applied to electric lighting with Woodhouse and Raw son's lamps is equal to 1 ft . per 30 candle-hours. The consumption of zinc is, of course, similar to that in any other battery having the same electromotive force, and the cost is about $\frac{1}{8} \mathrm{~d}$. per 30 candle-hours. Thus the expenses of the materials together amount to from $7 / 8$ d. to $11 / 3 \mathrm{~d}$. per 30 candle-hours, or half that amount per lamp-hour. This makes no allowance for interest or depreciation, or for the renewal of lamps.
These figures show that the inventor does not put forward his battery as a source of energy which can vie in economy with a steam or gas engine in situations where these motors are admissible. But there are numerous places where the only sources of artificial light are lamps and candles, and for such situations this battery is a distinct improvement on its predeces sors. In its mechanical features great care has been taken to render it as independent of attention as pos sible. The battery itself requires nothing but water, and even this can be admitted automatically by an apparatus acting on the principal of the bird fountain. The gas retort is made so large, that one charge of manganese will give. a week's supply of gas, and this can be generated at one operation or more, according to the amount of acid admitted. The battery itself is kept at work all the twenty-four hours, and its current is received in an accumulator from which the lamps are fed. The loss in the accumulator is more than compensated for by the gain in working the battery under selected conditions, while the first cost is greatly reduced by this arrangement.

Keep on the Alert.

The manufacturer who hopes to hold his own in the fierce competition which characterizes modern industry must of necessity keep a sharp lookout for valuable improvements in machinery, and must introduce them promptly when they are presented. The movement of the industries is always forward. Thousands of ingenious minds are continually studying out methods for making processes easier and more economical. Every month some kind of a device for bettering the way of doing a thing, or for saving a little labor, is patented. The manufacturer who simply ignores these things, and runs along heedlessly in the old way, with the old devices, will be left behind and beaten as surely as the earth rolls around the sun. A mill built and filled with machinery twenty years ago, and left unimproved, could not begin to compete with a modern mill containing all the new mechanical improvements. And the way to keep a mill properly from dements. And is to add every important improvement teriorating is to add every important improvement
as it is put on the market. The most successful mills are the mills that do this very thing; and they succeed because they do it.-The Cooper's Journal.

IMPROVED HINGE.

One blank, Fig. 1, has a U-shaped slot forming a tongue, and the other, Fig. 2, has two L-shaped recesses in the side edges, forming two tongues at the sides. The first blank is then bent at right angles to form the two loops, Fig. 3, and a short wing at right angles to the long wing, the tongue being riveted to the latter. The second blank is bent to form one loop, Fig. 4, and a short and long wing, and its tongues are riveted as shown. Holes for nails or screws are provided in the wings. The two parts of the hinge are put together as shown in Fig. 5.
By making the tongues, waste of material in cutting or punching the blanks is avoided, and the sections are strengthened and stiffened at the angles.

WHEELER'S IMPROVED HINGE.

Nails can be used for fastening the hinge as well as screws, as there is no strain in the direction of their length and they are not apt to be pulled out by the hinge. As each section has two wings, one wing can be fastened on the face of the door or window and the other on the edge.
This invention has been patented by Mr. Ferdinand Wheeler, of Pine Grove, Pa.

CAR COUPLING.

The car coupling herewith illustrated can be operated from the side of the car, thereby obviating the danger attending the coupling of cars in the usual way. In the buffers projecting from the end of the car frame is journaled a shaft which extends to the sides of the car. On the shaft between the buffers is secured a hook,

CARRUTHERS' CAR COUPLING.

shaped as shown in the cut. In a slot in the hook is an arm so arranged as to carry an ordinary coupling link, as shown in the sectional view and by the dotted lines in Fig. 1. In the ends of the shaft are holes to receive a"rod formed with a loop at its free end, by which it is operated. In the side of the car is a hook for holding the handle rod in a horizontal position. When two cars provided with this coupling are brought together, the hook of one car is dropped over the body of the other hook, which hangs down as indicated by the dotted lines in Fig. 1. This coupler, which is the invention of Mr. G. F. Carruthers; of Winnipeg, Mani-
toba, Canada, can be made of rough material without any special finish; it requires but one hand of thetrain man to operate it, and it adjusts itself automatically to the vertical and lateral movements of the car.

DOOR SECURER.

This device is designed more especially for travelers being so arranged that it can be quickly and easily

SIMON'S DOOR SECURER.

secured to the keeper of an ordinary lock, in which position it will effectually prevent the opening of the door from the outside. The attachment consists of a malleable iron plate formed with corner pieces and a central flange as shown in the cut. The attachment is held to the keeper of the ordinary form of rim lock by screws that pass through the end pieces. Passing through a projection in the middle of the side is a screw provided with a rubber buffer upon its inner end, which bears against the door casing; a screw passing through the inner edge of the plate strikes against the face of the lock, so that there can be no possible play between the attachment and the door, which cannot then be opened from the outside.
This invention has been patented by Mr. Michael Simon, of Millersburg, Ohio.

Ventilation by Flues.

The Sanitary News, of Chicago, having the inquiry if a bath tub, water closet, or sink connecting with a cesspool 30 feet away would be best ventilated if the ventilator pipe was run up through a chimney or along outside of it, submitted the communication to the Department of Health. Mr. De Wolf, the Commissioner, replies as follows: "If you mean to run the pipe into and up through the smoke flue, I unhesitatingly say, do not do it. First, because this per mits the pipe to become unduly heated, thereby causing a very rapid upward movement of the air within the pipe, very often so rapid as to cause the en tire sewage in the horizontal drain and connecting traps to become frozen in the winter months. Second, because of the destructive action upon iron pipes of sulphur compounds and other gases generated in the combustion of coal, which in a comparatively short time "honeycombs" or perforates the pipe, thereby permitting drain air to be discharged directly into the building during fluctuating currents (at times when flues are not heated). Third, because of the possibility, if not probability, of concealed work being imperfectly done. The best method is to carry the drain vent pipe outside of but near to a heated flue, and continue same to a proper distance above the roof of building.

Diversity of Opinion.

The Pharmaceutical Record says that editing a paper is a pleasant business-if you like it. But, like most other occupations, there are some annoyances.
If the type is large, it don't contain much reading matter.
If we publish many formulæ, says the editor, folks say they are not reliable.
If we omit them, we have no enterprise or are knownothings.
If we have a few jokes, folks say we are rattleheads. If we omit jokes, folks say we are fossils.
If we publish original matter, they scold us for not giving selections.
If we give selections, people say we are lazy for not writing more, and give them what they have not read in some other paper.
If we give a complimentary notice, we are censured for being partial.
If we don't, all hands say we are a great humbug.
If we remain in our office attending to our business
folks say we are too proud to mingle with other fellows.
If we go out, they say we don't attend to our busi-

The Bicentennial Celebration at Albany, New York. As July 22 will be the bicentennial of the incorporation of Albany as a city, very extensive preparations have been made for the commemoration of the event. Beginning on the previous Sunday with religiious observances in all the churches, the entire week up to Saturday will be devoted to the celebration. An historical pageant, consisting of sixteen floats representing scenes in the history of Albany, and similar in character to those employed at the Philadelphia bicentennial and in the South during the Mardi Gras, will be a special feature of the occasion. The President, the Governor of New York, and other prominent officials will take part in the ceremonies.

CAR COUPLING.

The drawhead is formed with a deep link opening and with a vertical slot, whose rear walls are inclined. In the center of a rock shaft mounted in bearings secured to the upper face of the drawhead is a square hole to admit the end of the coupling pin, which is securely held by a nut screwing upon its projecting end. This construction provides for the easy renewal of the pin whenever necessary. On the ends of the shaft are arms connected by chains with lever arms on a shaft held on the end of the car and having arms on a shaft h
By properly moving either of these arms, the pin can be swung up to the rear to permit the passage of the link. A link lifter, by means of which the link may be lifted to a position to enter the drawhead of the approaching car, is operated by chains leading to arms on a second shaft held in bearings on the end of the car. It will be seen that as the projecting end of the car. It will be seen that as the projecting end of
the link enters the drawhead of the approaching car, the coupling pin will be forced back; and after the link has passed the end of the pin, the latter will drop to its normal position, and couple the cars. It is not necessary to enter between the cars, either to couple, uncouple, or guide the links properly.

This invention has been patented by Mr. Matthew Brennan, of Louisville, Ky.

SHAVING MIRROR.

The convenient article herewith illustrated will be appreciated by all who make use of the razor. To the back of an ordinary mirror of any desired shape and size is secured a bracket, one arm of which is threaded to receive a screw, as shown in the small size view. One of the cross bars of a window is placed between the other arm of the bracket and the end of the screw, which is then turned so as to clamp the bar, thereby firmly holding the mirror in place. By this arrangement the glass can be placed in the best possible po-

PHILLIPS' SHAVING MIRROR.
sition as regards light, and can be quickly and easily brought into use or removed. The arms of the bracket are made long, and are at a sufficient distance apart to readily admit a cross bar of any depth or thickness. This invention has been patented by Mr. S. A. Phillips, of 311 Church Street, New York city.

PNEUMATIC PRESSURE RELIEF GOVERNOR.

The design of this air governor is to meet a well known want, namely, that of relieving an air compressor, worked by belt power, or otherwise than with steam direct, from the power used in compressing the air, when it would otherwise compress more air than is wanted for working purposes, thereby saving all the power now expended in compressing such sur plus air, which in many cases amounts to 50 or 75 per cent of the power really necessary.
This machine consists in having a branch pipe, O , attached to the upright or discharge pipe, \mathbf{E}, in which pipe is a relief valve, B, which is operated by the tion rod, H, which is attached to the lever, M , to which is connected a piston rod, I, and piston, K, working in an air cylinder, Z. Also to the lower side of the cylinder is a pipe, U , and valve, V, which conveys the air from an air receiver into the air cylinder, Z; this air operates to raise the piston and lever, M, on which is a weight or ball, N , which is placed on the lever so as to balance the maximum pressure of air needed for the work to be done. The check valve, D, is placed in the discharge pipe, E, so that the compressed air shall not return and escape through the relief valve, B, when it is open.
The operation of the governor is as follows: When the compressor is at work, it forces the compressed air through the check valve, D , and discharge pipe, E , into the receiver, until the air is compressed to, say, one hundred pounds pressure per square inch Now, this pressure applies (through Now, this pressure applies (through
pipe, U, and valve, V) under the pispipe, U , and valve, V) under the pis-
ton, K , and this pressure is balanced by the weight, N, and lever, M; but when the pressure rises three or four pounds above the working pressure, it
lifts the relief valve against the pressure on the relief valve and against the weight. When the valve is raised even a little, it exhausts the pressure on the top of the valve, and the air pressure in the cylinder, Z, being heavier than the weight and lever, it carries the valve wide open, and remains so until the pressure is reduced in the air receiver about threepounds, when the ball or weight, being the heavier, brings the valve to its seat again; thus it becomes a perfectly automatic pressure governor, and keeps the air steady within three or four pounds, the piston of the pump working at the same rate of speed all the time. In this way, very many compressors may be worked by power, without using any more power than what is necessary to compress the air required.
This governor is the invention of Mr. James Clayton, whose works are at 45 and 47 York Street, Brooklyn, N. Y., and whose New York office is at 43 Dey Street.

WATER LEVEL INDICATOR.

This instrument is intended for indicating the level of water at a distance. Fig. 1 is a perspective view of the electro-mechanical transmitter, Fig. 2 shows the receiver with the dial removed, Fig. 3 is a vertical section through the transmitter, and Fig. 4 is a detail view of the dial and indexes. On a shaft journaled in standards secured to the base of the transmitter is a wheel over which passes a chain having at one end a float and at the other end a counterbalance weight. When the water in which the float rests rises, the float is raised and the shaft turned by the chain. This movement, through the intermedium of suitably arranged levers and springs, permits the current from the battery to pass to the line in one direction and to the ground in the other. A further turning of the shaft, caused by continued rising of the water, produces a series of electrical impulses upon the line wire, which are all in one direction, and affect only one of the magnets of the receiver. Each electrical impulsé corresponds to the rise of the float through the space of one inch, and each impulse draws down the armature belonging to the magnet, thereby indicating by \mid six minutes, and it may be with a moistened eye, he means of an index, Fig. 4, a rise of one inch. The reverse motion of the shaft caused by the water falling so operates the levers as to reverse the current along the line. This reversed current will not affect the first magnet, but will be effective in operating the second magnet, whose armature will then act upon the recording mechanism to diminish the amount indicated by the indexes. In this manner the level of the water is

This invention has been patented by Mr. Wilbur \mathbf{S}. Mayers, of Fort Apache, Arizona.

The Young Father's First Telegram.
It is great fun to watch the senders of these first baby dispatches as they prepare them. A young father comes in with a hurried step and an exultant, beaming face. He grasps the blank, and dashes off something like this: "Great news! Mary very ill! Fine boy!" Then he tears that up. Somehow he doesn't want the rude telegrapher to know the name of the helpless but happy sufferer, and he tries it again. "Expected event realized; a little girl ; wife doing well." "But, pshaw!" he says, " that's rather a cold way to speak of her to her own father and mother. Wife-why, of course she's wife, but I don't like that," and he tears it up. Then he starts again, and this time he says, "Confound the telegrapher! He shan't know anything about it;" and he writes, "It has come-eight pounds -female; mother all right." He looks at it a minute and tears it up, with the remark, "They don't know whether that. means a Jersey calf or a Hambletonian colt." By this time the young man has got into a sweat, and grabbing a pencil he dashes off, "It's a girl. Mother doing nicely," and after looking at that five or

Water level indicator. state.
 signs his first name to it and hands it in. They're proud and happy and conscious, and yet they will do almost anything to conceal their identity.
Sometimes the young man comes in showing signs that the great domestic event has been too much for him, and then I have to take the pencil and help him out, and I do it in a practical way. I get the address and I simply write, "The little stranger is here. It is

always indicated by the indexes in connection with the

 dial.The helices of the magnets being of equal resistance, the current from the line is divided at the receiving instrument into two equal parts; this results in the temporary demagnetization of one of the magnets and the augmentation of the power of the other, so that each magnet is rendered effective by the current suited to it. In addition to its use as a water level indicator, this instrument may be used to indicate the height of a gasometer or the distance traveled by any moving object, either in a horizontal or vertical direcng o
ion.

CLAYTON'S PNEUMATIC PRESSURE RELIEF GOVERNOR.
a girl (or boy). Mother well ; " and then the man pays over his half dollar, and nearly pulls me through the window in his fierce desire to go and give the baby a bath.-Journal of the Telegraph.

Mounting the Lick Telescope.
The trustees have awarded the contract for mounting the 36 -inch objective (now in the hands of the Messrs Clark, of Cambridgeport) to the firm of Warner \& Swasey, Cleveland, Ohio, for the sum of $\$ 42,000$. Messrs. Warner \& Swasey were successful in a compe tition which included mosi of the celebrated makers of the world. One firm of celebrated makers (the Repsolds, of Hamburg) declined to compete on account of the short time available for the purpose. The mount ing proposed by Messrs. Warner \& Swasey will include every one of the improvements which have been lately introduced into the mountings of large telescopes, with the addition of one or two improvements peculiar to themselves.
The telescope is to be 57 feet long; the diameter of the tube is 42 inches. The tube is suspended at the middle. and the point of suspension is to be 37 feet above the floor of the dome. The axes on which the tube moves are supported by a heavy iron column, 17×10 feet at its base.

Provisions are made by which it is possible for an observer at the eye end of the telescope to command all the possible motions, and these same motions can also be controlled by an observer stationed on a small balcony 20 feet above the floor. It is expected that, in spite of the great size of the telescope itself and of its great weight, the mechanism will be so delicately adjusted as to render the use of power unnecessary.

Messrs. Warner \& Swasey are to have this mounting completed in April, 1887, and some time during the summer of 1887 the glass will be brought to Mt. Hamilton, where the mounting will already have been erected under the great dome, now building at the Union Iron Works, San Francisco, so that one may look forward to the completion of the Lick Observatory some time during the next year. It is impossible without an accurate description to give any complete notion of the excellence of the provisions which have been made by the Lick trustees. A rough idea may be had by considering the cost of the various parts of the great telescope, dome, mounting, etc. : Cost of the dome, $\$ 56,850$; cost of the mounting, $\$ 42,000$; cost of the visual objective, $\$ 53,000$; additional cost of the photographic objective, $\$ 13,000$; total, $\$ 164,850$. Be sides these sums, several thousand dollars will be required to put the instrument into its final completed

The Buffalo Carpet Beetle.

T. W. S. says: Please inform me what way I can best get rid of a great pest, the carpet moth. It is about the size of a grain of wheat, is black, and has hair on it ike a caterpillar. It will run backward as well as forward. The carpet moth, of which our correspondent complains, is in all probabilty the so-called "buffalo moth" (Anthrenus scrophularic), which has previously been figured and described at length in the columns of the Scientific American. Prof. L. O. Howard, Assistant in Charge of the Division of Entomology, Washington, says: "Where this insect is discovered in a carpeted room, the carpet should be taken up and sprinkled with benzine, and this substance should be poured into the cracks of the floor and under the base-boards. After airing both the room and the carpet, to get rid of the disagreeable odor, strips of roofing paper (prepared with gas tar), about two feet in width, should be spread around the edges of the room, and the carpet should be tacked down over them."

Impervious Corks.-Corks may

 be made impervious by soaking them-best qualityfor several hours in a solution of one-half ounce of glue or gelatine in a mixture of three-fourths ounce of glycerine and one pint of water, heated to a temperature of about $50^{\circ} \mathrm{C}$. Such prepared corks may be rendered nearly proof against acids and other chemicals if they are dipped, after thorough drying, for ten or fifteen minutes into a melted mixture of four parts of paraffine and one part of vaseline.
The Inventor of Saccharine

A representative of the American Analyst called upon Dr. Constantine Fahlberg, the inventor or discoverer of saccharine, the new coal tar sugar, and had a long talk with him about his new discovery. The doctor is a tall, well built, handsome German-Ameri can of about thirty-eight years of age. He speaks the modern languages fluently, and, despite the celebrity modern languages fluently, and, despite the celebrity
that has so suddenly fallen upon him, is quite diffident and reserved
"How did I discover saccharine? "he said. "Well, it was partly by accident and partly by study. I had worked a long time upon the compound radicals and substitution products of coal tar, and had made a number of scientific discoveries that are, so far as I know, of no commercial value. One evening I was so interested in my laboratory that I forgot about supper until quite late, and then rushed off for a meal without stopping to wash my hands. I sat down, broke a piece of bread, and put it to my lips. It tasted unspeakably sweet. I did not ask why it was so, probably because I thought it was some cake or sweetmeat. I rinsed my mouth with water, and dried my mustache with my napkin, when, to my surprise, the napkin tasted sweeter than the bread. Then I was puzzled. I again raised my goblet, and, as fortune would have it, applied my mouth where my fingers had touched it before. The water seemed sirup. It flashed upon me that I was the cause of the singular universal sweetness, and I accordingly tasted the end of my thumb, and found that it surpassed any confectionery I had ever eaten. I saw the whole thing at a glance. I had discovered or made some coal tar substance which out-sugared sugar. I some coal tar substance which out-sugared sugar. I
dropped my dinner, and ran back to the laboratory. There, in my excitement, I tasted the contents of every beaker and evaporating dish on the table. Luckily for me, none contained any corrosive or poisonous liquid.
"One of them contained an impure solution of saccharine. On this I worked then for weeks and months until I had determined its chemical composition, its characteristics and reactions, and the best modes of making it scientifically and commercially.
"When I first published my researches, some people langhed as if it were a scientific joke, others, of a more skeptical turn, doubted the discovery and the discoverer, and still others proclaimed the work as being of no practical value.
"When the public first saw saccharine, however, everything changed. The entire press, European and American, described me and my sugar in a way that may have been edifying, but was simply amusing to me. And then came letters. My mail has run as high as sixty a day. People wanting samples of saccharine, my autograph, or my opinion on chemical problems, desiring to become my partner, to buy my discovery, to be my agent, to enter my laboratory, and the like.
"What have I done? I have started a company in Germany to manufacture saccharine, with a capital of $2,000,000$ marks. They are already at work, and are now producing the new sugar. It costs, or rather we sell it, between $\$ 10$ and $\$ 12$ per pound, but will reduce these figures considerably kefore a year has gone past. I would rather have started in this country, which is my home, but the high price of skilled labor, and the high tariff on the crude materials (fine chemicals) of which saccharine is made, deterred me and my friends from so doing. I will say, however, that if applied from so doing. I will say, however, that if applied
chemistry continues progressing as it has done in the past decade, we shall open branch works here within the next five years."
Saccharine is proving a wonderful success. It is used already in many ways. Prof. Leyden, of Berlin, recommended it to sweeten fine wafers and other foods for invalids, and wrote a formula for it in such cases. This is used by bakers and confectioners, and more especially by Mannl \& Co., the great wafer manufacturers of ly by Mannl \& Co., the great wafer manufacturers of
Carlsbad, Bohemia. It is also employed by the makers of glucose and beet sugar. These are inferior in sweetness to cane sugar, but superior in digestibility and healthfulness. The addition of a trifling fraction of saccharine makes them the equals of the finest cane sugar in the market. Saccharine is so sweet that a teaspoonful converts a barrel of water into sirup. A small wafer of it converts the bitterest quinine solution or acid drink into a regular molasses. It will therefore be invaluable in disguising and destroying all the bitter and sour tastes in medicine without changing the character or action of the drugs.
Saccharine does not decay, mould, or ferment, neither is it attacked by bacteria. It has no injurious effect upon the human system. What effect has been noticed is rather beneficial than otherwise. This immunity from decay will render it of great utility in pickling and preserving delicate vegetables and meats. Where sugar is used as a flavor and not as a food, there, I think, it is bound to be replaced by saccharine; where as a food and flavor combined, it will not be. In the future the new sugar will be used by druggists, physicians, bakers, confectioners, candy makers, preserve and pickle makers, liquor distillers, wine makers, and dealers in bottlers' supplies.
the formation of saccharine
The new coal tar product, saccharine, which is ex-
pected to prove very useful on account of its sweetening power-in respect of which it stands to cane sugar in the ratio of 220 to 1 , and with which considerable anti-
septic properties are combined-was mentioned at septic properties are combined-was mentioned at
length by Sir Sydney Roscoe in a recent discourse at the Royal Institution. This new substance was described by the lecturer as perhaps the most remarkable of all the marvelous products of the coal tar industry. It is not a sugar, but contains carbon, hydrogen, sulphur, oxygen, and nitrogen; and its chemical name is benzoyl sulphuric imide. It is neither a nutrient nor a poison. It is derived from the toluene of coal tar, by a process comprising at least seven distinct steps; the whole contributing a triumph of synthetical chemistry. Toluene is first heated with sulphuric acid of 16812° Twaddell, but not above $100^{\circ} \mathrm{C}$. After all the original toluene has disappeared, the mixture is run into wooden tanks partly filled with cold water, where it is stirred up with chalk. The mass thus neutralized is fil tered through a press ; and the calcium salts are treat ed with sodium carbonate, with another filtration following. The solution of the sodium salts thus obtained is evaporated, and the solid residue dried by steam heat. This material is then mixed with phosphorus trichloride, and treated with a current of chlorine. Certain residuals are then driven off, and the appara tus contains two sulphonic chlorides-one solid and the other liquid. Only the latter is capable of yielding saccharine. This is now separated, mixed with solid am monium carbonate, and steamed. After some further mechanical treatment, the liquid is oxidized by potassium permanganate ; and, finally, the pure saccharine is precipitated by dilute mineral acids. It has a far sweeter taste than sugar, and a faint, delicate flavor of bitter almonds.

Report or the New York Railroad C

On the 7th of July the Railroad Commission announced its decision in regard to the car-coupling tests made at East Albany last month. They award the first place to the Hoag coupler. This is an invention not in use on any railroad at present. It is the work

of C. M. Hoag. of Greenbush, an engineer on the Bos ton and Albany Railroad. At the trial it was the only one that made the "flying switch" automatically. In its normal condition the link is level, and works suc cessfully on all cars. The recommendations of the commission, which are the most important made since its organization, are as follows :
First.-That the standard height of drawbar of the Master Car Builders' Association, viz., 2 feet 9 inches from top of rail to center of drawhead, when the car is empty, be adopted by all railroad corporations; that new cars be made to conform thereto, and that old cars, when repaired, be made to conform as nearly as possible.
Second.-That all freight cars not having platforms be equipped with "deadwood" blocks to conform to the standard of the Master Car Builders' Associa tion.
Third.--That a standard link be adopted of $101 / 2$ inches inside measurement and 13 inches outside measurement.
Fourth.-That all existing link and pin drawheads be provided with a stop in the throat to prevent a link entering more than 7 inches

Fifth.-Of the couplers presented to be tested on the 16th and 17th of June, the board finds the following to fulfill the requirements of the law. There are many others of which the board has drawings or models, and which possess merit, but as to them the board makes no mention for the reasons, first, that cars were not equipped with them; and, second, that little weight can be given to the workings of a model alone. Those practically tested are divided, first, into classes men tioned in what the board regards as the order of merit; second, each coupler is mentioned under its class, in what the board regards as its order of merit.
First Class, A-Link and pin couplers, pin held up by catch or "dog." The "dog" is thrown back by a link entering and allowing the pin to drop automati cally; uses standard link, and couples automatically with the old drawbar of stop in throat, or B, beveled pin permitting link to slip under. Hoag, McKeen,

Sherman, Thurber, Whitman, Kilmer beveled pin, Wilson beveled pin.
Second Class-Vertical hook and link, link pushed on to hook, couples automatically with old drawbar of stop in throat. Archer, Aikman, Marks, Smith, Baldwin, Fennell.
Third Class-Janney, Barnes, Cowell, Thurmond, Dowling, Heim, Titus \& Bossinger, Boston automatic, Lorraine.
Fourth Class-Ames, Custis \& Wood, Adams, Felthausen, and Lawtenslager.
We give herewith a sketch of the Hoag Coupler which was patented July 15, 1884.
The following are the patentee's claims :

1. In a car coupling, the combination, with a drawbar head, A, provided with recessed opening, a, a vertical opening, a^{\prime}, having the vertical mortise, a^{2}, opening thereinto, and the bridge bar, a^{3}, all as herein described, of the carrier, C , adapted to contain a removable coupling pin, B, and provided with shoulders, c^{\prime} and c^{3}, and hook, c^{4}, all being constructed and arranged to operate as and for the purpose herein speciied.
2. In a car coupling, the combination, with a separate coupling pin, B , of the carrier, C , having the yoke, c^{1}, jointed thereto, the said yoke being adapted to en gage with the coupling pin, B, in the manner and for the purpose herein specified.

Electrical Subways for New York.

The special commission of which Mr. Roswell P. Flower is president, authorized by the State Legislature for the purpose of carrying out the provisions of the statute requiring all telegraph, telephone, electric light, and other special wires to be laid underground, reported on the 30 th ult. their proposed plan, which, when approved by the Attorney-General, will be adopted. The report favors what is termed the "drawing-in" system, in other words, the laying of a large pipe underground, provided at frequent intervals with convenient manholes. The wires are drawn in through these, and spliced as required.
Iron pipe was found to be objectionable, since it would rust and corrode, and at the same time furnish a ground in case a wire was accidentally broken.
A pipe composed of asphalt and gravel is recommended, first because it is much cheaper than iron, is easily moulded to suit different curves, and second because it is of itself a non-conductor of electricity, steam, or gas, is of itself a non-conductor of electricity, steam,
is non-corrosive, and can be made waterproof.
The following are the conditions adopted by the Com mission respecting the manufacture of the pipe :
Its material shall be an asphalt or bituminous concrete which shall be capable of sustaining the following tests : It should sustain a crushing test of 4,000 pounds per square inch, and have a tensile strength of not less than 300 pounds per square inch of section; it should not crack when subjected to a temperature of 10°, or lose its shape at 200°; it should not soften below 10°, or lose its shape at 200°; it should not soften below
160°; it should resist the action of organic acids and illuminating gas, and should not disintegrate under the action of salt water; the pitch or asphalt used should be inspected before it enters into the concrete, and be pliable at 150°, but brittle below that temperature. It should not be heated above 325° in boiling; the sand used should be silicious, and the porosity of each lot carefully determined, so as to insure the perfect cohesion of the mass, with no excess of plastic ma terial. But this shall not prevent the use of any other material where the special exingencies of particular electrical services or of particular localities render it advisable in the opinion of the Commission. Its form shall in general be that of a conduit, with convenient manholes, where cables and insulated wires may be readily drawn in and out of distinct ducts in the conreadily drawn in and out of distinct ducts in the con-
duit; but this shall not prevent the laying of wires in other ways, where for special reasons it may seem desirable to the Commission.
Mr. Henry S. Kearney was appointed associate supervising engineer.
It is expected districts will soon be mapped out, and a system perfected for carrying out the work. It is proposed to let the work out to a special construction company, as the Commission has no funds for constructing and laying the pipes.

Annual Convention or Photegraphers.

One thousand photographers, from all parts of the United States and Canada, were present at the seventh annual convention of their association, recently held at St: Louis. Many foreign artists who were not able to attend personally sent specimens of their work as representatives. An interesting feature of the convention was the exhibition by the various photographers of many views taken in the United States, Canada England, and Germany. These included an almost infinite variety of subjects. They covered all the available space on the walls of the hall used for the daily sessions, as well as fourteen small adjacent rooms and five thousand square feet of partitions, which were specially erected for the purpose. There was also on display a most complete exhibition of all apparatus known to the art.

Qorrespondence.

Centrifugal Casting Process.
To the Editor of the Scientific American :
Plain cylinders, sections of pipe, or any straight tube form may be cast by this process, without using cores and with proper attention to keeping everything true, level, and well balanced; and by close skimming or tapping instead of pouring, the melted metal will produce castings which for many purposes will not require to be bored out. The flask will be a hollow metal drum, divided lengthwise into two halves, and provided with hollow trunnion bearings at each end, to one of which will be attached a driving pulley. The outside form of the cylinder or pipe to be cast will be moulded in the usual manner in this flask, the two halves bolted together, and the drum made to revolve with a speed somewhat greater than is necessary to overcome gravitation. The melted metal will be introduced through the hollow end bearings in amount proportioned to required thickness of the shell or walls of the casting, the end openings closed to keep , ut cold air-all while the drum is in motion-and regular rotation continued until the metal is sufficiently cold. The ends of the drum should be protected by a non-conductor of heat or externally heated a little, that the casting may not be distorted from the ends cooling more rapidly than the central portions. As a patent more rapidly than the central portions. As a patent
this is worthless, but as a useful process it will be of this is worthless, but as a useful process it will be of
some value to the few who find use for it. An experisome value to the few who find use for it. An experi-
ment is worth the trial by any one who has facilities for trying it-for, as yet, it is wholly unproved; but that it will work all right and come into use is the opinion of
W. L. Davis.

How to Set a Slide Valve.
To the Editor of the Scientific American:
I see in an old number of Scientific American, under heading "How to Set a Slide Valve," a long and tedious, though tolerably accurate, method of adjusting a slide valve described.
Since the crank, flywheel, main shaft, dead center, or connecting rod has nothing to do with the accurate setting of a slide valve, I will offer you the following very simple and quick method of performing that little piece of work to a nicety.
After having removed lid from steam chest, revolve the main shaft, or slack the set screws in eccentric, and revolve eccentric until full throw of same is made in one direction, opening the port to its largest size. Now make a nice, even-tapered wedge out of a lath and slip it down in open port, marking with a knife or sharp pencil the edge of wedge on valve seat. Now resharp pencil the edge of wedge on valveseat. Now re-
volve eccentric until full throw is made toward opvolve eccentric until full throw is made toward op-
posite end of steam chest and until port is opened to its largest size, then slip the wedge down in port, as before, marking on valve seat as before; then with a carpenter's rule divide the distance between the two lines on edge of wedge, making a third line in the center. Then with eccentric at full throw lengthen or shorten the cam rod until wedge, with its center line, shorten the cam rod until wedge, with its center line,
fits one port neatly, and it will fit the other one as fits one port neatly, and it will fit the other one as
neatly when full throw is made in opposite direction.

Now place your engine on a center, and revolve eccentric until the port over the end of cylinder in which the follower is placed has opened about one-sixteenth of an inch, and tighten your set screws. This done, your slide valve, also your eccentric, is properly adjusted, and no time wasted in hunting dead center or chalk marking flywheels, etc.

Alton, Ind., June 19, 1886.
William R. Dunn.

The Edinburgh Exhibition.

The collection of exhibits sent from the Fairfield Ghipyard and Engine Works is the most extensive and the most varied in this department of the exhibition. The interest attaching to most of the Fairfield exhibits is very great. It is probable that the most attractive object among them is the full model which is shown of the yacht Livadia, built a few years ago for the Emperor of Russia, and perhaps the most remarkable ves. sel ever launched.
In one of the Fairfield Company's cases there is shown a full model of the famous Alaska, whose performances as a Liverpool and New York liner in the Guion Company's service are notorious. As our readers are well aware, she has performed a number of very fast passages, one of them being done in six days eighteen hours. The model of the Alaska is really a beautiful piece of art workmanship. Close beside it there is an equally fine full model of the North German Lloyd's steamer Adler, one of the three sister ships now being completed at the Fairfield Works. All three vessels are fitted with all the most modern improvements, including triple expansion engines of 7,000 indicated horse power, and the Bryce-Douglas valve gear. The engines in question are the largest of the triple expansion type yet afloat, and the first that senger liners. We into any of the New York passenger liners. We may mention incidentally that the
valve gear of Mr. Bryce-Douglas is now exciting
much attention among marine and locomotive engi neers, especially in the northern part of the kingdom, and that it has been adopted in the locomotive engine which Messrs. Dubs \& Co. have built for the Caledonian Railway Co., and which forms a conspicuous object in the central avenue of the exhibition. This engine we shall shortly illustrate. The same gear is also being adopted by Mr. D. Drummond in half a dozen locomotives which he is building for the same company, in tives which he is building for the same company, in
their own works at St. Rollux, Glasgow. There are their own works at St. Rollux, Glasgow. There are
many other highly interesting exhibits at the Fairfield Company's stand (No. 786), which we cannot detail at length. Among them we notice photographs of six sets of engines, which were in course of construction at the Fairfield Engine Works in August, 1884, and comprising a total of nearly 40,000 indicated horse power. Another is a half model of the famous China tea clipper steamer Stirling Castle, which was built for Messrs. Thomas Skinner \& Co., attained a speed on trial of $181 / 2$ knots per hour, and made the fastest passage on record with tea from China, doing the run from Woosung to the Isle of Wight in the unprecedented time of 29 days 11 hours. Of course, as Fairfield is famous for turning out some excellent examples of war ships for the British Government, the company's exhibits at this stand include at least two illustrations, more especially the twin screw armorclad Nelson and the vessels of the Comus class. We ought not to omit to refer to the half model of the twin screw barbette cruiser, which the Americans call the Destroyer, a vessel of 10,500 tons displacement, measuring 410 ft . by 64 ft .3 in . by 38 ft .6 in ., and intended to have a speed of 21 knots per hour, her armament including gineering.

The Delicacy of the Sense of Smell
The sense of smell is probably the leading sensorial endowment in most insects, and it does for them what sight and hearing do for man. Its potency in helping along intelligence is very great, since we know that, mentally, insects stand at the head of the inver tebrate, as man stands at the head of the ver tebrate, world. The sense of smell is probably acute in some fishes, as, for example, the shark; this is the most active, if not the most intelligent, of fishes, and it has an olfactory mucous membrane which, if spread out, would cover some twelve square feet. The sense falls in value in the amphibia, reptiles, and birds, but rises again in the mammalia, though not in proportion to intelligence. Its extreme acuteness in the dog, the most intelligent of animals short of quadrumana, is well known. In man, the sense of smell is subordinate, and even rudimentary. Olfaction adds
to man's enjoyment, preserves him from some danto man's enjoyment, preserves him from some danof his environment
Yet, despite the comparative insignificance of thi sense in man, its delicacy is most marvelous, and by it we can appreciate more minute subdivisions of mat-
ter or the impact of more infinitesimal molecular vibrations than by any other of the avenues to the brain.
Professor Valentine has made some interesting and striking experiments in proof of this. He found that current of air containing $1-30,000$ milligramme of bromine, or 1-500,000 milligramme of sulphureted hy drogen, or $1-2,000,000$ milligramme of oil of roses, could be perceived by the sense of smell. He also deter mined that the amount of odoriferous air which must pass over the olfactory membrane in order to excite the sense of smell was from fifty to one hundred cubic centimeters (one-tenth to one-fifth of a pint). He calculated, therefore, that the actual amount of bromine necessary to excite a sense of smell was 1-600 milligramme, of sulphureted hydrogen $1-5,000$ milligramme, of oil of roses $1-20,000$ milligramme (about
$1-120.000$ of a grain).
Two recent experimenters, E. Fischer and F. Pentzoldt, of Erlangen, have found two other substances which far exceed the foregoing in their capacity for affecting the olfactory nerves. These were mercaptan (sulphureted alcohol) and chlorphenol. They found that in air containing 1-230,000,000 milligramme to the cubic centimeter of chlorphenol, and $1-23,000,000,000$ milligramme of mercaptan, these substances could be appreciated, and it was estimated that only $1-4,600,000$ milligramme of chlorphenol, and $1-460,000,000$ milligramme of mercaptan, is necessary to excite a sensation of smell. There exists, therefore, a substance which in so small a subdivision as 1-2,760,000,000 grain, or not quite one three-billionth of a grain, is capable of calling out a nerve impulse. This subdivision of matter is quite beyond comprehension, yet the nose
alone can appreciate it. The smallest subdivision appreciable by the eye through the spectroscope is $1-1,400,000$ milligramme of sodium, which is a two hundred and fifty times coarser division of matter than he minimum of odor-exciting mercaptan.
On account of the extraordinary power of mercaptan t is proposed to put it to some practical use in test

On the Place of Origin of Uric Acid in the Animal Body.*
The endeavor of the author in this communication has been to show the place of origin of uric acid in the animal body, and to ascertain which of the two hypotheses on the subject is correct, viz., whether uric acid is first present in the blood, and then secreted from the blood by the kidneys, or whether it is formed by the kidneys themselves. To enable him to satisfactorily prosecute many of his observations, the author has devised a new method for discovering the presence of uric acid in very minute quantities of blood.
The results of his investigations are embodied in he form of the nine following propositions:
Prop. I.-Uric acid is secreted by the kidneys as ammonium urate; and in the case of birds and reptiles, whose urine is semi-solid, it is found in a definite physical form, more in the vitreous condition than in the truly crystalline shape.
Prop. II.-Uric acid, when present in the blood, is found under the form of sodium urate; and, when deposited frim the blood during life in any tissue, it is also as sodium urate in its characteristic crystalline form.
Prop. III.-The daily quantity of uric acid in relation to their body weights secreted by different animals varies extremely. In some, as the carnivorous mammalia, the ratio may be less than 1 to $1,000,000$ whereas in others, as birds, it may be as 1 to 85 . In man it may be regarded as about 1 to 120,000 .
Prop. IV.-The quantity of uric acid contained in the blood of different animals has little relation to that secreted by the kidneys. In birds, secreting daily so lar e a quantity, the blood is often found to be as free from uric acid as it is in animals whose daily free from uric acid as it is in animals who
Prop. V.-When uric acid is absorbed from the alimentary canal, the blood becomes strongly impregnated, and, in fact, often almost saturated with it, so that its presence is readily discovered by any ordinary test.
Prop. VI.-One cause of the appearance of an unusual quantity of uric acid in the blood of birds in health is the presence of uric acid in the water they drink, and occasionally in their solid food.
Prop. VII.-When uric acid is taken into the tomach of man or other animals, the secretion of this principle from the kidneys is not increased, although at the time the blood may be rich in it.
Prop. VIII.-Uric acid is found in varying quantities in the blood obtained from different veins in the same animal. It is found in larger quantity in that from the efferent renal veins than in that from the portal afferent, or from the jugular veins; and the same test which freely exhibits uric acid in the blood from the former often fails to show it at all in that from the atter two.
Prop. IX.-The quantity of uric acid secreted daily by the kidneys of a bird is in close relation to the quantity of nitrogenized food taken during the time.
Having brought forward proofs to confirm these propositions severally, the author draws the followiug conclusions, viz., that every argument is in favor of the hypothesis that uric acid is formed by the kidney cells, in the form of ammonium urate, and that the traces of sodium urate found in the blood are the result of a necessary absorption, slight in amount, of the ammonium urate from the kidneys into the blood, and its subsequent conversion in that fluid into sodium urate.

Magnesia in Portland Cement.

For a long time, magnesia has been supposed to have a bad influence when present in cements, and M. Lechartier has been investigating the nature and cause of its action in structures built with cement, uch as basins, dams, and retaining walls, either exposed to air or water. These structures were built by competent engineers in different localities. The cements used did not contain sulphate of lime in a harmful proportion, they had a proper density, and were made of good sands. Nevertheless, in all cases the effects were the same, and a slow destruction of the cement went on with time. The explanation of the facts arrived at by M. Lechartier is that the cements employed were really mixtures of Portland cement with magnesia, which behaved at first as an inert substance; but little by little the magnesia became hydrated, producing expansion of the mortar and the deterioration of the works. St. Clair Deville has shown that pure magnesia without admixture of silica and alumina can combine with water to form a hydrate of great hardness, but the formation is accompanied with increase of volume. Portland cement alone contains but a small proportion of magnesia. M. Lechartier further observes that the increase of volume of the mortars takes place more rapidly when the water gains access more readily to the mass. Hence the basins of fountains, reservoir walls, and so on, are affected in a comparatively short time.

COLLISION BALLS AND HARMONIC IMPACT.

by t. o'conor sloane, ph.d.

The laws of the impact of elastic bodies are very nicely illustrated by collision balls. As bought in the stores, this piece of apparatus is quite expensive. In the cheaper grades, the spheres are made of lignum vitae, which are too light and not sufficiently elastic. The higher priced ones are made with ivory spheres, and these naturally are better. But either kind is unsatisfactory. The first quality required is a high coefficient of restitution of impact, or, as it may be more concisely expressed; a high degree of elasticity of impact. A body may be very elastic in one way, that is to say, it may recover its original figure after distortion perfectly, yet may not recover it quickly enough to possess the desired property. The next quality required is high specific gravity. Wood is so light that the resistance of the air affects it. The best substance for these balls, all things considered, is glass. Glass marbles are sold in the wholesale toy stores, of various sizes up to two inches in diameter. Six of these are enough for all purposes. They can be purchased at so low a price as to bring the cost of the apparatus down to a nominal amount. It is well to have one small one, half or three-quarters the diameter of the others. They have first to be prepared for suspension.
A hole may be readily drilled in each one by using a hard drill kept moist with camphor dissol ved in spirits of turpentine. In this aperture a double suspension string may be secured by a wooden peg or by cement, finished even with the surface of the ball. As this is troublesome to do without a lathe, strips of leather may be pasted across the tops of the spheres. A portion of the center of each strip should be cut narrower than the rest, and a needle, bit of wire, or broom straw placed under and across this portion in pasting. Before the paste dries this must be withdrawn, leaving an opening for the string to go through. For paste, gum tragacanth, softened in water to the consistency of butter, must be used. It is spread over the leather, and the strip is put in place. At first it does not adhere to any extent, but as it dries it holds with extraordinary tenacity. Strong linen thread answers for suspending cords.
A simple support, 12 or 16 inches high, made of three pieces of wood is provided. Its construction is shown in the cut. On this the spheres are suspended by double threads, tied into loops. The tying must be such as to give the same length to all, and bring the balls into tangency in the same horizontal line. The object of the double suspension is to restrict the oscillations of all the balls to a single plane. Four or six marbles may be thus suspended.
An end ball is swung aside, keeping it carefully in its plane and at the full stretch of its cord, and is released. It swings down and strikes its neighbor, comes to rest, and simultaneously the most distant one starts off, and, performing a half oscillation, returns, comes to rest, and the first one starts off in like manner. In this way the motion is kept up for some time, gradually degenerating into a swinging

COLLISION BALLS.
motion of all together. It can be done with two balls or more, and has a very good effect. With three balls on the frame, two may be swung aside and released. In this case, the center ball keeps swinging to and fro, accompanied first by one and then by the other of the end ones. A shock from a hard body is transmitted instantaneously through almost any number. A light blow from the back of a penknife causes the furthest ball to start away as if by
magic. The lighter sphere falling produces a slighter effect in proportion to its weight. With two spheres, upward of a hundred impacts may occur before they come to rest.
It is essential that they shall be hung so as to be in full contact, yet not so as to press against each

HARMONIC IMPACT.

other. If this condition is departed from, their move ments will be unsatisfactory.
The rationale of their action is that the impact slightly flattens each sphere, which,"expanding, com municates the shock to its neighbor. The most im pressive feature is the rapidity of the transmission of the shock and the evident conservation of energy that obtains. In some motions, it seems as if the balls were animated with life.
The production of motion from slight impacts re peated at proper intervals is shown in a simple ex periment illustrated in the other cut. A heavy object such as an Indian club, is hung at the end of a line about six or eight feet long. At a distance from it a weight is suspended, and the length of its string so adjusted that it swings in as perfect synchronism as possible with the club or heavier weight. The latter is now brought to rest, and the other weight is made to swing. Using it as a timer, light blows are given to the club, as near its central zone as may be. They are timed so as to strike it as the swinging weight reaches one end or the other of its course. At first no effect is visible, but on keeping up the impacts, striking with exactness, once for each double swing of the timing pendulum, the heavy club grad ually begins to oscillate, and by perseverance may be made to swing over a large arc. The force of so many slight blows is stored up in its motion. In stead of striking it, the force of the breath may be used, a series of accurately timed puffs being discharged against it. A very heavy body may thus be set in motion.
This was the principle of some constructions of the battering ram. Very remarkable instances of the effect of such synchronous impacts have occurred in factories. The motion of an engine running at a par ticular rate has sometimes caused a series of shocks corresponding so closely with the periods of oscillation of the building as to threaten its destruction. In some cases a bucket of water could not stand on the floor without losing its contents. On running the engine faster or slower, these troubles have disappeared. In carrying a vessel full of water, care must be taken not to let the swing of the body correspond with the period of oscillation of the water contained. If it does, it will infallibly splash over the sides.
Impact of non-elastic bodies is attended with great loss of energy and corresponding development of heat. Recurring to the first experiment, balls of lead or little bags of sand may be substituted for the glass balls. In this case, after impact all the objects will swing together with greatly reduced energy. The impact develops heat, which is of course so slight as to be unappreciable. In the second experiment where impact is used, the body striking and the one struck should both be as asic as possible. If the impact in either experiment be produced by the tip of the finger, no push being
given, its action will amount to very little. The slightest blow with a hard object will have an effect much the finger.

POLARIZED LIGHT.-NORREMBERG DOUBLER AND THE STUDY OF THIN FILMS.
bY GEO. м. Hopkins.
III.

One of the simplest and best instruments for a cer tain class of investigations in polarized light is the Norremberg doubler, named after its inventor, and shown in a very simple form in the annexed engraving.
To one edge of a wooden base, 6 inches square and three-fourths of an inch thick, is secured a vertical standard, 1 inch square and about 15 inches high, and to the top of the standard is attached an arm extending over the center of the base, and apertured to receive the short tube containing the analyzing prism or bundle of glass plates. The tube may be made of paper, hard wood, or metal, and it should be fitted with a shoulder, so that it will turn readily in the aperture of the arm. To the standard below the arm is fitted a stage formed of a thin piece of wood centrally apertured and blackened.
The stage is notched to receive the standard, and is attached to a short vertical bar 1 inch wide. A clip of wood extending across the back of the bar, and two small clips secured to the sides of the short vertical bar, bear with sufficient friction on the standard to hold the stage in any desired position.
About 6 inches above the base a grooved wooden strip is pivoted to the stardard, by means of a common wooden screw, passing loosely through the grooved strip and tightly through the standard. A wooden knob is turned on the end of the screw, and serves as a nut to bind the grooved strip in any desired position. The strip, screw, and knob are shown in detail in Fig. 2.
Into the groove of the strip is wedged or cemented a plate of glass, 4 by 9 inches. A fine piece of ordinary window glass will answer, but plate glass is preferable.
Upon the base is laid a square of ordinary looking. glass, or, better, a piece of plate mirror.
The tube shown in detail partly in section in Fig. 3 is provided with an inner tube of pasteboard or wood, divided obliquely at an angle of $35^{\circ} 25^{\prime}$ with the axis of the tube, and upon the oblique end of one half of the tube are placed twelve or fifteen well cleaned elliptical microscope cover glasses, which are held in place by the other half of the divided tube. This bundle of glass plates, if of good quality and well cleaned, forms a very good analyzer; but instead of this, if it can

SIMPLE NORREMBERG DOUBLER.

be afforded, a smatl Nicol prism should be secured and mounted in a centrally apertured cork, the latter being inserted in the analyzer tube, as shown in Fig. 4.
The object to be examined may be laid either on the stage or on the mirror below. If viewed on the stage, the usual effects will be observed; but if laid on the mirror, it is traversed twice by the light, once by the incident beam and once by the reflected beam. This
is particularly noticeable in thin films of mica and selenite, and it serves as an excellent means for selecting eighth and quarter wave plates, which are useful in the study of circular and elliptical polarization.
n the study of circular and elliptical polarization.
As stated in a former article, the writer intends to deal sparingly with the theoretical part of the subject, that having been treated extensively in many physical works and in books especially devoted to light and optics. "Ganot's Physics " is prominent among works of its class, and "Light," by Lewis Wright, and "Polarization of Light," by William Spottiswoode, are excellent books bearing directly on the subject. The writer knows of no better means of securing a good knowledge of polarized light than by reading these three books.*
Returning to the matter of the thin films: It is quite difficult to produce a perfectly uniform thin film of selenite, owing to the brittleness of the material. For this reason, mica is generally used, as it possesses considerable flexibility and toughuess. The common method of cleaving off thin films of mica is to split off a moderately thin plate and then separate the laminæ at one of the corners by bending it between the thumb and fingers. A medium sized sewing neadle secured point outward in a slender handle is probably the best instrument for teasing the laminæ apart; but after the separation begins, the thin end of the ivory handle of an ink eraser seems to serve the purpose exceedingly well. ink eraser seems to serve the purpose exceedingly well.
A score or so of plates are split, and examined one by A score or so of plates are split, and examined one by
one in the Norremberg doubler, by laying them on the mirror and turning them in their own planes, while the polarizer and analyzer are parallel. Should the plates exhibit any unevenness under the test, they should be at once rejected. Such as exhibit an even tint should be preserved carefully, and examined further to determine which, if any, possess the required qualities. Not every piece of mica will split evenly, qualities. Not every piece of mica will split evenly,
therefore it may be necessary to make several trials before success is attained.
Should the film, when placed on the stage, exhibit a dull plum color, slightly inclined toward red, when the polarizer and analyzer are parallel, it produces a difference of phase of half a wave length, and is called a half wave film. As a matter of course, if two films of like thickness, superposed and arranged with their axes in the same direction, produce the same color under the same circumstances, they are one-fourth wave films; and if a pair of films exhibit the same color when
wave films will be treated in a future paper. Beautiful and instructive designs made from thin films are described and illustrated in Wright's "Light," to which reference has been made.

WINDING ENGINE FOR AUSTRALIA.

The winding engine illustrated by the accompanying ngraving, which we take from The Engineer, was

GERBOZ'S ALARM THERMOMETER.
made by Messrs. Tangye, of Birmingham, England, under the instructions of Mr. J. D. Baldry, M.I.C.E., for use in the extensive coal mines of the Australian Agricultural Company, of New South Wales. This design, which, in some respects, is a departure from general practice, has proved satisfactory in all respects and has met with special approval from mining engineers in the colonies. The cylinders are 32 inches in diameter by 48 inches stroke, and are steam-jacketed, with separate steam pipes and valves for supplying the
wide, are loose on the shaft, and are driven by steel clutches. Each drum is provided with a brake, fitted with oak blocks. Between the engines is a raised platform, on which are placed the clutches, brakes, platform, on which are placed the clutches, brakes,
wheels, reversing lever, steam valve handle, and rods for working the condenser steam cocks. The engines, platform, etc., are mounted on a strong cast-iron bed plate.
As these engines are to haul about 2,000 yards, they are fitted with an arrangement for accurately indicating the position of the tubs at any point in their journey. This consists of a vertical drum rotated by gearing, and having traced upon it a spiral line, along which the positions of the various stations are marked. A pointer moving on a screwed shaft, driven by worm gearing from the main drum, traverses the spiral, and so indicates the position of the truck.
The speed of hauling is 9 miles per hour, and about eighty skips, of 10 cwt. each, make up a load.

THERMOMETER WITH ELECTRIC ALARM.

The thermometer figured herewith is designed for giving indications as to the temperature of silos, grain depositories, piles of coal, or certain fabrics that are apt to burst into flame spontaneously and set fire to factories or ships.
The thermometer used is a metal one, of the Bour don type, inclosed in a strong cast iron box, provided with a cover of the same nature. This latter is omitted in the figure, so that the internal arrangement may be seen. This box is everywhere perforated, so that the thermometer may be in contact with the surrounding air. The apertures, however, are small enough to prevent the entrance of particles of coal or fragments of seeds, etc.
The apparatus, when placed in a coal bunker or a silo, is connected with the exterior by means of conductors that traverse the surrounding substance, and that serve to indicate, at every moment, that the temperature has or has not reached a dangerous height. As soon as the needle of the therinometer strikes an index, placed at the degree of temperature that it is important to know (50°, for example, showing that there is danger of fire), a bell rings.
We shall now give a few details of construction: As the rotary axis of the needle and that of the index are on the same line, contact between these two pieces
takes place at the same point, whatever be the re-

COLLIERY WINDING ENGINE FOR AUSTRALIA.
similarly arranged on the mirror of the doubler, they and exhaust valves are of the Cornish type, double |spective angular position of these two parts Instead may be regarded as eighth wave films, as the polarized beam passes twice through the film to produce the same tint. These films should be carefully mounted between glass plates, either dry or in benzole balsam, the latter being preferable.

The practical application of the eighth and quarter

* These books may be had at this office at publishers' prices.-Ed.
and exhaust valves are of the Cornish type, double \mid spective angular position of these two parts. Instead beat equilibrium, two separate nozzle boxes being fitted
to each cylinder containing the valves. The crank containing the valves.
in diameter parts, of gun metal, with wedges and screws for ad justment, and arranged so that they can be removed without taking out the shaft.
The hauling drums are 6 feet in diameter by 3 feet
of being a simple rod, making one piece with the maneuvering button, the index is composed of a barrel that forms one piece with the button, and upon which is mounted (1) the index needle properly so called, (2) a spring for holding the index in a constant position with respect to the barrel, and (3) a toothed pinion. This latter gears with a cog wheel upon the
magnet. This armature moves in a plane at right angles with the axis of the bobbins of the electro, and as near as possible to the extremity of the core.
The electric communications are established and the two proposed controls are made as follows : The cable consists of three conductors. One of these runs from the negative pole of the battery to the thermometer needle and one of the wires of the electro. Another runs from the index to the alarm bell, and from thence to the positive pole of the pile. The third runs from the positive pole of the pile to a galvanometer, then to a button or interrupter, and from thence to the second wire of the electro.
When a contact has been established by the but ton, the current, on traversing the galvanometer and causing it to deflect, indicates that the two wires and the electro magnet are in proper order. When the current traverses the electro, it polarizes the cores, and causes the armature, and consequently the movable index, to revolve around the barrel; and under the action of the armature, the index thus tends to move from the maximum point toward the needle, and, with it, to establish a contact that rings the alarm bell.
When the current is broken by the button or interrupter, the armature, as the current no longer traverses the electro, returns along with the maximum needle to its position of rest, under the action of the spring mounted upon the axis of the index.
Were the maximum index made to bear against a metallic rack, forming an electric interrupter in a special circuit comprising an electric counter, we might count the number of contacts between the maximum point and the needle, and thereby ascertain the latter's position.
It will be seen from what precedes that the appara tus may be submitted to a permanent control that per mits of making sure that it is ready to operate regularly. Such control is of prime importance, since this thermometer is designed to be used in inaccessible places (coal bunkes, silos, and so forth), the dampness of which might interfere with the contacts being kept in a proper condition. Besides, the motions of a ship on the sea might cause a breakage of the cable, noth withstanding that it is covered with steel. These two things cannot occur without attracting attention. -La Nature.

Sea water as a

The Vigo Bay Treasure Company, of London, lately received a curious collection of articles taken from the treasure galleons sunk in the harbor of Vigo, Spain, in 1702. There are specimens of logwood and mahogany that, in spite of their 184 years' submersion, are in a perfect state of preservation. Dyers who have experimented with the logwood state that it is even better for dyeing purposes than the wood now imported. The mahogany, too, is very fine and solid. One log has arrived 12 feet long and 22 by 32 inches square, which is now being sawed up to be used in the manufacture of furniture and walking sticks for mementoes. The chief curiosity, howerer, is an ancient pulley block, $41 / 2$ feet high by 3 feet broad, with four solid copper sheaves, 18 inches in diameter. It is of solid oak, and was probably used in hoisting heavy articles of merchandise or the anchors. The wood is perfectly preserved, but an iron band is completely corroded away, while the copper wheels are only slightly oxidized.

DRAIN TILE PROTECTOR.

This simple and efficient device, the invention of Mr. A. L. Shoults, of Bloomingburg, O., is for preventing the entrance of animals into drain tims and pipes; it can be readily applied to or removed from drains of different diameters. The protector consists of a series of spring arms provided with right angled arms adapted to enter into the joints of a drain, and supporting in the

SHOULTS' DRAIN TILE PROTECTOR.
center of the pipe a number of diverging pointed wires, whose points lie in the direction of the open end of the pipe. The use of this protector does not interfere with the free discharge from the drain, while it effectually prevents smail animals from entering by presenting a series of sharp points protecting the entire area of the drain. The device is applied by compressing the arms sufficiently to permit the fingers to be introduced into the mouth of the tile, when it is pushed along until the fingers enter the joint. The points of the wires are centrally held in the tile, and cannot be easily displaced.

RAILWAY CROSS TIES.

To the Editor of the Scientific American
I noticed in your paper of January 16 a letter from Geo. H. Ford relative to railroad cross ties, and I would say that, from extensive observation and special examination, I fully agree with him that there are more ties destroyed by mutilation of the timber by the spikes than there is by natural decay. This is es

SECTION OF WHITE CEDAR TIE WITH SPIKE DRIVEN IN
pecially the case with soft wood ties, such as pine, chestnut, white cedar, cypress, and redwood. And the whole difficulty arises from driving a large, dull edged, wedge pointed spike into the tie without first making a hole for it, or else having a special point on the sp ke, which practically does the same thing.
It is imperatively necessary to good work that the fiber of the timber should be severed before the body of the spike enters it. The whole damage is caused by the point, and is caused in the following manner : The point being dull and nearly always imperfect, as a present manufactured, does not readily cut the fiber o the timber, and it doubles around the point, and is carried down and packed until it is sufficiently dense and hard for the dull edge to cut it; after which the same process is repeated until the spike is driven home.
I send you herewith a section of a white cedar tie with a spike driven in and split open, illustrating this theory, and I think you will agree with me that it is mechanical barbarism to continue such practice. The mode of fastening the rail to the tie and the link and pin coupler are the two twin relics of a past age, but I think from present indications that their days are numhered, and that something better will soon take their place.
West Bay City, Mich.

"Can Imagination Kill?",

This is, perhaps, hardly the correct form of question that the British and Colonial Druggist puts to itself in discussing the death of the young woman at Hackney under circumstances in which Keating's insect powder largely figured. As the powder appears by Dr. Tidy's experiments to be perfectly harm less, the suggestion is not unnaturally made that the deceased, who was possibly of a hysterical, highly im aginative turn of mind, took the powder in the ful belief that by its means her death might be accom-
plished. The writer of the article in our contemporary, we think wrongly, brings forward two remarkable instances of what may be regarded as practical jokes with melancholy terminations. In the case of pose convict delivered up to the scientist for the pur pose of a psychological experiment (ostensibly to be bled to death; a siphon containing water was placed near his head, and the fluid was allowed to trickle
audibly into a vessel below_it, at the same time that
a trifling scratch with a needle was inflicted on the culprit's neck; it is said that death occurred at the end of six minutes), fear must have played no inconsiderable share in the fatal result, and we do not know whether all the vital organs were in a sound condition, though they were presumably so. The old story of the case of a college porter is also one in point. The students entrapped him into a room at night, a mock inquiry was held, and the punishment of death by decapitation decreed for his want of consideration to the students. It is small wonder that, under the dominion of fear and belief in the earnestness of his tormentors, the sight of an ax and block, with subsequent blindfolding and necessary genuflexion, a smart rap with a wet towel on the back of his neck should have been followed by the picking up of a corpse.-Lancet.

The Sleeping Disease.

There is a singular and invariably fatal malady, called lethargus, peculiar to the negroes of certain districts on the western coast of Africa, which has never, we believe, been noticed in the medical journals of this country except in the Massachusetts Medical Journal, from which we copy. But this is not surprising, when we consider that a knowledge of it is practically unimportant to the profession outside of the districts where it occurs. As a curiosity, however, in the form of a disease, it cannot fail, we think, to interest the medical faculty of our country, and we therefore present, in brief, the main facts concerning this singular disorder. As the name implies, the principal, and in fact the only, symptom that presents itself is lethargy ; and one case is essentially a stereotype of all.
The patient, usually a male adult, is seized, without any premonitory symptoms, with a sensation of drowsiness, which continues rapidly to increase, in spite of all efforts to throw it off, until he sinks into a profound and seemingly natural sleep. This continues for about twenty-one days, when death takes place. Throughout the course of the disease, the patient preserves a quiet and peaceful countenance, may be easily aroused for a short time, will take nourishment, and generally answer a few questions in a perfectly rational manner. The pulse, respiration, and temperature remain normal throughout, the pupil is neither dilated nor contracted to any noticeable extent, and the urine and fæces are voided with comparative regularity. With the exception of the abnormal tendency to sleep, nothing exists to denote disease.
Many careful post-mortem examinations have been made by competent men, but nothing of an abnormal character has been found, while every remedy that could possibly be of any avail has been used without any apparent beneficial effect. They sleep on, and quietly glide into eternity in spite of professional skill.

CHILD'S CARRIAGE.

To the center of the axle of this carriage is attached a vertically arranged hoop, to which are rigidly secured two side standards, shaped as clearly shown in the engraving. The upper end of each standard is notched to receive the knife-like edge of brackets fixed to either side of the carriage body, which is thus supported by and is free to swing upon the ends of the standards. The range of motion of the body is defined by rubber or spring buffers fixed to the hoop. The front stop or

england's child's carriage.
wheel is carried by a bracket attached to the axle. To the rear of the hoop is secured a forked arm, having a handle. The sunshade may be moved to and secured at any desired position on the hoop. In moving the carriage, the forward stop or imitation wheel is slightly raised from the ground by depressing the handle, when the carriage can be moved as desired. When the fixed wheel rests upon the ground, it acts as a brake, preventing the carriage from moving forward by its own gravity when placed upon an incline.
This invention has been patented by Mr. William England, P. O. Box 374, Galveston, Texas.

A New Mountain observatory.

German papers inform us of the erection of an observatory on the Sonnblick, one of the summits of the massif of the Tyrolese Alps, the highest elevations of which are the Grossglockner, the Wiesbachhorn, and the Hohe Narr. Extensive glaciers and eternal snow, from which those giants rise, cover those almost inaccessible heights and their neighbors. The Sonnblick (Sun Glance) is a mountain nearly 10,000 feet high, the summit of which is less difficult of access, and where a house is now being erected which is to serve for meteorological observation. It will consequently be an observatory at the highest elevation in Europe-higher than that on Mount Etna, the Pic du Midi in the Pyrenees, and on the Sentis, canton of Appenzell. The first to draw the attention of meteorologists to this mountain as a suitable spot for an observatory was the owner of the Rauriser Goldberg, Mr. Rojacher. His private residence and mines are situated on the slopes of the Sonnblick, at an elevation of over 5,000 feet, and from these a wire ropeway, used for the purposes of the mines, but also practicable for passengers, leads up to a height of nearly 8,000 feet. Here a house has been erected for about twenty miners, who reside there also during winter. Thence the summit of the mountain is reached by an easy ascent over a glacier, in three hours. In descending, this portion may be traversed in low sledges in fifteen minutes.
The observatory now being erected on the summit, and which looks like a black spot when viewed from the Rauris valley, and from which the Sonnblick rises like a precipitous wall, 3,000 feet high, consists of a blockhouse, flanked by a massive stone tower forty feet high. To guard against the frightful storms raging round the summit, the walls of the tower are made of enormous thickness, while the blockhouse itself is anchored to the rock by stout wire ropes. Wood has been selected for the construction of the house, because it keeps out the cold better, which is most intense in that exposed spot in midwinter. The house contains two living rooms -one for the resident observer, and another for those scientific men who may ascend in favorable weather with a view of carrying on experiments. The walls of the house are paneled inside, and neatly covered outside by and neatly covered outside by
wood shingles. The tower will be fitted with all the instruments used in meteorological observations. As there is great danger to the building from the terrific thunder storms which burst round the summit, the observatory is protected not only by three lightning conductors, but three lightning conductors, but
also by a lightning-proof fencing. also by a lightning-proof fencing.
The solitary resident observer The solitary resident observer
who has chosen to exile himself from the outer world is one of the twenty miners permanently residing in the miners' house, 8,000 feet above the sea level, who is now undergoing a course of instruction in meteorology. But he will not be cut off entirely from intercourse with his kindred, for he will be able to keep up communication by telephone with the miners' house 2,000 feet below him, whence another telephone wire, 15 miles long, leads to Rauris. From there his daily record of observations will be wired to Vienna, thence to be flashed to the scientific world generally.

Comicalities in Plants.

There is Jack-in-the-pulpit, the flower of the plant known as Indian turnip (Arisema triphyllum). Who could ever look at one of these singular blossoms, says a writer in the Western Review of Science, without that same stirring of the risible faculties which one experiences in perusing a parody or caricature, or witnessing a pantomime? The very sight of one is provocative of mirth. How many times in my school days did I challenge the teacher's frown by involuntary giggles at the whimsical look of the imprisoned Jack! Monk's hood, of the genus Aconitum, has quaint, comical flowers, suggestive of an old lady's head in a night cap. The well-known fly-trap, Dionsa muscipula, strikes the mind with all the effect of a joke. The leaves of this plant are fringed with stiff bristles, and fold together when certain hairs on heir upper surface are touched, thus seizing insects that light on them. Seeing the leaf stand temptingly open, a poor fly pops in for shelter or food. No sooner has it touched its feet than some sensitive fibers are affected, and the cilia at the top closes in upon the intruder, imprisoning him as effectually as if a boy had taken him and closed him in a box. The pitcher-plant, or monkey-cap of the East, although not particularly ludicrous, has a whimsical arrangement which borders closely upon the human economy. To the footstalk of each leaf of this
plant, near the base, is attached a kind of bag, shaped like a pitcher, of the same consistence and color as the leaf in the earlier state of its growth, but changing with age to a reddish purple. It is girt around with an oblique band or hoop, and covered with a lid neatly fitted, and movable on a kind of hinge or strong fiber, which, passing over the handle, connects the vessel with the leaf. By the shrinking or contracting of this fiber, the lid is drawn open whenever the weather is showery or damp. When sufficient moisture has fallen, and the pitcher saturated, the cover falls down so firmly that evaporation cannot ensue. The water is thus gradually absorbed through the handle in the footstalk of the leaf, giving sustenance and vigor to the plant. As soon as the pitchers are exhausted, the lids again open to admit whatever moisture may fall; and when the plant has produced its seed, and the dry season fairly sets in, it .withers, with all the covers of the pitchers standing open. The flower of the bee orchis is like a piece of honeycomb, and the bees delight in it. Then there is the snap dragon, the corolla of which is cleft and turned back so as to look like a rabbit's mouth, especially if pinched on the sides, when the animal appears as if nibbling. The flower of the cock's comb, and the seed-pod of the Mostynia proboscidea bear curious resemblance to the objects which have suggested their names. Some kinds of the Mendicago have also curious seed-pods, some being like beehives, some like caterpillars, and some like hedgehogs -the last being itself an essentially ludicrous object.

RARE SPECIMENS OF MARMOSETS.

Mr. Thompson, of Sixty-fifth Street and First Ave-
nue, New York, a well known importer of rare and

New Mode of Reducing Metals.

A new and very promising mode of directly separating metals from their ores, by James J. Shedlock, of London, is now being tried on a practical scale in that city. Mr. Shedlock's method is carried into effect by passing the ore in a finely divided state through a bath of molten metal maintained at the temperature neces sary to insure its combination with any free metal contained in the ore. But as most ores contain metals associated or in combination with the metalloids, it is necessary to decompose such compounds in order that the metals may be freed and in such a condition as to readily combine with the metallic bath. This is accomplished by forcing streams of reducing gases through the bath of molten metal simultaneously with the pulverized ore, which is conveyed into the bath at one end by feeding apparatus, the action of which is so regulated as to work in concert with the supply of reducing gases. For the production of these gases, steam is passed through superheaters, the outlets of which communicate with gas producers, which produce carbonic oxide and hydrogen gases, which are conveyed from the producers by tubes into the bath of molten metal at the point of entry of the powdered ore. In consequence of the affinity possessed by these gases or the metalloids, and also by reason of their high temperatures, the metallic compounds are decomposed and the volatile constituents of the ore are vaporized which, with the earthy or non-reducible portions, by reason of their lesser specific gravity, rise to the sur face of the bath of molten metal. The gases and vapors are conveyed through flues into chambers, where those that are condensable are thrown down and collected, the permanent gases escaping into the chimneyshaft, and the earth matters being removed from the end of the bath opposite the feeding end by skimming. The metals as they accumulate in the bath overflow intoreceivers through spouts, the inner mouths of which are so much below the surface of the metal as to prevent any dross from passing over. The metals as they collect are run into ingots or bars.
In treating some ores, more particularly those containing the noble associated with the baser metals, it may be found desirable to refine those metals without removal from the bath. For this purpose atmospheric air raised to the required temperature is forced through the molten metals in the bath, its passage being retarded by an inclined cover, thereby causing agitation of the mass and subjection of the met als and metalloids to the oxidizing action of the heated air. The oxides and other. combinations thus formed with the vapors and
curious wild animals, etc., has recently brought here some of the beautiful little animals shown in our illustration. They are a species of South American monkey, and, though not as intelligent as other monkeys, are easily trained, and make an interesting and affectionate pet. Its disposition is gentle, but its constitution is so delicate that it can only with difficulty be kept in temperate climates. The body is six to seven inches long, the hair of a golden yellow, soft, fine, and silky, and they live principally on insects, which they dig out of the earth or from under the bark of trees with their long fingers, although in captivity they will eat almost any vegetable or animal food These marmosets are the only ones of the kind ever brought to this country; they come from Brazil, and are only found in a very limited locality near Rio Janeiro.

Heterogeneous Grafting.

Strasburger, in the Berichte der Deutschen Bot. Gesellschaft, vol. 3, records some curious results of his experiments in intergrafting various herbaceous Solanacecr. Thus, he successfully grafted species of stramonium and common tobacco plant, henbane, Atropa belladonna, and petunia upon the common potato plant. Grafts of Datura stramonium and Nicotiana tabacum took remarkably well, the plants growing freely and coming into flower. Tschudy, however, long ago, had grafted Lycopersicum upon a potato stock, and so had gathered potatoes from the bottom and tomatoes from the tops of the same plant; but this is not so extraordinary, the two plants being so essentially congeneric.
The most remarkable result of Strasburger's trials was that, when Datura stramonium was grafted upon a potato plant, the potatoes borne by the latter, to all appearance normal, were found to be impregnated with atropine. He does not say whether these grafted into Nicotiana tabacum had their tubers infected with nicotine.--A merican Journal of Science.
gases rise to the surface, and are
conveyed by the flues the condensing chambers, th metal being withdrawn from the bath and air-hto ingots. The superheaters, gas producers, and ture, into which the heated products of combustion from the furnace enter and circulate, thus raising the temperature of the apparatus and its contents to the required degree. The furnace gases then pass into the flues \qquad ounding the bath containing the molten metals, eventually escaping into the chimney shaft. According to Mr. Shedlock, there are no ex ceptions to the ores which may be manipulated by his invention, the most refractory as well as the most easily reduced being successfully treated by its means. The ores of iron, when subjected to the process for the extraction of that metal, are stated to be most readily reduced, and its direct conversion at one operation into the different carbides of iron, varying from the softest cast iron to the mildest steel, easily accomplished ; at the same time, all deleterious impurities are said to be effectually removed. The ores of zinc are also readily treated by this process as a continuous operation, the ore being fed into the apparatus, and the metal as it is distilled over passing away through the flues into the chambers, where it is condensed and collected Should the process be as successful on operation on the large scale as is anticipated, we may expect an increased supply of gold, as by its means the most refractory ores of gold may be treated. By the ordinary system of separating gold from its ores, it is acknowledged that not much more than 50 per cent of the gold present is recovered. The details of the invention, as well as those of the apparatus by which it is to be car ried into practical effect, have been carefully thought out, and the reasonableness of the modus operandi gives every hope of its commercial success.

To destroy ants, sprinkle powdered borax around the infested places.
of New York city. This invention provides an appara
tus for supplying liquid carbonic acid to the liguids to tus for supplying liquid carbonic acid to the liquids to be aerated in the mixer, or fountain, through a tubula
coil within the fountain, whereby the liguefied gas, b coil within the fountain, whereby the liquenied gas, by
its expansion, has a cooling effect upon the contents o the fountain.
A machine for washing coal or other minerals has been patented by Mr. Robert Robinson, of
Howlish Hall, near Bishop-Auckland, Durham Coo., Eng. Howlish Hall, near Bishop-Auckland, Durham Co., Eng The separation of stone, dirt, etc., from the material to
be washed is made by difference of specific gravities, the material being placed in water in a hopper-like ves. sel, in which an upward flow of warities without inter wuptineans for
rupting the washing.
A calculator has been patented by Mr Jules V. Charpantier, of New Orleans, La. The apparatus comprises a box or support, an indicator, an in
terest table, a maturity table, and a period table, in con nection with various working devices to facilitate the determination of amounts of interest, number of day of interest and discount, and date of maturity of com-
mercial mercial paper, this invention being an improvemen

A gate for railway crossings has been patented by Mr. Abiud G. Milier, of Leyden, N. Y. It had posts at opposite sides of the roadway, bars pivoted to the posts, the lower bar normally vertical and the upper extending horizontally toward it, with a flexible con
nection between the free ends of the bars, with other nection between the free ends of the bars, with othe
novel features, making an inexpensive safety gate novel features, making an inexpensive sasty gat
which may be operated quickly and easily in all which ma
weathers.

NEW BOOKS AND PUBLICATIONS

Sacred Mysteries among the Maya AND the Quiches, 11,500 Years Ago York : Robert Macoy, 1886.
At the close of the ceremony of initiation into the
Grecian mysteries the candidates were dismissed with Grecian mysteries, the candidates were dismissed with
three cabalistic words, which, curiously enough, had no meaning in any tongue known to the mystic priest hood. Dr. Le Plongeon has discovered that these
words are Maya, and are not only perfectly intelligi words are Maya, and are not only perfectly intelligi
ble, but are appropriate to the dismissal of the newly bee, but are appropriate to the dismissal of the newly
initiated. Starting with this discovery, he attempts to show that the origin of Freemasonry dates back to the ancient civilization of Central America, to the Mayas and Quiches of 11,500 years aqo. He traces the relation of their sacred mysteries to those of Egypt, Greece,
Chaldea, and India, and gives an interesting account of Chaldea, and India, and gives an interesting account of
his explorations among the ruins of the Naya temples his explorations among the ruins of the Maya temples. photographs made by the author.

Canada: Its History, Productions,
and Natural Resources. Pre pared under the Direction of the Minister of Agriculture. Ottawa
partment of Agriculture, 1886 .
The present handbook of Canada has been prepared by Mr. George Johnson, for the purpose of the Colonial and nidan exhionion now in progress in London, and furnishes, in a limited space, an Thceniente resum, of
the resources of that Dominion. The climate, area, sys tem of government, industrial enterprises, commerce and other features essential to the interests of the
country are briefly reviewed, and will give the othe members of the British Empire a very good idea of the development and future possibilitites of their sister province in the Western Hemisphere. The book will
also prove useful to those who contemplate a Canadian also prove useful to those who contemplate a Canadian
tour, and who desire to inform themselves of the chief characteristics of the country they are about to

$\mathfrak{\bigotimes}$ Business and Persomal.

The charge for Insertion under this head is One Dollar a line for each insertion; about eight words to a line. Advertisements must be received at publication office
as early as Thursday morning to appear in next issue
Cheap Swift Ferries.-Propelled by current; sub merged cable; no obstruction to navigation; boy can
manage. Wagon-way (cheap railway).-Serves for livht steam cars and a toll road for ordinary vehicles; effect enormous saving in haulaze, especially for sandy and
muddy sections. Shifting-outriger Yachts.-Tack and Lurn, and farou.tstrip any other, or no pay. Topogana.-
Roller sleds for summer coasting. Simplifyung Cities.Roller sleds for summer coasting. Simplifyying Citites.-
Naming streets by system instead of at random. Stewart \& Co... Engineers and Promoters (of tried inventions
only), 3141 Dauphin St., Philadelphia.
Business men only), 3011 Dauphin St., Philadelphia. Business men looking for paying impros
We cull from all countries.
Brass and Iron Working Machinery, Die Sinkers, Emery Wheels of unusually superior quality for wet rrinding. The Tanite Co., Stroudsburg, Monroe Co., Pa. A Catechism on the Locomotive. By M. N. Forney.
With 19 plates, 227 engravings, and 600 pages. 82.50 . Sent on receipt of the price by Munn $\&$ Co., 361 Broadwa, New York.
Guild \& Garrison's Steam Pump Works, Brooklyn,
N. Y . Pumps for liquids, air, and gases. New catalogue Nieay.
Nickel Plating.-Sole manufacturers cast nickel anodes, pure nickel salts, polishing compositions, etc. \$100 "Littl Wonder." A perfect Electro Plating Machine.
Sole manufacturers of the new Dip Laccuuer Kristaline. Complete outft for plating, etc. Hanson, Van Winkle \&\&
Co., Newark, N. J., and 92 and 94 Liberty St. New York.
Machinery for Light Manufacturing on hand and
Machinery for Light Manufacturing, on hand and
built to order. E. E. Garvin \& Co., 139 Center St., N. Y.
Presses \& Dies. Ferracute Mach. Co, Bridgeton, N. J
By medicines life may be prolonged,
True, all must die, yet few must suffer while they live
 scrofula of the lungs), as well as for coughs, colds, bronserofula of the lungs). as well as for coughs, colds, bron-
ehitis, atatrrh, and a specific in liver complaints, serof-

Empire Gum Core,Soap Stone, Rubber, and all kinds , Tead Send for catalogue of Sceentific Books for sale by
Kunn \& Co., 361 Broad way, N. X. Free on application The Knowles Steam Pump Works, 44 Washington St.. Boston, and 93 Liberty St., New York, have just issued a new catalogue. in which are many new and im-
proved forms of Pumping Machinery of the single and uplex, steam and power type.. This

Iron Planer, Lathe, Drill, and other machine tools of odern design. New Haven Mfg. Co., New Haven, Conn. If aninvention has not been patented in the United States for more than one year, it may still be patented in
Canada. Cost for Canadian patent. \$40. Various other Canada. Cost for Canadian patent, \$40. Various other
foreign patents may also be obtained. For instructions oreign patents may also be obtained. For instructions
ddress Munn \& Co., Scientific American patent gency, 361 Broadway, New York.
Grimshaw.-Steam Engine Catechism.-A series of aroughly Practical Questions and Answers arranged
as to. sive to a Young Engineer just the information equired to ft him for properly running an engine. By Munn \& Co., 361 Broadway, N. Y
Curtis Pressure Regulator and Steam Trap. See p. 142. Supplement Catalogue.-Persons in pursuit of infortific subject, can have catalogue of contents of the SCIThe Supplement contains lengthy articles embracing he whole range of engineering, mechanics, and physical Planing and Planing and Matching Machines. All kinds Wood
Working Machinery. C. B. Rogers \& Co., Norwich, Conn. Nystrom's Mechanics.-A pocket book of mechanics and engineering, containing a memorandum of facts and
onnection. of practice and theory, by I. W. Nystrom, C.E., 18 th edition. revised and greatly enlarged, plates.
2 mo, roan tuck. Price, $\$ 3.50$. For sale by Munn $\&$ Co., mo, roan tuck. Price, 83.50 .
Iron and Steel Wire, Wire Rope, Wire Rope Tram-Chucks-over 100 different kinds and sizes in stock. de to order. Cushman Chuck Co.,Har The Improved Hydraulic Jacks, Punches, and Tuber Hoisting Engines. D. Frisbie \& Co., New York city Veneer Machines, with latest improvements. Farrel Tight Mach. Co., Ansonia, Conn. Send for circular. Tight and slack Barrel Machinery a specialty. John Greene, Tweed \& Co., Railroad and Manufacturers' Hercules Lacing and Superior Leather Belting made Walrus and Emery and Corundum in quantity to suit. Walrus and

HINTS TO CORRESPONDENTS.
Names and Addresss must accompany. all letters,
or no attention will be paid thereto. This is for our
Onf

(1) R. M. R. asks: How is the ink ade that is used in inking the official indelible
ibbon in type writers, which writes black, but copies a very dark blue? How is the ribbon prepared with this nk? A. We presume you refer to the blue resord ink, ing point, melt it on a water bath or slow fire, and incrporate by constant stirring as much Prussian Me as it will take up without becoming granular. Remove the mixture from the fire, and while it is cool-
ing mix equal parts of petroleum benzine and rectified oil of turpentine, in which dissolve the fatty ink, introuced in small quantities by constant agitation. The olatile solvents should be in such quantity that the cret is of the consistencygof fresh oil paint. One ink to the ribbon. Wind the ribbon on a piece of cardboard, spread on a table several layers of newspapers,
then unwind the ribbon in such lengths as may be most then unwind the ribbon in such lengths as may be most
convenient, and lay it flat on the paper. Apply the onvenient, and lay it flat on the paper. Apply the
he ink, after agitation, by means of a soft brush, nd rub it well into the interstices of the ribbon with stifl tooth-brush. Hardly any ink shomd remai
visibe on the surface.
(2) W. M. M.-Pear trees are subject to two kinds of blight, one due to insect agency, and the other to fungi. In the case you instance the trouble
was probably caused by the insect whose larva you end us.
(3) W. D. S. asks: Which is the oldest city-St. Augustine, Fla., or Santa Fe, N. M.? A. Santa
Fe, N. M., is the older city. When visited for the f, N. M., is the older city. When visited for the populous Indian pueblo. The fort built by Menenez in 1565 on the site of St. Augustine. Fla., was record. In spite of these facts, St. Augustine is usually spoken of as the oldest city in the United States.
(4) S. F. W.-Steel, as now made for oilers, is far superior to iron in all respects; it is
tronger for the same thickness, tougher in bending niform in grain in every direction and not liable to blister. The cylinders of Corliss engines are proportioned to their work and speed, and supposed to be about the best in modern engineering. They are re-
commended for economy and durability for all work.
(5) R. L. S. asks the advantages in coking coal, which is now so extensively done at the mines before shipping to consumers. A. We do not
know that there are any advantages in point of economy know that there are any advantages in point of economy
of cost over bituminous coal. Cleanliness in firing and a smokeless fire are always desirable if at not too much cost. The great value of coke is in the blast ern Pennsylvania were originally established to meet this requirement. Competition in manufacture has thrown it into market for general consumption. 2. species of hawks, are able to float through the air with out moving their wings or making any apparent effort raising and lowering themselves at pleasure, even pro-
pelling themselves against the wind, while their wing pelling themselves against the wind, while their wings
are, seemingly motionless? are, seemingly motionless? A. When moving against the wind they sometimes appear to be motionless, for a
few moments, but sustained in the same manner as a few moments, but sustained in the distance making them appear motionless when they are moving slowly. When they are sailing in a calm, they are always moving on an inclined path. It is our upward view which deceives us. When seen
from the top of mountains their real motions are apparent. They gain speed on the downward sail and
use it as momentum in nearly gaining their original level.
(6) Subscriber asks: Can you inform me of a combination of chemicals which will produce a degree of cold, say 20° or lower, which will continue
for several hours, the said chemicals to be cheap and free from danger? A. We recommend ammonium ni trate and water as the simplest. Or, as a more com plicated mixture, try the following

Sodium sulphate......6 parts by weight.
Ammonium nitrate
The last formula is very powerful, but has the objection of requiring the use of acid.
(7) C. C. B. asks: 1. What is the best material for a non-conductor to put between the regis-
ters and wood for a hot air furnace? A. Soapstone frames to set the register in are the best. 2. Of what made of, and the quickest way to detect them? The composition of counterfeit dollars varies a good deal. Detect them by their lightness and absence of
ring ; also, by the appearance of the die work. 3. Would ring; also, by the appearance of the die work. 3 . Would
you suggest Kansas as being a good place for a machine shop? A. Kansas is a large agricultural State, with a
population of over a million. There is room for a good number of machine shops, but we do not know how
well the demand is filled. 4. What is best to administer to assist nature in cases of diphtheria and fevers
A. For the treatment of diphtheria, see Scientific AMERICAN SUPPLEMENT, Nos 281, 50, 369, 51, 125, 249, 373. For the treatment of fevers, see Scientifi
American Supplement, Nos. $358,239,172,251,143$.
(8) W. W. B. asks (1) hっw to best raise a pine pole measuring 50 feet in length and about
incles in diameter at tip end, pole to be put in a 4 to 5 feet deep. A. Such a pole should be easily raised with pikes and guy ropes, placing its foot against a
plank set in the hole. A small trench may be cut, so plank set in the hole. A small trench may be cut, so
that the foot of the pole will rest against the plank that the foot of the pole will rest against the plank
below the surface of the ground. The telegraph poles are raised in this manner. 2. About how many Le-
clanche cells will be required to run a current (sufficlanche cells will be required to run a current (suffi-
ciently strong to ring a call bell) through four miles ciently strong to ring a call bell) through four miles 2 to 4 cells, according to perfection of insulation.
isfaction will only be obtained in dry weather.
(9) F. D. L. asks : Which moves first in starting a steam engine-the valve or piston? A. Being
connected with the shaft, they both move at once. The ters. In this manner the valve may stop while the piston is moving. The valve nut is often loose, so that
the valve stops an appreciable time at the change of piston, is
the valv
stroke.
(10) G. B. asks the best material for small gear wheels about 12 inches in diameter, running at a speed of about 500 revolutions. A. Cast iron
is universally used. For fast running gear, the teeth should be cut.
(11) T. S. asks: What is the best steam packing for a stuffing box of a rotary spindle? A.
Cotton wicking saturated with plumbago and oil is as good as anything
(12) L. M. asks : 1. Is it necessary to acting engine where the cranks are at 120 degreesapart A. No. 2. Is it necessary to balance a three cylinder, high speed, upright, single acting engine, the cranks
also at 120 degrees apart, and where the steam is at the also at 120 degrees apart, and where the steam is at the
top of pistons? A. Yes.
(13) J. M. A. asks how sulphurous acid may be made without much expense, and what appara-
tus would be needed? A. By treating hyposulphite or sulphite of soda with dilute sulphuric acid gas comes off freely, and should be received in pure water, which dissolves it and forms sulphurous acid. A bottle with
perforated cork and an eduction tube is all that is reperforat.
(14) F. W. S. writes : I would like to make a small induction coil for taking shocks. I have
about 6 ounces No. 31 copper insulated wire, which I about 6 ounces No. 31 copper insulated wire, which
would like to use for the secondary coil. Will you please tell me what size and about how much wire I will need for the primary coil, and what size spool it will make? A. Use a bundle of wires a quarter of an inch thick and
24.4 long for core. On these wind one hundred feet No 214 long for core. On these wind one hundred feet No.
16 to 18 insulated wire, and on this the fine wire. Use layers of shellacked paper between the core and primary
and between primary and secondary.
(15) E. B. D. asks in regard to the con struction of Leyden jars? Say we ase gallon jars

1. How thick should the glass be? A. About $1 / 8$ inch . What is the best method of coating the jar with tin foil? A. Paste the tin foil on with flour paste over two-
thirds the height of the jar and over the bottom, inside thirds the height of the jar and over the b
and outside. For inside use it in strips.
(16) A. E. S. writes : If a sphere of average wrought iron weighing 1 ton with a vacuum that
renders it without specific gravity be filled with air will the sphere be made heavier or lighter? And how much peratmospheric pressure? A. A vacuum does no deprive a substance of specific gravity. A hollow with how much, depends on the volume of air introduced, hich is not given in your question.
(17) C. W. H. says : I wish to construct battery and lamp for an electric light to be used in sonnection with a microscope to throw an image upon 8 feet square. 1. Please explain conscreen about 8 feet square.
struction of battery and lamp. I have a telegraph batery, 12 cups; can that be used? A. You need a much higher electro-motive force than 12 gravity cells will give. The lamp you can buy of Stout-Meadowcroft Co., 21 Ann Street, New York. They supply battery, lamp, and all for this express use. 2. I have a small medical battery in which I use sulphate of mercury;
can a larger battery of that style be used? A. It could, can a larger battery of that style
but would be expensive to run.
(18) W. B. writes : I have four large gravity battery cells, half a mile of No. 18 cotton-covered magnet wire, and desire with these to make a powerful magnet. Please tell me how big should the
soft iron core be. What is the best iron-cast or wrought? Need I put any insulator on themagnetbefore wrapping with wire, and is anything required between the layers? A. Use cores $11 / 4$ round iron (Norway annealed), and about 10 inches long. Wind the wire on pasteboard tubes large enough to slide over the covers. Use two tnbes for each leg, and wind each tube with a double layer. This gives you a number of combinations, to
suit different battery strengths. Nothing more is resuit different battery strengths. Nothing mo
quired than wrapping of wire as an insulator.
(19) H. E. W. asks whether cotton seed oil is combustible; if so, what degree of heat it requires
to explode it. Some of the Northern mills have been to explode it. Some of the Northern mills have been
advised not to handle it, on account of its spontaneus combustibility. A. Cotton seed oil is not exploive in the ordinary sense. Mixed with waste, wood fire ${ }^{\text {In p }}$ pontaneously. We should apprehend no more danger in handling it than in the case of linseed oil.
(20) G. H. A. says : I have lately made workshop of an upper room, and have pnt in a lathe,
boiler, and engine of a total weight of 2400 pounds esting upon 3 joists 3 inches by 9 inches by 16 feet 0 inches. Will it strengthen the floor sufficiently to nable it to carry the increased weight if I bolt three 3 inch by 8 inch joists to the existing ones? A.
You had better use 4 inch by 8 inch joists bolted You had better use 4 inch by 8 inch joists bolted
with $3 /$ inch bolts about 10 inches apart. Take care with $3 /$ inch bolts about 10 inches apart. Take care
o provide solid bearings for your new joists, wedging
(21) F. B. M.-The resistance to thrus the case referred to depends upon the adhesion ween the mortar and bricks, and varies from 12 to 24 pounds per square inch. Taking it at 20 pounds per nch, and the approximate resistance to thrust 300 inches we have $53 \frac{4}{7}$ cwt., the thrust required to break the wall. Taking $51 / 2$ cwt. per square for framing and $71 / 2$ cwt. Taking $51 / 2$ cwt. per square for framing and $7 / 2$ cwt.
for slates, we have 33 cwt. direct thrust. This is neglectng the wind pressure, which in steep roofs is usually calculated at 36 cwt. per square, bringing the thrust up to 124 cwt .
(22) W. B. asks: How many batteries (bichrom. bat.) will it take to run a seven candle power A. 10 to 15 such cells, run as they probably would be in
(23) A Subscriber asks: Will you give ew points about the electro magnet that a peared in vol. liv., No. 7, February 13, 1886? 1. What is the the electric motor illustrated in Scientific American, vol. liv., No. 7? A. About $50-70$ volt-amperes. 2.
The number of layers of wire used, and what is the The number of layers of wire used, and what is the
weight of it? A. This depends on the exact size. Two weight of it? A. This depends on the exact size.
or three pounds of wire should suffice. 3. What is the width and the thickness of the armature? A. Nake the project above flange the thicknessof the armature? A. Make it project about $3 / 4$ inch for stroke of 1 inch . 5. In winding the bobbin, where should the wire start made of iron too? A. Make commutator of copper or
(24) M. A. asks if one of the materials ased in the manufacture of fireworks is meal powder.
What is meal powder? A. It is powder that has been mixed and rolled, etc., but not yet compressed and
(25) L. A. writes: Want to know if there are any chemicals that will produce a gas and cre-
ate a pressure, so that the said yas can be used expansely the same, so that the said gas can be used expacathat will do it. Limestone and muriatic acid will proauce any pressur
(26) C. E. M. asks: 1. What is the mount of wire to be used in the dynamo described in Supplement, 161? Also, how much (if any) candle is pounds in the field, and half pound in armature to will give five to ten candle illuminating power. It would also like to know the power of a steam engine which I have constructed (it is horizontal). The bore is in., stroke 2 in., pressure 65 lb ., speed 120 , size of ports $1 / 8 \mathrm{in}$. round. A. If your speed is 120 revolutions per minute, it gives six one-hundredths of a horse power; if the speed is 120 strokes per minute, it is one-
(27) W. Z. asks : In a telegraph sounder he core of coils and bar of armature are nickel plated. is the attractive power lessened by the nickel coating, and would it be better to have them bare iron where close together (on armature opposite core)? A. The
nickel plating should not affect the working to any pernickel plating s
ceptible extent.
(28) H. S. P. asks : 1. How to take mildew out of a tent? A. Mix well together a spoonful of table salt, two of soft soap, two of powdered
starch, and the juice of a lemon. Lay the mixture on both sides of the stain with a painter's brush, and then expose the tent out of doors day and night until the tain disappears. 2. How to make an emery wheel? A the proper size. Turn the wheel true. Then prepar some best glue, and using it hot and thin, put it on the surface of the wheel with a brush. The first coat of glue should be a light one, and when it is dry a second much emery should be sifted upon the wet surface as the glue will hold. When this is dry, another coat of Slue and emery should be applied in the same way the Scientific American for Jan. 17, 1885.
(29) J. W. P. writes: I wish to boil a cigar holder to clean it out. What kind of oil should I use, etc.? A. The best thing to use is alcohol. Care must with the outside of the meerschaum. All processes fo with the outside of the meerschaum. All processes for
coloring must be done by experts. These workmen keep heir processes secret, and there are not more than two or three persons in the United States who are compe (30) W W .
(30) W. A. B. asks: 1. Is there an explono longer manufactured. 2 . Which possesses the greate destructive power, weight for weight-No. 1 dynamite or fulminate of mercury? A. Fulminate of mercury is the most intense, and therefore most local. 3. Why
are not the higher explosives used in heavy artillery A. Because they would destroy the guns. Progressive force is desired in artillery practice.

INDEX OF INVENTIONS

Patent of the

June 29, 1886

AND EACH BEARING THAT DATE

[See note at end of list about copies of these patents.]
Abdominal and spinal brace, w. B. Dewees........
Aerated beverages, apparatus for manufacturing. O. Brunler...
Aerated drinks,

and supplying, G. W. Chinnery..................
Air accumulator, auxiliary, M. P. Drummey......
Air and gas, apparatus for
Air and gas. apparatus for a
ing, G. E. Benninghoff.
ing, G. E. Benninghoff........
Tyson.............
Animals, , device for exterminating ground bur-
row...............................
rowing, M. Scholl................
arc light, w. E. Freeman
Axle box, car. J. Petithomme.....
Bag. See Mail bag. Traveling b
Bag and twine holder, combined, J. Cushing. Bag frame clasp. F. F. Braillard...
Bag holder, Hollingsworth \& Broy

Baling machine, B. J. Leslie
Banjo frame, M Den
Banjo frame. M. Dobson....
Bar. See Car strengthening bar.
Basin or similar fixture, set, ,
Basket, cotton, D. C. Barrow..
Bat, racquet, I.
Bat, racquet, I. T. Townsend
Bearing, anti-friction, M. Gale
Bell, door, R. A. Wooding
Belting, J. D. Channell
Belting, J. D. Channell...
Blacking box, C. C. Johnston,
Blind, movable slat rolling, A.
Block. See Building block.
Boat. See Submarine boat.
Bobbin, C. M. Currier.....................
Bobbin winding machine, G. Scheibler.
Boiler. See Wash boiler.
Boiler for house warming apparatus, R. S. Wat-
Boot and sho.............
Boot, felt, D. Beatty
Boot or shoe, button, W. E. Bennett.
Boot, shoe, or stocking, felt, J. Brandy
Boots, etc., machine for forming bats for felt
Messer \& Woodbury.....
Bottle stopper, C. D. Quillfeldt...........................
Box. See Axle box. Blacking box. Fare box.
Letter box.
Box, H. P. Fiske
Box, nailing machine, J. H. Swift...................................344,46
Brace. See Abdominal and spinal brace.
Brake. See Car brake. Electrical train brake.
Brake. See Car br
Tricycle brake.
Brick, ornamental, J. C. Anderson.
Brick or tile having roughened, drus
gated appearance. J . C. Anderson.
faces of, A..M. Long

Brush and comb, combined hair, J. Noyburn....
Laughlin
Brushes, machine for making, J. Earnshaw...
Buckle, T. Haswell..................
Building block, Popp \& Melchior
Building section, separable, H. Mulhollen.
Burglar alarm, L. E. Cosby..
Burglar alarm, electric, S. T. T. Dicke.....
Button, R. H. Lewis................
Button fastener, E. Kempshall..
Button or stud. C. I. Wood.
Buttons, machine for fastening, S. Schwab
Calendar, E. N. Heath.
Calculator, J. v. Charpantier.
Cans, unsoldering and cleaning, tin, M. Thomas.

shaw........ ap, C. Freschl..

Capsule machine..... Kr
Car brake, W. H. Tice

say | 344,59 |
| :--- |
| 344.39 |

Carriage gear, E. Squires.
Carrousel, R. Steel..... 344,689
344,753
Cart, water, s. B. Sherer
Case. See Violin case.
344,728
Caster, N. Drucker.....................................
Casting car wheels, W. Wilmington (r)...........
Cereals, food products from, Boynton \& Van Pat- 10,742
ten.......................
Chenille pendant, B. Dreyfus....................... 344,570
344,460
Chimney cowl, N. Clifford.
Churn, C. A. Madsen
hurn, barrel J. Smith 344.565
344,534
344,503
Clamp, G. Blythe.
Clamp or holder, Clamp, G. Blythe...............
Clasp. See Bag frame clasp. 344,713
344,651
Clasp and file, M. H. Kiebel... 344,384
and flue cleaner.
Clock movement, F. A. I ane.........................
Clocks, record sheet for the dials of watchmen's
${ }^{344,584}$

Clothes drier, I. V. Cooley.. | 344,628 |
| :--- |
| 344,402 |

Clothes wrlnger, M. N. Lovelligan
Clutch coupling, B. F. Applegatecoal, etc.., machine for washing, R. Robinson.....
Coffee. apparatus for treating. A. L. Saint-A ubin.
Con,344,61
344,58
34,79
344545
341,597
Compee roass faces, instrument for engraving, v. I. . .
344,676
Condenser, jet, L. Schutte.........
Core strengthening bar, E. Niver
Corkscrew, J. H. Cluever........ Core strengthening bar, E. Ni
Corkerew, J. H. Cluever......
B. F. Pariker
Corn meal and 344,400
J. M. Case..
Cotton and co 344,518
Cuff fastener, S. V. Thomas...444,605

Curling iron, R. P. Dunn.............74| 344,605 |
| :--- |
| 344,774 |

Cutter. See Cigar cutter.
Damper, furnace, W. .E. Walker et al 344.509
Dental breath guard. C. P. Southwell................. $34, .009$
344,688
344,54
$344 ; 38$
Dorrs, apparatus for opening. E. A. Babcock.....
Draught equalizer, J. D. White................ 344,02
Barker.
Drawers, \mathbf{M} 344,059
344,81Drier. See Clothes drier. Fruit drie.
Drill. See Lemon drill. Rock drill.
rinking straw or tube holder
other glasses, W. E. Coleman.
Electric batteries, zinc for, W. S. Platt................ 341,4145
lectric conductors, conduit for, H. Fondersmith 3
lectric light reffector or reflectors. W. A. Jones.. 3
Electric machine, dynamo, C. A. Parsons 344,542
Electrical apparatus, connecting clip for, M. M.$\underset{\text { M. Slatery.. }}{\text { M. }}$
ward..................................Electroplated fabric. R.
levators, hand device for the shipper or hand344,764
344,736
34,397
344,687ngine. See Gas engine. Rotary engine. Steam
engine.
344,586
$.34,618$ Electroplated fabricaucet, J. R. Underwoo
eed water heater, I. D. Small..................................344,4866
Fence, J. M. Kelly.......................... 34,660
W.
ence, barbed, whitney \& Hubbell...nce wire, ma
H. Corcoran
Fence wire tighenter, T. C. . Histed 344,629
344.576
thal....................

			Stovertisements
138	Pi		
erator. see steam generator.			
smare mould for	Plasticand		
e, L. . . . Burnham	Plastice and wrie netting lining or minishing for	${ }^{1}$	
			CET THE BEST AND CHEAPEST
ne, J. R. D	W.cre		
di. see Dental breath	${ }_{\text {ckibl }}$		
carriase tor re			
alee			
¢, J. P. Duthie..................... 34,368	Pres		
		Thill coupings, antitratiter for, w. E. Murbarger 24isis6	
			States
Hat sizing machines,			
Has load			
Head rest J. W. Trusell	Protecor. See He	${ }_{\text {Tor }}^{\text {Toract }}$	
	${ }^{\text {Pump }}$		
Heat ${ }_{\text {ell }}$			
			,
He			
Heel and sole protector, F. J. Herrick \qquad 344,526			
Heel nalilig machine, F.F.r.raymond, 2d............4.499			
Ho			
${ }^{344,79}$		Valve, automatic stop, L. schatte.................34.5001	
		val	
344,54	Rock arill G. R. Cullingworth..................... 34.477	vehicle gear. C. M. B. Bydenburgh................ 34.7 .72	
Hub	Roller mill, w. Bauer............................34,472	velo	
Illuminat ion eleetric, C. . E. Buell................3 34,	Rolling mills, roll for, Reed $\&$ Holloway........... 3444033	Violin case, H. B. . Tutte...........................34.588	
51	Salt making apparatus, T. Craney................ sut634	wal	
		Wate	CONSTRUCTION OF STABLES. - A
Knite		Water motor, F. A Hisind	
			To be had at this office and from all
			STAMPED METAL GOODS,
	Scale		An
		Well casings,	
- ${ }_{22}^{29}$		wheel. Tration whel. Truck wheel. Ve-	
	$\xrightarrow{\text { Sevil }}$	Whe	
4, ${ }^{192}$			K10 ${ }^{\circ}$
	$\begin{gathered} \text { sewin } \\ \text { Sivin } \end{gathered}$	Wh	
Letter box d McLane Lifter. See Pan and stove	W. Chamberlin................................	Windmill, M. Willi	
Lititinf jack, A. A. St			
		Wrie gate A. . . He	
		wool	
Loom shattee. A. Ala		Wrench. See Pipe wrenen	Ne nachinerp.
		er. See Cl	
Mail bags		DESIGNS.	
		Glass vessel, A. T. Tang.	
	Steifh, bob. M. . . Bertrang........................ 844.71		
	Smoke		
pulds	${ }^{34.4 .391}$		E
${ }_{\text {p, }} 1$ T.		trade marks	
Motor. See Electric motor. W ater motor. Muffs, device for blocking, J. A. Spitzer. 344,752		Abdominal supporter, w. Teutel................. 13.4	
Musie			Cens. To be hat at this oficice aud form
Musician's exe			
		Hats fo Lockets	
	Starch, manufacture of, J.C.C. Schuman......44,4i11, 34.414		
			DRAINAGE.-A SERIES OF VERY
Olls,		Sar	
		Starch for laundry purposes, G . Fox Starch Com-	
			PELRFEC'I
4, 4.698			NEWSPAPER FILE
and			
		Whisky known as Kentucky sour mash, J. Eppstein	
Pants,			
dives			
			ans.
			team bollerinsurance Co.,
		$\begin{aligned} & \text { rior to } 1866 \text {; but at incre } \\ & \text { ons, not being printed, } \mathrm{m} \end{aligned}$	

mTHE IMPROVED Rider Hot Air Pamping Engine For City or Country Residences， Burns Coal，Wood，or Gas．Safe，Simple
Durable． $\mathbf{3 . 0 0 0}$ in use mlustrated Catalogue＂．A．＂
ITR SAYER \＆CO． 37 DeJ St，NeW York．

GAS ENGINES．

ECONOMIC MOTOR CO MOR

NEWSPAPER ADVERTISING Pays Best WHEN PROPERLY DONE．

WE AIM TO AND DO GIVE TO ALL CUSTOMERS， Lowest PRICES．－－PROMPT TRANSACTIONS．－－

 LowEst Prices．－－PROM PT TRANSACTIONS．－．JUDICIOUS SLETIONS ASED OPINIONS AND CONFIDENTALL SERVICE． Aovertisements Desianed．Proors Shown and
Estimantis of Cost in ant Newsenters．
FunNishor To Resonsibe paties
FREE or CHARE．
The H．P．Hubbard Co．， Judicious Advertising Agents and Experts， New Haven，Conn．
\qquad

CAS ENGINE

FIRE DAMP IN COAL MINES．－DE－

PGT工TIETEA Order from our＂Special List．＂
THE JOHN T．NOYE MFG CO．， SLATE ROOFCOVERINGS．－BY JOHN

FOREIGN PATENTS．
Their Cost Reduced.

[^0]

HOISTING ENGINES

LIDGERWOOD MANUFACTURING CO．， 96 LIBERTY STREET，NEW FORK

PIPE COVERINGS
Mbsolutely Fire Proof．

ICE \＆REFRIGERATING ジvinitia

The AMERICAN INSTITUTE

MACHINERY AND EDUCATION．－A lecture by Dr．R．W．Raymond．pointing out some inter－
esting analoziesbetwenthe evolutininilustratedin the
growth of naural torms in the visible ororla and the
development and dapotation he thi hum

DRY AIR REFRIGERATING MACHINE Description of Hall＇s improved horizonta dry air refrig
erator，designed to deliver about 10.000 dubic feet
cold air per hour，when runing at a speed of 100 revolu－

HYDRAULIC FLANGED HEADS，

OF IRON OR STEEL，FOR BOILER AND TANK MAKERS

Unequaled for strength and Uniformity THE DICKSON MANUFACTURING CO． ©ORANTFOIN，PL．
 Of

NOVELTY ELECTRIC CO．

Learner＇s Novelty Diamond Telegraph Instrument is

Through the Yellowstone Park on Horseback． .$\$ 1.50$

Profits in Poultry．Useful and 0r－ namental Breeds．．．．．．．．．．．．$\$ 1.00$

How to Handle and Educate Vicious Horses．
.$\$ 1.00$

 The Law of Field Sports．．．．．$\$ 1.00$

 The Bridle Bits ．．．．．．．．．．．．．$\$ 1.00$

The Percheron Horse．．．．．．．．．．$\$ 1.00$

WORKSHOP RECEIPTS．

For the use of Manufacturers，Mechanics，and Scien－
tifict A mateurs．The bet late collection published of
such

any address．
In in Indering single volumes，be particular to men－ Sent postpaid by MUNN \＆CO．， 361 Broadwav，
New York，on receipt of price．
 SHEPARD＇S NEW s60 Screw－Catting Foot Lathe． Foot and Power Lathes，Drill
Presses，
Scroll－saw Athent
ments，Chucks，Mandrels，Twist
 send for catalogue of Outtits
for Amaters or Artisans． PERFUMES．－A PAPER．BY JACOB

CURE For DEAF

TO WEAKMEN：

WEAK，UNDEVELOPED PARTS

©fovertisements

To Business Men.

The value of the ScIENTivic AMERICAN as an adver-
tising medium cannot beoverstimata. Its icreulation
is is many times greater than that of any similar journal
now published.. It tyoes into all the states and Territo-
nies, and is read in all the princinal libraries and reading
. reos, and of the worli. A. business man wants something
roore than to see his advertisement in a printed news-
mon paper. He wants circulation. This he has when he
advertises in the Scievtrit Americ An. And do not
not let the advertisisg agent intuence you to substitute
some other paper for the Scirviric Americ selecting a list of pubications in which you decide it is
for your interest to advertise. This is frequenty done, for the reason that the agent gets a arger commission
from thepers having amall circulation than is allow-
ed on the ScIENTIFIC A AERICAR. dress mUNN \& CO., Publishers, 361 Broadway, New York. description of the system, accumpanied - A with a map

Samples and descriptive Price List free by mail, chicago. PHILADELPHIA. LONDON. LIGHTNING RODS.-DESCRIPTION OF

WITTIERBY, RUGGE RICHARDSON. Manufacturers
of Patent Wood Working Machinery of every descrip.
 REMOVAL OF SEWAGE.-BY W. H.

©A Practical ssecess
VAVZENS PITI LOOSE PULLLE OIIER.

MODEL and $\begin{gathered}\text { Send forcircmars. } \\ \text { FXPERIMENTA } \\ \text { C.E.Jones\&Bro, } \\ \text { cincinsati, o. }\end{gathered}$
 WORK

VASELINE, PETREEOLINE, NEU

HARRIS-CORLISSENGINE,

PATENTS.

MESSRS. MUNN \& CO., in connection with the publi-
cat:on of the ScIENTIFIC AMERICAN, continue to examine improve
for Inventors.
Inthis ine

experience, and now have unequalea facilitiene your the
preparation of Patent Drawings, speciftcatios for preparation of Patent Drawings, Specifications, and the
prosecution of Applications for Pretents in the United
Stas
 for Books, Labels, Reissues, Assignments, and Reports
on Infringements of Patents. All business intrusted to themis donewith
reasonable terms.

A pamphlet sent free of charge, on application, con and

 taining full information about Patents and how to pro-cure them ; directions concerning Labels, Copyrights, Designs, , altents, Appeals, Reisssens, Infringements, As
signments, Reiected Cases, Hints on the Sale of Pa tents, etc.
we also send, freeof charge, a Synopssis of Foreign Pa tent Lasw, showing the east and method of secur
patents in all the principal countries of the world. MUNN \& CO., Solicitors of Patents, RRANCH OFFICESS. - No. 622 and 624 F Street,
olife Enilding, near 7th Street, Washington, D. C.?

BLAKE'S IMPROVED P1PE HANGER.
 it is the cheapest and best hanger in the market.

 JPNNIETIN

ELECTRIC TRAMWAYS.-DESCRIP

ROTARY ENGINES.-DESCRIPTION

LUBRICATING OILS.-A PAPER BY

Mineral Lands Prospected

VENTILATION-GREAT IMPORT-

 INTERNATIONAL INSTITUTE FOR Liquefied Carbonic Gas, PROGRESS IN ASTRONOMICAL

GRATEFUL-COMFORTING.
COCOA
ASBESTOS.-NATURE OF THE MIN-

SOURCES OF SALTPETER-A PA

 REGENERATIVE GAS FURNACES. -

THDP FПP[TNES

CONCRETE AS A BUILDING MA

Bibb's Celebrated Origina
BALTIMORE FIRE-PLACE HEAE

HEATING BUILDINGS BY STEAM.

BARREL, KEG, Hogshead,
Stave Machinery
E. \& B. HOLMES,

95 MILK ST., BOSTON, MASS.

This Company owns the Letters Patent granted to Alexander Graham Bell, March 7th, 1876, No. 174,465, and January 30th, 877, No. 186,787.
The transmission of Speech by all known forms of Electric Speaking Telephones infringes the right secured to this Company by the above patents, and renders each individual user of telephones not furnished by it or its licensees responsible for such unlawful use, and all the consequences thereof, and liable to suit therefor.
HEAT IN RELATION TO CHEMICAL

DRAWING

R

Scrintific Ammericay

The Most Popular Scientific Paper in the World.
 This widely circulated and splendidly illustrated
paper is published weekly. Every number contains sixeen pages of useful information and a large number of original engravings of new inventions and discoveries, representing Engineering Works, Steam Machinery New Inventions, Novelties in Mechanics, Manufactures,
Chemistry, Electricity Telegraphy, Photography, ArchiChemistry, Ellectricity Telegraphy, Photography, Archi-
tecture, Agriculture, Horticulture, Natural History, etc. american a popular resume of the best scientific information of the day; and it is the aim of the publishers
to present it in an attractive form, avoiding as much as to present it in an attractive form, a voiding as much as
possible abstruse terms. To every intelligent mind, possible abstruse terms. To every intelligent mind,
this journal affords a constant supply of instructive reading. It is promotive of knowledge and progress in
every community where it circulates. Ter ms of Subscription.-One copy of the SCIEN-
TIFIC AMERICAN will be sent for one pear- 52 numbersTIFIC AMERICAN will be sent for one year- 52 numbers-
postage prepaid, to any subscriber in the United States or Canada, on receipt of three dollars by the pub-
lishers; six months, $\$ 1.50$; three months, $\$ 1.00$. Clubs.-One extrin copy of the ScIENTIFIC AMERIat $\$ 3.00$ each; additional copies at same proportionate
The safest way to remit is by Postal Order, Draft, or Express Money Order. Money carefully placed inside
of envelopes, securely sealed, and correctly addressed of envelopes, securely sealed, and correctly addressed,
seldom goes astray, but is at the sender's risk. Adseldom goes astray, but is at the sender's risk. Ad-
dress all letters and make all orders, drafts, etc., pay-

MIUNNN \& CO., 361 Broadway New York.

Scientific American Supplement. THIS SCIENTIFIC AMERICAN, but is uniform therewith
in size, every number containing sixteen large pages. The Scientific ambrican Suppleminnt is published weekly, and includes a very wide range of contents. It
presents the most recent papers by e minent writers in all the principal departments of Science and the
Useful Arts, embracing Biology, Geclogy, Mineralogy, Chural History, Geography, Archæology, Astronomy, Chemistry, Electricity, Light, Heat, Mechanical Engi-
neering, Steam and Railway Engineering, Mining, Ship Building, Marine Engineering, Photography,
Technology, Manufacturing Industries, Satitary Yechnology, Manufacturing Industries, Sanitary En-
gineering, Agriculture, Horticulture, Domestic Economy, Biography, Medicine, etc. A vast amount of fresh
and valuable information pertaining to these and allied and valuable information pertaining to these and allied
subjects is given, the whole prof usely illustrated with engravings.
The most impcrtant Enjineering Works, Mechanisms.
and Manufactures at home and abroad are represented and described in the Suppiemient. Price for the SUPPI MENT for Canada. $\$ 5.00$ a year, or one copy of the ScIentific AmERICAN and one copy of the SUP PLeminit, both mailed
for one year for $\$.00$. Address and remit by postal

$$
\text { MUNN \& Con } 361 \mathrm{R}
$$

MUNN \& Co.. 361 Br
Publishers Scientific american.
To Horeigi Subscribers.
the Postal Union, the Scientific Ander the facilities of by post direct from New Fork, with regularity, to subseribers in Great Britain. India, Australia, and all other
British colonies; to France, Austria, Belgium, Germany, British colonies; to France, Austria, Belgium, Germany,
Russia, and all other European States; Japan, Brazil, Russia, and all other European States; Japan, Brazil,
Mexico, and all States of Central and South America. Terms, when sent to foreign countries, Canada excepted,
$\$ 4$, gold, for SCIENTIFIC AMERICAN, one year; $\$ 9$, gold, for both SCIENTIFIC AMERICAN and SUPPLEMENT for
one year. This includes pestage, which we pay. one year. This includes postage, which we pay. Remit
by postal or express money order, or draft to order of
MUNN \& CO. 361 Broadway, New York.

PRENTIING INKE,

[^0]: The expenses attending the procuring of patents in
 most foreign countries having been considerably re－
 duced the obstacle of cost in no longer in the way of a large proportion of our inventors patenting their inven－
 tions abroad tions abroad
 CA NADA．－The cost of a patent in canada is even
 less than the cost of a United States patent，and the former includes the Provinces of Ontario．Quebec，New
 Brunswick，Nova Scotia，British Columbia，and Mani－ toba．
 The number of our patentees who avail themsel ves of the cheap and easy method now offered for obtaining
 patents in Canada is very large，and is steadily increas． ing．
 ENGILAND．－The new English law which went into
 torce on Jan．1st．1885，enabies parties to secure patent in Great Britain on very moderate eterms．ABritish pa－
 tent includes England，Scotland，Wales，Ireland and the Channel Islands．Great Britain is the acknowiedged financial and commercial center of the world．and he
 goods are sent to every quarter of the globe．A good invention is likely to realize as much for the patentee
 in England as his United States patent produces for him at hrme．and the small cost now renders it possible
 for almost every patentee in this country to secure a p ． for almost every patentee in this country to secure ap ${ }^{\text {．}}$
 tent in Great Britiai，where his rights are as well pro－ tected as in the United States．
 OHHER COUNTIRIES．－Patents are also obtained on very reasonable terms in France，Belgium，Germany，
 Austria，Russia．Italy，spain（the latter includes Cuba Australia，and the other British Colonies．British Iudia， An experience of FORTY years ias．enabled the
 publishers of THE SCIENTIFIC AMERICAN to establish publishers of THe SCIENTIFIC AMERICAN to establish
 competent and trustworthy agencies in all the principal toreign countries，and it has al ways been＇their aim to iy done and their interests faithfully guarded．
 A pamphlet containing a synopsis of the patent laws
 of all countries，including the cost for each，and othe of all countries，including the cost for each，and othe information useful to persons contemplating the pro
 this office． MUNN CO．．Editors and Proprietors of THE SCI－ ENTIFIC AMERICAN，cordially invite all persons desiring any information reiative to patents，or the registry of
 trade－marks，in this country or abroad，to call at their offices． 361 Broadway．Examination of inventions，con sultation，and advice free．Inquiries by mail promptly answered．

 Address， $\begin{gathered}\text { MUNN \＆CO．，} \\ \\ \text { Publishers and Patent Solici }\end{gathered}$ Brance Offices：No． 632 and broadway，New York． 64 F street，Pacific

